
Context-Sensitive Statistical L

Alexander Gruenstein, Chao Wang,

Spoken Language System
MIT Computer Science and Artificial

The Stata Center, 32 Vassar Street, Cam
{alexgru,wangc,seneff}@cs

Abstract
We present context-sensitive dynamic classes – a novel mech-
anism for integrating contextual information from spoken dia-
logue into a class n-gram language model. We exploit the di-
alogue system’s information state to populate dynamic classes,
thus percolating contextual constraints to the recognizer’s lan-
guage model in real time. We describe a technique for train-
ing a language model incorporating context-sensitive dynamic
classes which considerably reduces word error rate under sev-
eral conditions. Significantly, our technique does not partition
the language model based on potentially artificial dialogue state
distinctions; rather, it accommodates both strong and weak ex-
pectations via dynamic manipulation of a single model.

1. Introduction
The speech recognizer’s language model plays a key role in spo-
ken dialogue systems. In most systems, the approach to lan-
guage modeling can be viewed as being close to one of two
extremes: either there is a single large model used to recognize
all user utterances, or a series of smaller – often context free –
models for each dialogue state in the system. Typically, state-
based systems demonstrate strong system initiative, in which
the system guides an information-seeking dialogue in a step-by-
step fashion, eliciting the user’s response from a narrowly con-
strained set of alternatives. In contrast, single-language-model
systems typically arise as part of an information-state update ap-
proach to dialogue, in which the aim is to allow the user to feel
as though she could say anything that naturally comes to mind
at a particular point in the dialogue. Because the system does
not so strongly guide the conversation, it is typically difficult
for a dialogue system designer to partition potential informa-
tion states1 into all possible dialogue states and enumerate their
transitions, making it less straightforward to craft state-specific
language models in advance – often resulting in the use of a
single large model trained on all in-domain data.

While dialogue systems based around information states
usually keep rich representations of context in order to interpret
recognized utterances in context, it is an open question how best
to effectively leverage this contextual information to improve
recognizer performance without resorting to a state-based ap-
proach. In this paper we explore a mechanism for biasing a
large n-gram language model based on conversational context.
In particular, we develop context-sensitive dynamic classes for
class n-gram models – dynamic classes with expansions which
are updated depending on dialogue context. We train and test

1Our definition of information state in this paper is meant to be
fairly all-inclusive: we mean any detailed representation of conversa-
tional context; examples include those implemented in [1] or [2].
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ass n-gram models on a corpus of user interactions with
ERCURY flight reservation dialogue system [1] and use
rsion of MIT’s SUMMIT recognizer described in [3];
er the techniques we develop are not particular to that

nizer. We show a large reduction in word error rate under
l conditions.

2. Previous work
] it is shown how dialogue context can be used to
e among several large segments of a context-free language
l (compiled from a unification grammar) in a complex,

ation-update style dialogue system. The dialogue sys-
information state is used to determine which subset of the
t free grammar should be swapped into the recognizer.
recognizer fails to produce a hypothesis above a particu-
nfidence threshold, a second pass is made using the larger,
general model. While this technique is powerful, it has the
acks that it relies on a hand partitioning of the grammar as
s potentially two recognition passes; additionally, tweak-
required to properly set the confidence level threshold for
ing a second recognizer pass.
ontext-sensitive language modeling has also been imple-
d in systems using n-gram language models. For exam-
[4, 5, 6, 7, 8] it is shown how dialogue-state-dependent

m models can be used to increase accuracy when they are
olated with the n-gram model derived from a larger set
domain data. The training corpus is subdivided into sub-
ra – one for each dialogue state. Language models are
d on each sub-corpus, and then interpolated with the larger
l trained on all in-domain data. A major difficulty with
proach is that optimal interpolation weights are difficult
as perplexity on a held out set does not seem to be a good
tor of word error rate on the test set.
oth techniques require dialogue-system designers to de-
means of partitioning the complex information states of
ise stateless dialogue systems, so as to choose an appro-
language model for each particular user utterance. In the
f n-gram models, requiring the dialogue-system designer
ate definitive segmentations forces the designer to balance
e-grainedness of the dialogue states with data sparseness.
ver, as the complexity – and, hence, the number of states
e dialogue system increases, it becomes increasingly dif-
to find the right combination of states to interpolate (au-
ic clustering has had limited success mitigating some of
fficulty [7, 8]). Similarly, for grammar-based models, the

