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Abstract

A sonorant detection scheme using Mel-frequency cepstral co-
efficients and support vector machines (SVMs) is presented and
tested in a variety of noise conditions. Adapting the classifier
threshold using an estimate of the noise level is used to bias the
classifier to effectively compensate for mismatched training and
testing conditions. The adaptive threshold classifier achieves
low frame error rates using only clean training data without re-
quiring specifically designed features or learning algorithms.

The frame-by-frame SVM output is analyzed over longer
time periods to uncover temporal modulations related to sylla-
ble structure which may aid in landmark-based speech recog-
nition and speech detection. Appropriate filtering of this signal
leads to a representation which is stable over a wide range of
noise conditions. Using the smoothed output for landmark de-
tection results in a high precision rate, enabling confident prun-
ing of the search-space used by landmark-based speech recog-
nizers.

1. Introduction
There has recently been considerable research undertaken to
move automatic speech recognition systems away from the
dominant frame-based HMM models to ones which utilize a
segment-based or landmark-based approach [1, 2, 3]. Such
methods require finding perceptually important points within
the speech signal, referred to as landmarks. Landmarks may
correspond to boundaries of phonetic segments (e.g. at a vowel-
fricative transition), or they may occur near the center of a pho-
netic segment (e.g. the point of maximal energy in a vowel).
A key step in implementing such a system is to reliably deter-
mine the location of these landmarks regardless of the acoustic
environment.

It is likely that some types of landmarks will be inherently
easier to detect in adverse conditions. Such landmarks could
provide “islands of reliability” from which recognition of the
utterance could be centered around. Even a very small number
of reliable landmarks can significantly reduce the search space
of possible segmentations when decoding an utterance.

One feature which may provide landmarks that can be ro-
bustly estimated is that of +sonorant. In noisy speech, the syl-
labic nuclei tend to be one of the last cues to be heard through
the noise. Determining the location of peaks in sonority would
provide a reliable basis for recognition as well as aiding in the
detection of speech in heavy noise.

2. Related Work
Feature-based landmark detection has received considerable at-
tention in recent years. Systems for discovering feature-based
landmarks have been proposed [4, 5], how one might use land-
marks for lexical access has been investigated [1], and full
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nition systems have been tested [3]. However, there has
ess concentration on testing such systems in the presence
se.
he problem of frame-based sonorant detection in noise
en investigated in [6], in which a novel statistical model
igned to combine features extracted from multiple fre-
y bands. Their model is shown to out-perform a classifier
on cepstra and Gaussian mixture models, and achieves

ame error rates in a variety of noise conditions. The setup
experiment is done in a way to compare to these results.

3. Frame-based Sonorant Detection
our ultimate goal is to detect locations of landmarks, we
with a frame-based sonorant binary classifier. To ensure
le phonetic-level transcriptions, the TIMIT corpus [7] is
or all experiments. For each utterance, 14 Mel-frequency
al coefficients (MFCCs) are computed every 10 ms over

ms hamming window, with cepstral means subtracted
00 ms. TIMIT trascriptions are used to label each frame
rant for vowels, semi-vowel and nasals, and -sonorant for

ves, stops, and non-speech. All frames are placed into one
two categories. To compare with other studies [6], 380

m sx and si TIMIT utterances were selected for training,
10 for testing. Noisy speech is simulated by adding noise
es from the NOISEX database [8].
inary classification is performed on each 14 element vec-
ing a support vector machine (SVM).1 SVMs are well
for binary classification tasks, have a strong theoretical

ation, and have shown considerable success in a variety
ains. Experiments were done with a linear kernel and

al-basis function (RBF) kernel of the form K(x, y) =
γ||x − y||2). The width parameter γ = 10−7 was cho-
cross validation and used throughout this paper.

he frame-by-frame SVM outputs for a sample test utter-
are shown on the left side of Figure 1. The SVM used
is example used a linear kernel and was trained on only
speech. To calculate frame error rates from these outputs,
shold must be chosen.

