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Abstract
This paper addresses the issue of large-vocabulary
recognition in a specific word class. We propose a two-pass
strategy in which only major cities are explicitly represented
in the first stage lexicon. An unknown word model encoded as 
a phone loop is used to detect OOV city names (referred to as 
rare city names). After which SpeM, a tool that can extract 
words and word-initial cohorts from phone graphs on the 
basis of a large fallback lexicon, provides an N-best list of 
promising city names on the basis of the phone sequences 
generated in the first stage. This N-best list is then inserted
into the second stage lexicon for a subsequent recognition 
pass.

Experiments were conducted on a set of spontaneous 
telephone-quality utterances each containing one rare city
name. We tested the size of the N-best list and three types of 
language models (LMs). The experiments showed that SpeM 
was able to include nearly 85% of the correct city names into
an N-best list of 3000 city names when a unigram LM, which 
also boosted the unigram scores of a city name in a given
state, was used.

1. Introduction
This paper addresses the issue of large-vocabulary
recognition for a specific class of words, in the context of
telephone-access spoken dialogue systems. The practical 
interest of this work is illustrated using two on-line systems
which offer flight (Mercury, [1]) and weather (Jupiter, [2])
information worldwide. The weather source has recently been 
updated to handle over 38,000 city names (hereafter referred 
to as ‘rare’ city names). The flights system would also be able 
to handle any city that has an airport, if it only could 
recognize the city name. A big issue, then, is how to handle a
large set of city names effectively and efficiently in the
speech recognizer. A straightforward strategy is to expand the 
recognizer's lexicon. However, this will result in a large
search space, with only a back-off prior probability associated 
with each of the rare city names. Very large lexicons in
combination with a weak language model (LM) usually
results in poor performance for automatic speech recognition
(ASR) systems.

In this paper, we propose a two-stage ASR system. To 
overcome the problem of a weak language model, we adopt a 
novel strategy that uses small lexicons in combination with a 
generic phone-based out-of-vocabulary (OOV) word model to 
represent a rare city name in the form of a phone graph. This
approach licenses in a second stage only those city names that 
match the proposed phone graph sufficiently well.

In the literature, a variety of solutions to handle OOV
words have been proposed, e.g. [3],[4]. In [5], in accordance
with [3], we built a two-stage recognizer that detects OOV 
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als in the first stage, and that adapts the lexicon of the
d stage recognizer by selecting a subset from a large 
ck lexicon, which in our case consists of city names. To
 the subset of city names from the fallback lexicon, we
peM [6]. The aim of the second stage is to recognize as 
 of the rare city names that were marked as OOV by the 
tage recognizer as possible. Since an ASR system can 
ecognize those words that are included in its lexicon, it 
ar that the performance of the second stage recognizer
cognizing the OOV words is crucially dependent on
er the correct word is included in the second stage 
nizer’s lexicon. Optimizing the coverage of the second
lexicon is the main focus of this work. 
itial experiments with the proposed two-pass system
presented in [5]. SpeM was able to select nearly 60% of 
rrect rare city names (in 399 utterances) from a fallback 
n containing 52,595 city names in an N-best hypothesis
3000 city names. In those experiments, no language 

l for SpeM was available: All words in the fallback
n had equal probability. It was suggested that it might
ssible to improve the performance of SpeM and the two-
ecognition system by using population statistics (in the 
of unigram counts) as unigram scores for the city names. 
 paper, we put this suggestion to the test. 

re 1. Overview of proposed the two-stage recognition 
m.

2. Recognition system 
roposed two-stage recognition system is schematically
ed in Figure 1. The acoustic signal is fed into the first 
recognizer, which uses a lexicon that captures ‘general’ 
 in addition to the 500 most frequent city names. An 
model that is intended to mark all city names not in the 
n as being OOV is integrated into the first stage. The 
hesized phone graphs underlying the stretches of speech 
 marked as OOVs can be extracted. These OOV phone
s are used by the SpeM module to select the most likely
names from the fallback lexicon for that specific
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utterance. This subset of most likely city names is then added 
to the ‘utterance-dependent’ lexicon of the second stage. The 
second stage recognizer then does a new recognition on the 
basis of the same acoustic models as were used in the first 
stage. 

2.1. The automatic speech recognizer 
The two-stage recognizer used in this study is the segment-
based speech recognition system SUMMIT [7], which uses 
Finite State Transducers (FSTs) to represent its search space.  

The procedure used to mark the OOV words and generate 
the OOV phone graphs is described in detail in [4]: The 
generic word model is implemented as a phone loop that 
allows for phone sequences of arbitrary length. This OOV 
model is included in the lexicon. The transition into the 
generic word model is controlled via an OOV penalty. This 
OOV penalty can be considered as a unigram score: It 
controls how easily the OOV ‘word’ is selected.  