ar writer must balance writing linguistically motivated
with domain-specific ones which allow for more optimal
isions for recognizer performance. Finally, neither ap-

h reasonably accommodates incorporating highly specific



S1: How may I help you?
U1: I’d like to fly from Austin/$city to Oakland/$city on

the third/$digit.
S2: Okay, from Boston [misrecognized] to Oakland on

March third. Can you provide an approximate depar-
ture time or airline?

U2: Not Boston/$dynsource, Austin/$city.
S3: Okay, from Austin to Oakland on March third. I’ve

got a flight on American at two o’clock, would that
work? Or I’ve got one on United at four thirty.

U3: How about the flight at two/$dyntime.

Figure 1: A dialogue snippet tagged with strong context-
sensitive dynamic classes. S indicates system utterances; U in-
dicates user utterances. Note that $dynsource and $dyntime
are examples of context-sensitive dynamic classes, whereas
$city and $digit are typical static classes

contextual information into the language model, such as a par-
ticular list of airlines the user might have available to choose
from at a given moment.

3. Training a language model with
context-sensitive dynamic classes

In this section we present a training process for creating context-
sensitive dynamic classes. Of particular note is that the di-
alogue system’s information state need not be partitioned to
train state-specific language models. Instead, we create a sin-
gle large n-gram language model which supports dynamically
biased classes depending on the current context of the conversa-
tion. Moreover, it is capable of accommodating highly specific
salient contextual information.

It is common practice to create n-gram language models
with classes, where semantically similar entities are mapped
to one class to allow shared n-gram statistics. The SUMMIT
recognizer provides an efficient implementation to dynamically
swap in different expansions for these classes at run-time. Typ-
ically, these are used in cases where the phrases might be a
small subset of a large database – such as the names of restau-
rants or streets in a particular neighborhood as in [3]. We create
context-sensitive dynamic classes by considering the context (in
the form of the information state) in which each utterance in the
corpus was uttered. We use a corpus of real users interacting
with previous versions of our flight system, which contains di-
alogue state information associated with each utterance. This
information state record is used to tag the corpus with context-
sensitive classes in a first pass before the normal set of class
tags are applied. We explored two types of context-sensitive
dynamic classes which we label strong and weak respectively.
The strong model aims to boost particular salient entities likely
to be mentioned next, while the weak model controls expecta-
tions about the types of entities occurring in the discourse.

3.1. Strong context-sensitive dynamic classes

Strong context-sensitive classes expand to a small list of phrases
which are salient in the current context. For instance, if the sys-
tem has just offered the user a short list of times available, then
phrases which refer to these times will become expansions to
a particular strong context-sensitive dynamic class called $dyn-
time. We created the following strong dynamic classes for our
domain:

• $dynsource: the city from which the user is departing
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:date "March3"
:source "AUS"
:destination "OAK"
:reply_frame {
:best_departure {

:departure_time "2:00pm"
:airline "AA" }

:second_departure {
:departure_time "4:30pm"
:airline "UA" } }

source "austin"

destination "oakland"

"two", "two o’clock", "two
time p m", "two o’clock p m", "four

thirty", "four thirty p m"

airline "united", "united airlines"
"american","american airlines"

"the first one", "the first
nthflight flight", "the second one",

"the second flight"

2: A subset of the information state following utterance
figure 1 shown with the corresponding strong context-

ive dynamic class expansions used to recognize U3

$dyndestination: the city to which the user wants to go

$dynairline: the possible airlines the system has offered
as available for that route

$dyntime: the times of the flights the system has offered

$dynnthflight: phrases such as the first one or the second
flight dependent on the number of flights offered