VM Threshold Adaptation

inear SVM constructs a hyperplane in the dimension of
put vectors which best separates the two classes (in some
. The resulting decision rule for the classification of frame
esented by the feature vector xi ∈

�
14 is given by,

xi ∈ {sonorants} ⇐⇒ w
T

0 xi + b0 > λ (1)

standard formulation the threshold λ is set to zero so that
cision rule simply corresponds to determining which side

ll experiments used the SVMLight software package [9].



of the separating hyperplane (defined by w0 and b0) the vector
xi is located.

However, after we have set w0 and b0 in training, we can
change the value of λ to bias a particular class. Figure 2
shows several examples of how choosing λ optimally can af-
fect the overall error rate. λ∗ denotes the optimal threshold
(in the sense it minimizes total error) if a single λ is chosen
for each noise condition (level and type), while λ∗utt repre-
sents choosing an optimal threshold for each testing utterance.
All results shown here are trained only on clean speech, ex-
cept λ∗matched, which is trained on each condition separately
(both noise type and level). Although not shown in the fig-
ure, tests indicated that when training and test conditions are
matched, λ∗ = 0.

These results show that λ = 0 becomes further from the
optimal threshold choice as the level of noise increases (i.e. as
the amount of mismatch between training and testing data in-
creases). Therefore, frame error rate may be reduced by a better
choice of the threshold. Because most noise sources will more
closely resemble -sonorant, than +sonorant sounds, the clas-
sifier will most likely bias all outputs toward -sonorant as the
noise level increases. Therefore, adjusting λ based on an SNR
estimate may be a reasonable way to attempt to compensate for
this bias.

3.2. Estimating optimal threshold with SNR estimate

Signal-to-noise ratio estimation is done by constructing a his-
togram of frame energies for each utterance. For stationary
noise, the frames consisting of noise only (pauses in the speech)
will accumulate, and a peak in the histogram will occur at the
power level of the noise. Frames consisting of speech plus noise
will contribute to a wider portion of the histogram, but will of-
ten produce a peak which can give an estimate of the speech
power level (or the level of speech plus noise). The difference
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en the two major peaks will give not the SNR value itself,
me measure that is a good indicator of SNR (similar to
sterior signal-to-noise ratio [10]).
iewing frame histograms of a large number of utterances
ave clearly defined peaks. Histograms of frames from
le utterance will not have such a well-defined shape, so
e peak-picking is unreliable. Therefore, to find the two
s, the Expectation Maximization (EM) algorithm was used
del the histogram as the sum of two Gaussian distribu-
The difference in peaks was taken to be the difference

en the means of the two distributions.
or each training utterance, the SNR measure was com-
and the (utterance-level) optimal threshold was calculated
ch trained SVM. During testing, first the SNR measure is
ated on the test utterance. K-nearest neighbors (k=10) is
sed on the training data to map an SNR measure to the
old, λ.

rame-based Results

ing the threshold for each utterance as described leads the
s given by λ adapt shown in Figure 2. The adaptive thresh-
ves considerable performance gains over keeping a zero
old as the noise level increases, particularly for the lin-
rnel. The λ adapt plot is very close to the λ∗ (optimal
oise condition) plot in all cases, which indicates that the

estimation technique was successful. For white noise, λ

gives performance on clean training data near to that of
tched. From equation (1), it is clear that adjusting λ is
lent to keeping a zero threshold and adjusting b0. So, it
ewhat surprising that a change in the single parameter b0

ve equal performance to re-optimizing all parameters with
ed data.
comparing kernels, the RBF kernel outperforms the lin-

rnel at low SNR when both are using λ = 0. However,
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Figure 1: Spectrogram of an example test utterance with its ideal sonorant frame labels derived from TIMIT transcriptions. The panels
on the left show SVM outputs at various levels of white noise. The vertical axes are the same in each case. The right side shows these
outputs smoothed and scaled as described in Section 4.



when using the described threshold adaptation, the two kernels
have very similar performance. Overall, these results are com-
parable to the sonorant detector of [6], without using a specif-
ically designed learning algorithm and requiring only the “off-
the-shelf” signal representation of MFCCs.