For each utterance in which an OOV was hypothesized in 
the word lattice, only one OOV phone graph was generated 
(due to the current implementation of the procedure to extract 
the OOV phone graphs – this procedure can be adapted). Note 
that it is possible that the phone graph does not match exactly 
with the stretch of speech that contains the rare city, because 
preceding and trailing garbage phones may be present, or the 
phone graph may be cut off too early. Also, phone 
recognition errors in the city name itself can cause problems. 
Furthermore, it is possible that the first stage recognizer 
recognizes the rare city name as an in-vocabulary word or 
maps an in-vocabulary word on the OOV.  

The recognizers in the first and second stage are identical, 
with the exception of the lexicon: The second stage 
recognizer also has a ‘dynamic’ lexicon [8] that is supplied 
with the list of rare city names extracted by SpeM from the 
fallback lexicon. 

In the LMs, frequent and rare city names are treated as 
different classes and separate LM scores are calculated for 
them. 

2.2. SpeM 
SpeM was originally implemented to serve as a tool for 
research in the field of human speech recognition (HSR). It is 
a new and extended implementation of the theory underlying 
the Shortlist model, a computational model of human word 
recognition [9]. The main advance of SpeM over pre-existing 
computational models of HSR is that SpeM uses the acoustic 
speech signal as input, while Shortlist and other 
computational models of HSR only take handcrafted 
symbolic representations as input.  

SpeM consists of two modules: An automatic phone 
recognizer (APR) and a word search module. The word 
search module parses the probabilistic phone graph created by 
the APR in order to find the most likely (sequence of) words, 
and computes for each word its activation based on the 
accumulated acoustic evidence for that word [6]. In the 
experiments described in this paper, the phone graphs are 
created by the first stage recognizer. In the remainder of this 
paper, whenever the word ‘SpeM’ is used, this actually only 
refers to the word search module of SpeM. 

In SpeM, the sequence of words with the smallest 
phonemic distance between the sequence of phones on the 
path through the OOV phone graph and the phonemic 
representations of the words in the fallback lexicon is 
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4.1.1.
In ou
ined using a time-synchronous and breadth-first DP 
thm. Each phone insertion, deletion, and substitution is 
zed according to independent penalties which can be 
 separately [6]. Furthermore, a garbage phone model is 
ed in the lexicon. This garbage phone model is mapped 
hones appearing at the start and end of the phone graph 

elong to the preceding or following word. The output of 
 consists of an N-best list of hypothesized parses. Each 
contains words, word-initial cohorts (words sharing 
 prefixes), garbage, silence, and any combination of 
 except that a word-initial cohort can only occur as the 
ement in the parse. Thus, in addition to recognizing full 
, SpeM is able to recognize partial words.

3. Material
xperiments were conducted on a set of continuous 

h utterances, recorded from telephone conversations 
the Jupiter and the Mercury system. The independent 
t consisted of 241 utterances taken from both domains, 
tterance containing exactly one rare city name.  

he fallback city name lexicon used by SpeM contains 
6 city names, which were harvested from the World 
Web [10]. Many of the cities were non-existent in our 
l base forms resource file, and pronunciations were 
ore automatically generated for them using the letter-to-
 system described in [8],[11]. The automatically 
ated pronunciations have been manually corrected, but 
 may still remain.  
he data sets used in these experiments are subsets of the 
sets used in [5]. To investigate the influence of 
ation statistics on the performance of our two-pass 

, we only used those (utterances containing) city names 
ich population statistics were available. 

he lexicon of the first stage consisted of the ‘general’ 
 from both domains, a list of the 500 most frequent city 
, all US state names, and a set of 1,326 partial and short 

ames with a phonemic representation of three phones or 
uch as ‘los’ and ‘new’ – this to simplify SpeM’s task, 
short words are difficult to find in a phone lattice. This 
ed in a lexicon of 2,802 words. 
llowing [5], the lexicon of the second stage consisted 
words of a specific utterance in the 50-best list of that 
nce created by the recognizer in the first stage, the 100 
 that were most often deleted by the recognizer in the 
tage (see also [5]), and the subset of most likely city 
 selected from the fallback lexicon by SpeM. 

4. Experimental set-up 

xtracting the subset from the fallback lexicon 
 first experiment, we tested two variables to improve the 
ion of the rare city names from the fallback lexicon:  
he size of the utterance-dependent N-best lists generated 
 SpeM. 

he effect of adding different types of LMs. 
he results of these experiments are presented in terms of 
age: The percentage of the test set utterances for which 
rget rare city name (which was presumably marked as 
by the first stage recognizer) is present in the N-best list 
ated for that utterance by SpeM.