1 shows a sample dialogue snippet after the user’s utter-
have been tagged with context-sensitive dynamic classes

ell as with normal classes). Figure 2 shows how the di-
e information state following utterance S3 gives rise to a
ular set of expansions for each dynamic class, which in
llows the word two in utterance U3 to be tagged with
ntext-dependent class $dyntime. Without such context-

ivity, two would be tagged more generally as $digit. Sim-
Boston in utterance U2 would be tagged as $city rather
dynsource in the absence of context-dependent classes.
esult, context-sensitive trigram weights are learned such
city|[not,$dynsource]) and P($dyntime|[one,at]). Search
involving a particular dynamic class are active in the

nizer search exactly when that dynamic class is non-
: by dynamically populating the classes based on dia-
context, contextually relevant n-grams lend weight to

t phrases in certain contexts, and decrease their weight
they are not contextually salient.

eak context-sensitive dynamic classes

lso experimented with weak context-sensitive dynamic
s. We define these as occurring in cases when the dia-
context provides knowledge of the type of information
er might soon supply, but with less specificity than in the
case above. Specifically, we have experimented with ex-

ions regarding airlines and locations. Using the same pro-
e as above, we have tagged occurrences of airlines, cities,
ate combinations, states, city country combinations, and
ries in each case with a different class tag depending on
er the utterance occurred in one of three conditions:



S1: How may I help you?
U1: I’d like to fly from Austin/$city2 to Oakland/$city2 on

the third.
S2: Okay from Boston [misrecognized] to Oakland on

March third. Can you provide an approximate depar-
ture time or airline?

U2: Not Boston/$city3, Austin/$city3
S3: Okay, from Boston to Oakland on March third. Can

you provide an approximate departure time or airline?
U3: United/$airline1 in the afternoon.

Figure 3: A dialogue snippet tagged with weak classes.

C1: The current dialogue context is such that the user has
just been prompted for one of the class members: for
example, the system has prompted the user for an airline.

C2: The system has just prompted with How may I help you?

C3: All other contexts.

Figure 3 provides an example dialogue with the weak classes
tagged. We note that, for example, Austin and Oakland in U1
have been tagged as $city2 indicating that they appear in con-
dition C2, while United in U3 has been tagged as $airline1 to
indicate that it falls under condition C1.

Unlike strong classes, the class expansions for the weak
classes are not manipulated at run time. Instead, particular pre-
trained weak classes are enabled or disabled at run time depend-
ing on dialogue context. Exactly one of the conditions enumer-
ated above must hold at all times in the dialogue, and that con-
dition determines which of the three variants is enabled at any
given time, and which two are disabled. This allows us to learn
context-dependent n-gram weights. For instance, $city3 occurs
relatively infrequently compared to both of $city1 and $city2;
and all three have distinct co-occurrence statistics.

4. Evaluation
We evaluated the strong and weak techniques independently us-
ing a corpus of 26,886 utterances collected over several years
of real user interaction with various versions of the MERCURY
flight reservation system [1]. We trained with 24,815 utterances
and tested on 2,071, creating trigram language models with a
base vocabulary size of 1,586 (excluding class expansions noted
below). We manipulated two relevant variables in creating the
static language model baselines to produce four different condi-
tions. First, we varied how the expansion weights for several of
the classes were calculated, controlling how likely each phrase
within a single class is to appear. We compared three different
ways of calculating the expansion weights: the first looked at
how often each expansion appeared in the training corpus, the
second gave uniform weights to each expansion, and the third
weighted $city and $city state based on each city’s population.
In tandem with varying the expansion weights, we manipulated
the class vocabulary size of the $city and $city state classes.
The conditions are summarized as follows:

CM Expansion weights for $city, $city state, and $airline
based on corpus statistics; medium vocabulary size of:
516 city names, 329 city states, 68 airlines

UM Expansion weights uniform; medium vocabulary.

PL Expansion weights for $city, $city state based on
population, $airline uniform; large vocabulary: 16,956
city names, 25,334 city states, 68 airlines.