4. Landmark Detection
While frame-error rate is a good measure to compare classi-
fiers, the ultimate goal is the ability to reliably detect the land-
marks corresponding to peaks in sonority. To attempt this, we
exploit the characteristic pattern of sonorant/non-sonorant re-
gions which roughly correspond to the pattern of syllables. This
pattern may be a key to not only robustly determining the sono-
rant landmarks, but also determining the presence of speech in
heavy noise conditions.

In the 380 training utterances, sonorant landmarks (here de-
fined as the midpoint of any continuous +sonorant frames) are
spaced apart according to the distribution shown in Figure 3.
This figure shows that very few sonorant landmarks are sepa-
rated by less than 100 ms, and that modulations of sonorant lev-
els generally occur in the range 2–10 Hz (100–500 ms). Other
studies have shown that processing to concentrate on syllable-
rate modulations can lead to noise robust representations [11].
Therefore, filtering to isolate this range of frequencies may help
uncover landmark locations.

0 100 200 300 400 500 600 700 800 900 1000
0

0.04

0.08

0.12

time (ms)

Figure 3: Histogram showing the distribution of time between
sonorant landmarks in the training set.
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VM outputs are smoothed with an 11th order low-pass
worth filter with cutoff frequency of 10 Hz, then shifted
aled to occupy the range [-1,1]. The right side of Fig-

shows the results of processing the original outputs. This
rement appears quite robust. The overall shape is fairly
nt down to 0 dB and below, and the locations of the ma-
aks remain stable. This is similar to recent work in which
r processing (smoothing, scaling, and shifting) was per-
d on features for ASR, resulting in improved performance
se [12].
igure 4 displays some quantitative results of landmark de-
n by choosing peaks in the filtered SVM output. Several
tics are used to prune spurious and low peaks. These re-
ave the general characteristics desired: as the noise level
ses, the system may not be able to pinpoint as many land-
(i.e. the number of hypothesized landmarks decreases),
maintains a high precision for those that it does select.
the white and pink noise conditions give good results, the
condition is considerably worse (performance on babble

roximately that of white at 20 dB lower SNR). This is to
ected since babble noise may actually contain sonorant
nts, which would require higher-level mechanisms to dis-
sh background and foreground.

5. Applications and Discussion

.8% of the 6300 TIMIT utterances considered, the end of
terance occurs within 400 ms of the end of the last sono-
rame. All 6300 utterances begin within 300 ms prior to
ginning of the first sonorant frame. Therefore, a reliable
nt detector could be the basis for a robust speech end-
r. It is likely that in heavy noise conditions, a detector
on sonorant detection could be more robust than either

e energy-based end-pointers, or classifiers trained on dis-
ating speech and non-speech.
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Figure 2: Frame classification error results in different noise conditions using two different SVM kernels. All bars except λ∗ matched
are trained on clean speech and use different thresholds to compute error rate.
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Figure 4: Landmark detection results using linear SVM trained
on clean speech. Precision is the percentage of hypothesized
landmarks falling within sonorant regions. A missed sonorant
region is one with no hypothesized landmarks.

The repetition of sonorant/non-sonorant regions in speech
results in the classifier output showing a pattern roughly cor-
responding to a pattern of syllables which is likely very char-
acteristic of typical speech. Recent work has shown that ex-
ploiting temporal modulations on the order of the syllable rate
can lead to robust speech/non-speech classification of audio
databases [13]. One technique for such a classifier would be
a frame-based sonorant detector, followed by a binary classi-
fier trained to detect syllable-like modulations in the smoothed
output.