The language models 
r unigram LM for SpeM, all identical city names are 



mapped onto the same item and their unigram counts are 
summed. Because the first stage lexicon handles the frequent 
cities explicitly, we excluded their unigram counts from the 
calculations, but did not exclude the city names from the 
lexicon if they exist elsewhere. For example, ‘Boston’ exists 
in three states, and ‘Boston, MA’ is a ‘frequent’ city. 
Therefore, we compute the unigram score for ‘Boston’ by 
summing only ‘Boston, GA’ and ‘Boston, IN’. 

The reasoning behind the second type of LM is that if a 
city name is more likely on the basis of the context of the 
utterance, it should receive a higher probability. An obvious 
cue is the state name. It is highly likely that a city, which is 
uttered in the same utterance as a state name, lies in that state. 
To that end, we built utterance-dependent LMs for SpeM for 
those utterances in which a state name was present. If a state 
name is present in the N-best list generated by the first stage 
recognizer, all city names in that state receive a higher 
unigram score (identical to the one used in [5]). Of course, 
only those utterances in which a state name is present might 
benefit from this approach. This LM type is referred to as 
‘unigram+state’.

The performance of SpeM while using the two types of 
LMs is compared to the results of our baseline set-up in 
which an LM with equal probability for all city names was 
used to guide the search of SpeM (‘zerogram LM’). 

4.2. The second stage  
In the second experiment, the N-best lists generated by SpeM 
were included in the dynamic lexicon of the second stage 
recognizer. We examined the effect of varying sizes of the N-
best list on the recognition performance of the full recognition 
system. An N-best list of 0 is used to serve as a baseline. 

Furthermore, we compared a system in which all words in 
the dynamic list have equal probability (‘Zerogram LM’) with 
a system in which the unigram scores (see previous section) 
are added to the words in the dynamic list (‘Unigram LM’). 
The results of this experiment are presented in terms of word 
accuracy and, since we are mainly interested in the 
recognition of the rare city names, the number of correctly 
recognized rare city names.  

Table 1. Coverage results for varying sizes of the N-best lists 
generated by SpeM for the 241 utterances of the test set. 

Zerogram LM Unigram LM Unigram+state N
# % # % # %

500 166 68.9 168 69.7 175 72.6
1000 180 74.7 179 74.3 184 76.3
1500 187 77.6 185 76.8 189 78.4
2000 192 79.7 190 78.8 193 80.1
2500 193 80.1 196 81.3 199 82.6
3000 194 80.5 200 83.0 203 84.2

5. Results

5.1. Extracting the subset from the fallback lexicon 
The results of the first experiment are shown in Table 1. The 
column ‘Zerogram LM’ presents the results of the baseline 
set-up (all words have equal probability) in terms of absolute 
number of utterances for which the correct rare city name was 
present in the N-best list (‘#’) and as a percentage of the total 
number of 241 utterances of the test set (‘%’). Likewise, the 
results for the set-up using the unigram LM and the set-up 
using the LM that boosted the counts of city names in a given 
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Baseline: Zerogram LM 
overage results of our baseline set-up show that already 
8% of the rare city names that were missing from the 
n of the first stage recognizer are present in the lexicon 
 second stage. This is an encouraging result, bearing in 
that all 16,916 words in the fallback lexicon have equal 
bility, and that the generated OOV graphs are far from 
t. Comparing the coverage for the N-best sizes 500 and 
clearly shows that increasing the length of the N-best
fold does not increase the coverage proportionally. But 
8 more correct rare city names were present when the N-
ist size was 3000. Note that the coverage in [5] for the 
best list was only 59.9%. The task SpeM faces in this 
iment is easier than the task in [5], due to the smaller 
ck lexicon. 

Unigram LM 
 an LM that incorporates the unigram probabilities for 
ty names, on average improves the coverage, but the 
vements are only small and do not occur for all sizes of 
-best list. The biggest improvement is obtained for the 
best list, while the performance slightly deteriorates for 
1000 through 2000. Analysis of the unigram counts 
 that the mean unigram count of the city names in the 
t is 14,836, while the mean unigram count of the city 
 in the fallback lexicon is 8,221. The deterioration in 
mance for sizes of N between 1000 and 2000 is thus not 
 due to a low mean word count. Those words that were 
ed in the N-best list when using the zerogram LM and 
ere no longer included when using the unigram LM 

probably have a high number of confusable words in the 
ck lexicon which, on top of that, probably have a larger 
ation than the ‘correct’ city.  

 2. Analysis of the utterances with/without a state name 
for each how often the correct city name is (not) 
ded in the 500-best list generated by SpeM. 