UL Expansion weights uniform; large vocabulary.
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e chose these conditions because they exhibit problems
only confronted by dialogue-system designers. Creating
ue systems tends to be an iterative process: it is often nec-
to collect data using a more limited pilot system in order
r deploy a more capable dialogue system. For example,
the data collected from an initial version of a flight reser-
system may only include a few cities, in order to deploy a

robust version in the future with more cities, one can use a
, such as population, to estimate class-expansion weights
ctual usage data is collected.

able 1 compares the overall word error rates achieved in
ondition by the baseline static language model with those
ced by the weak and strong models respectively. It further
s down the statistics by looking at the word error rates
ed on relevant subsets of the test set discussed below. In
r conditions, both the strong and the weak models outper-
he static baseline, with the weak model leading to greater
tions than the strong. The relative drop in overall word
rate ranges from 1% in the CM condition to 17% in the
ase. The results show that the dynamic models make the
gains under the conditions in which the class expansion
bilities are not estimated from the training data.

tterances targeted by strong classes

ition to the overall word error rate in each condition, we
particularly interested in the effect of the strong context-
ive classes on the utterances in the test set for which they
rgeted. By targeted, we mean simply utterances for which
alogue context supplied expansions to some or all of the
ic classes, making them non-empty. In the case of the
dynamic classes, it is these utterances in particular which

namic classes are meant to be “sensitive” to – that is, it is
pothesis that these classes are helpful because they iso-
d boost n-gram statistics involving salient phrases; hence
the classes are populated based on conversational context,
ikely that expansion phrases of these classes will be ut-
We use the terminology that such utterances are targeted,
calling all other utterances in the discourse untargeted. In
1, the user’s utterances would be classified as follows:

Not targeted by any strong class.

Targeted by $dynsource and $dyndestination only.

Targeted by $dynsource, $dyndestination, $dyntime, and
$dynairline only.

te that in those examples some of the dynamic class ex-
ns appear in the actual utterances (Boston, and two), but
not a requirement. Indeed, U3 is targeted by $dynair-

espite the fact that neither United nor American appears
utterance. Targeted utterances are those for which we ex-
hat it is more likely that salient phrases will appear, not
nces in which they necessarily do appear (i.e. they are not
n by an “oracle”).
able 1 compares results over two subsets of strong tar-
utterances: those targeted by one or both of $dynsource
ndestination as well as those targeted by one or more of

ime, $dynairline, or $dynnthflight. We draw this distinc-
ecause $dynsource and $dyndestination tend to be less
c indicators of the context of the utterance than the other
s. Indeed, throughout much of a typical conversation, ei-
dynsource or $dyndestination will be non-empty, as the

and destination of a flight are usually settled on imme-
y. Hence, while targeted utterances in this category com-

60% of the test set, they saw only a 1.5% drop in word



error rate. Conversely, $dyntime, $dynairline, and $dynnthflight
tend to be non-empty most often just after the system has of-
fered the user a selection of multiple flights. Therefore they are
strongly salient, and the user is highly likely to invoke one of the
phrases in these dynamic classes to select a flight. Thus, while
targeted utterances in this category constituted only 13% of the
test set, they saw a 14.4% decrease in error rate in the CM case,
accounting for much of the overall improvement. This indicates
that in a system where we were able to target a larger number
of utterances we would likely see a larger reduction in overall
word error rate.

4.2. Subsets based on applicable weak conditions

Finally, table 1 also compares the word error rates produced
by the weak language models on utterance subsets formed by
determining which of the three conditions enumerated in sec-
tion 3.2 were active during recognition of a particular utterance.
The first subset includes all utterances under conditions C1 or
C2, when we expect the user is likely to name an airline or lo-
cation. The second subset includes just those recognized when
condition C3 held, indicating that based on dialogue context the
user is unlikely to name an airline or location. Here, the weak
model outperformed the static baseline in all comparisons ex-
cept under subset C1/C2 evaluated in the PL condition. The
largest gains generally came under condition C3 – there is, for
example, a 20% relative reduction in word error rate in the UM
case. This is to be expected, as conditions C1 and C2 are similar
to the baseline in that airlines and locations are fairly common
in both; conversely, in C3, locations and airlines are not likely
to be mentioned, thus leading the weak model to discount the
weights on a large swath of lexical items.

Further analysis of the anomalous PL case shows almost
all of the increase in word error rate came in condition C1. We
hypothesize that the population model may heavily weight a few
cities which appear very infrequently in the test set. As the weak
model under C1 boosts the probability of seeing a city over the
baseline, it may be that under C1 we actually exacerbate the
problems caused by our poor expansion probability model.