An application that can benefit from a robust landmark de-
tector is segment-based speech recognition. In the SUMMIT
speech recognition system [2], decoding consists of a search
through possible segmentations of an utterance. Pruning of this
segmentation-space before decoding can lead to in improve-
ments in both speed and accuracy. Figure 5 shows one way
to visualize all possible segments for a single utterance. Each
point in the upper triangle represents a possible segment. While
there are many ways to use feature detectors to either eliminate
or select segments, this example shows the results from not al-
lowing any segment to span either two peaks or two troughs
in the smoothed sonorant detection output. Using this simple
method on the entire test set eliminates over 85% of the seg-
ments to consider while discarding less than 4% of the true
phonetic segments for all white noise conditions down to -15
dB SNR.

6. Conclusion
An SVM trained on MFCCs extracted from clean speech can
classify frames as +sonorant and -sonorant at various noise lev-
els with a low error rate. An SNR estimate can be reliably used
to bias the classifier to account for some of the variation be-
tween training and testing conditions. Processing the SVM out-
puts to locate syllable-like modulations can lead to robust de-
tection of landmarks corresponding to peaks in sonority. In ex-
treme noise conditions such landmarks may offer some “islands
of reliability” around which further exploration of the signal can

st
ar

t f
ra

m
e

50

100

150

200

250

300

350

Figure
landm
a cand
allowi
or trou

be bas

[1] K
t
2

[2] J
r
1

[3] M
t
I

[4] A
a
i

[5] P
t

[6] L
f
S

[7] L
m
D

[8] A
“
s
U

[9] T

[10] A
s

[11] S
I
1

[12] C
f

[13] M
i
I

end frame
50 100 150 200 250 300 350

5: Example of pruning the segment search space using
ark detection. Each point in the upper triangle represents
idate segment. The dark gray area is eliminated by not
ng any segments to span two sonorant landmarks (peaks
ghs).

ed.

7. References
. N. Stevens, “Toward a model for lexical access based on acous-

ic landmarks and distinctive features,” J. Acoust. Soc. Am., April
002.

. Glass, “A probabilistic framework for segment-based speech
ecognition,” Computer Speech and Language, vol. 17, pp. 137–
52, 2003.

. Hasegawa-Johnson et. al, “Landmark-based speech recogni-
ion: Report of the 2004 johns hopkins summer workshop,” in
CASSP, 2005.

. Juneja and C. Espy-Wilson, “Speech segmentation using prob-
bilistic phonetic feature hierarchy and support vector machines,”
n IJCNN, 2003.

. Niyogi, C. Burges, and P. Ramesh, “Distinctive feature detec-
ion using support vector machines,” in ICASSP, 1998.

. K. Saul, M. G. Rahim, and J. B. Allen, “A statistical model
or robust integration of narrowband cues in speech,” Computer
peech and Language, vol. 15, pp. 175–194, 2001.

. Lamel, R. Kassel, and S. Seneff, “Speech database develop-
ent: Design and analysis of the acoustic-phonetic corpus,” in
ARPA Speech Recognition Workshop, 1986.

. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones,
The noisex-92 study on the effect of additive noise on automatic
peech recognition,” Technical Report, DRA Speech Research
nit.

. Joachims, “Svmlight,” http://svmlight.joachims.org.

. Surendran, S. Sukittanon, and J. Platt, “Logistic discriminative
peech detectors using posterior snr,” in ICASSP, 2004.

. Greenberg and B.Kingsbury, “The modulation spectrogram:
n pursuit of and invariant representation of speech,” in ICASSP,
997.

.-P. Chen, J. Bilmes, and D. Ellis, “Speech feature smoothing
or robust asr,” in ICASSP, 2005.

. Mesgarani, S. Shamma, and M. Slaney, “Speech discrim-
nation based on multiscale spectro-temporal modulations,” in
CASSP, 2004.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by James Glass
	------------------------------

	lh1005: 
	rh1005: 
	pg1005: 
	rf1005: 
	lh1006: 
	rh1006: 
	pg1006: 
	lh1007: 
	rh1007: 
	pg1007: 
	lh1008: 
	rh1008: 
	pg1008: 