#utts
name present in utterance: 202
e name present in output 1st stage recognizer: 171
ity name present in 500-best list 116
ity name not present in 500-best list  55
 name not present in output 1st stage recognizer: 31
ity name present in 500-best list 18
ity name not present in 500-best list 13
name not present in utterance: 39
ity name present in 500-best list 32
ity name not present in 500-best list 7

Unigram+state LM 
 we built utterance-dependent LMs for SpeM for those 
nces in which a state name was present. To determine 
aximum gain that can be obtained with this approach, 
bulated how many of the 241 utterances contained a 
ame, and how often the correct city name was included 
 500-best list generated by SpeM. Table 2 shows the 
s of this analysis: In 202 of the 241 utterances, a state 
was present. The 39 utterances in which no state name 
resent will not benefit from adding utterance-dependent 
Looking closer at this set of utterances, however, 



revealed that for 32 utterances of these 39 utterances, the city 
name was already present in the 500-best list.  

For 171 of the 202 utterances for which a state name was 
present in the utterances, the first pass recognizer found a 
state name. Of these 171 utterances, the 55 utterances for 
which the city name was not present in the 500-best list might 
benefit from adding the ‘unigram+state’ LM. This is the 
maximum gain possible. 

The column denoted ‘Unigram+state’ in Table 1 shows 
the coverage results when using the utterance-dependent 
unigram+state LMs: There is an increase in coverage. Nine 
more correct rare city names (compared to the baseline set-
up) are selected in the 500-best and the 3000-best lists, 
resulting in a coverage of 72.6% and 84.2%, respectively.  

5.2. The second stage 
The N-best lists generated by SpeM when using the 
unigram+state LMs to guide the search were included in the 
dynamic lexicon of the second stage recognizer. 
Subsequently, a new recognition was carried out. Table 3 
shows the performance of the two-stage recognizer in terms 
of accuracy (‘Acc. (%)’) and number of rare city names that 
are correctly recognized (‘#cities’).  

Table 3. Results of the two-stage recognizer for varying 
sizes of the N-best list generated by SpeM. 

N 0 500 1000 1500 2000 2500 3000
Acc.(%) 65.5 75.6 75.9 76.0 76.2 76.2 76.4
#cities 0 87 87 87 88 88 88

What is immediately clear from Table 3 is that adding 
city names to the dynamic list increases the accuracy of the 
system by 10.1%, and 87 more city names are correctly 
recognized, while further adding city names does not increase 
the performance of the two-stage recognizer much. Analyzing 
the correctly recognized city names for the varying sizes of N
revealed that 84 of the utterances correctly recognized for 
N=500, 1000, and 1500 are the same. For two utterances, the 
city name was correctly recognized when N=500, and not for 
N=1000 and 1500, and vice versa. For N>1500, one 
additional utterance was correctly recognized. Thus, although 
more of the correct city names are included in the N-best lists 
generated by SpeM; this does not result in an increase in 
performance. This matter is subject for further research. 

In [5], it was also suggested that adding unigram scores to 
the city names in the dynamic list of the second stage 
recognizer might improve the performance of the second 
stage recognizer. To that end, we added the unigram scores to 
the city names in the dynamic list in the final experiment, and 
subsequently a new recognition was carried out. We used the 
3000-best list; since it gave the best results (see Tables 1 and 
3). The accuracy of the two-stage recognition system when 
using unigram scores in the second-stage recognizer was 
75.9%, a decrease in accuracy of 0.5% absolute, but the 
number of correctly recognized city names increased with 2 
to 90 (of the 203 city names found by SpeM (44.3%)). 

6. Discussion and conclusions 
In this work, we presented a two-stage recognition system for 
handling OOVs in a large vocabulary speech recognition task. 
We showed that SpeM, when using the 3000-best list, is able 
to retrieve over 84% of the rare city names that were missing 
from the first stage lexicon. Once the rare city names selected 
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eM were added to the lexicon of the second stage an 
se in accuracy was obtained of 10.9% compared to the 
ne in which no rare city names were added to the 
ic lexicon of the second stage. 

he experiments presented in this paper showed that if no 
m counts are available, the two-stage recognition 
 still works reasonably well even though all words in 

xicon have equal probability. Adding state information 
selecting the city names from the fallback lexicon, 
er, does improve the performance of the recognition 
.  

he eventual recognition results showed that just over 
of the rare city names that were found by SpeM were 
tly recognized. Analysis of the results showed that the 

name that was not recognized correctly was often 
tuted by a city name with which it is highly confusable, 
‘Merryville’ was substituted by Merrillville’. These 
 can be tackled by improving the phone graph 
lying the OOV intervals, and by improving the second 
recognizer. 
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