5. Conclusions and future work
We have demonstrated two techniques for training and deploy-
ing context-sensitive dynamic classes in n-gram language mod-
els which leads to a reduction in word error rate compared
with standard class n-gram models. The techniques, which
are fairly simple to implement, employ context provided by
the dialogue system’s information state, which is already avail-
able for other utterance processing tasks typically occurring at
later stages. The primary advantage of the strong technique
is that it effectively integrates precise contextual expectation
into the language model in real time. Both approaches free
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ls which must be carefully interpolated. In addition, the
ques we have presented are easily scalable: new context-
ive dynamic classes can be added to the system without
sitating a repartitioning of the dialogue flow into distinct
. Finally, the approach is fully compatible with the inter-
on and backoff techniques discussed in section 2; combin-
ese techniques could lead to greater payoffs.
ne major piece of work left to be done is in successfully
ining the strong and weak models. There are some dif-
es in doing this correctly, as both weak and strong ex-
ions will simultaneously exist for the same utterance: for
ce, we presented here both strong and weak classes that
e information about airlines. If the system has a strong
tation about a particular set of airlines, it would be wrong
mp this likelihood by the weaker expectation that the user
e likely to say any airline at this point. We have done pilot
on combining the models, but have not yet worked out the
r technique for balancing them.

6. Acknowledgments
s to Dr. Lee Hetherington and Dr. T.J. Hazen for their

ous support with technical issues involving the recognizer.
esearch is funded in part by an industrial consortium sup-
g the MIT Oxygen Alliance.

7. References
Seneff, “Response planning and generation in the MER-
RY flight reservation system,” Computer Speech and Language,

l. 16, pp. 283–312, 2002.

. Lemon and A. Gruenstein, “Multithreaded context for ro-
st conversational interfaces: context-sensitive speech recognition
d interpretation of corrective fragments,” ACM Transactions on
mputer-Human Interaction, 2004.

. Chung, S. Seneff, C. Wang, and L. Hetherington, “A dynamic
cabulary spoken dialogue interface,” in Proceedings of Inter-
eech, 2004, pp. 327–330.

A. Solsona, E. Fosler-Lussier, H.-K. J. Kuo, A. Potamianos,
d I. Zitouni, “Adaptive language models for spoken dialogue sys-
ms,” in Proceedings of ICASSP, 2002.

. Aaron et al., “Speech recognition for DARPA communicator,”
Proceedings of ICASSP, 2001.

. Visweswariah and H. Printz, “Language models conditioned on
alogue state,” in Proceedings of Eurospeech, 2001, pp. 251–254.

Wessel, A. Baader, and H. Ney, “A comparison of dialogue-state
pendent language models,” in Proceedings of ESCA Workshop
Interactive Dialogue in Multi-Modal Systems, 1999, pp. 93–96.

. Xu and A. Rudnicky, “Language modeling for dialog system,”
Proceedings of ICSLP, 2000.
Strong: source, destination Strong: time, airline, nthflight Weak: location, airline
Overall WER Targeted Untargeted Targeted Untargeted C1 & C2 C3

static strong weak static strong static strong static strong static strong static weak static weak
CM 17.8 17.7 17.6 19.5 19.2 16.0 16.0 18.6 16.0 17.7 17.8 14.7 14.4 19.5 19.3
UM 25.2 24.4 20.8 29.4 27.8 20.6 20.7 32.0 25.3 24.1 24.2 18.9 17.0 28.7 22.9
PL 27.1 26.7 26.0 30.1 29.1 23.9 24.0 30.4 27.6 26.6 26.5 23.6 27.2 29.1 25.4
UL 46.7 45.0 42.1 52.5 50.1 40.4 39.4 52.9 47.1 45.7 44.6 38.4 34.8 51.2 46.1

Table 1: Comparison of word error rates of static baseline language models to ones with context-sensitive dynamic classes over four
different conditions. Each condition’s overall word error rate is shown, as well as the rates among two sets of targeted and untargeted
utterances in the strong case, and one subset in the weak case. Bolded results indicate the best score among each comparison set.
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