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ABSTRACT

We present an unsupervised algorithm for discovering acoustic
patterns in speech by finding matching subsequences between pairs
of utterances. The approach we describe is, in theory, language
and topic independent, and is particularily well suited for process-
ing large amounts of speech from a single speaker. A variation of
dynamic time warping (DTW), which we call segmental DTW, is
used to performing the pairwise utterance comparison. Using aca-
demic lecture data, we describe two potentially useful applications
for the segmental DTW output: augmenting speech recognition
transcriptions for information retrieval and speech segment clus-
tering for unsupervised word discovery. Some preliminary quali-
tative results for both experiments are shown and the implications
for future work and applications are discussed.

1. INTRODUCTION

Modern speech recognition systems adopt a methodology in which
most of the system parameters and settings are specified or learned
in a highly supervised manner prior to testing or deployment. Al-
though some systems use adaptation to adjust system parameters
in response to the recognition input, recognition output is mostly
determined by what is learned in the training phase.

While this “train-then-test” model of recognition has led to
steadily decreasing word error rates in the past, it has also resulted
in systems that are vulnerable to different types of mismatch that
constitute many of the difficulties faced by the ASR community.
The out-of-vocabulary (OOV) problem is an example of mismatch
caused by differences in the chosen lexicon and the set of words
observed during testing. Inconsistent recognition performance for
different speakers can be mostly attributed to the mismatch be-
tween the acoustics of speakers in the training data and the ob-
served speaker. Even the phenomenon of speech recognizers hy-
pothesizing English word sequences in response to foreign lan-
guage speech can be classified as a mismatch issue. Additional
sources of mismatch that can dramatically affect speech recog-
nition accuracy include environmental conditions, speaking style,
and language usage.

Problems due to mismatch aside, there are more philosophi-
cal concerns with the “train-then-test” model of recognition. The
level of supervision required for designing and training a recog-
nition system is intuitively unsatisfying when one considers the
ability of humans to learn spoken language without having access
to labeled corpora of speech training data. For the most part, auto-
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matic speech recognizers can only be trained, and have no capacity
to learn from the data they observe following the training phase.

In this paper we present a novel off-line approach to speech
processing which attempts to address some of the shortcomings
discussed above by minimizing supervision and dependence on
prior knowledge. Rather than focus on the goal of recognition,
we ask the question: “How much can be learned from the test data
alone?”. Our approach is motivated by the growing body of tasks
that utilize corpora such as academic lectures and personal audio
archives. Among other common characteristics, these tasks can
feature large amounts of data from a single speaker, esoteric vo-
cabularies, and, in the case of classroom lectures, consistent acous-
tic environments. For these situations, real-time recognition is of-
ten not a requirement, but only a means to the end goal of being
able to search, browse, and summarize the audio stream. With this
in mind, we propose a departure from the “train-then-test” model
of recognition and instead consider the problem of pattern discov-
ery and sequence clustering in speech.

The technique we discuss is inspired by related work in bioin-
formatics [1, 2], particularly comparative genomics. The goal of
comparative genomics is to process massive amounts of genomic
DNA or protein sequences to find patterns corresponding to genes,
regulatory regions, and structurally important protein subsequences.
Unlike speech, the lexicon of interesting subsequences is often not
known ahead of time, so these items must be discovered from the
data directly. Pattern discovery is made possible by the obser-
vation that functionally important biological sequences are more
likely to be preserved across the genomes of different specimens
than non-essential sequences. By aligning sequences to each other
and identifying patterns that repeat with high recurrence, these
preserved sequences can be readily discovered. Since there are
a finite inventory of fundamental units that comprise a biological
sequence – nucleic acids for DNA and amino acids for proteins
– alignment reduces to simple string matching with penalties for
insertion, deletion, and substitution.

We can apply similar observations from comparative genomics
back to speech. That is, patterns of speech sounds are more likely
to be consistent within word or phrase boundaries than across. By
aligning continuous utterances to each other and finding similar se-
quences, we can potentially discover frequently occurring words
with minimal knowledge of the underlying speech signal. One
possible approach is to transform the speech data into an interme-
diate representation resembling a biological sequence by using a
phonetic recognizer to output a sequence of phone units. How-
ever, this type of translation is sensitive to the training data and
units used in the phonetic recognizer. Instead, we describe an ap-
proach that uses a modification of dynamic time warping to di-
rectly compare utterances against each other at the acoustic level
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without resorting to an intermediate symbolic representation.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the segmental DTW algorithm which gener-
ates the best matching subsequence between two utterances. Next,
we describe the data used in our experiments and outline the steps
needed to process an entire audio lecture using the segmental DTW
algorithm. In Sections 4 and 5 we propose two direct uses for our
algorithm and show outputs for these preliminary experiments. Fi-
nally, we discuss several directions for future work and conclude.

2. SEGMENTAL DTW

Dynamic time warping (DTW) is typically used to find the optimal
global alignment between two whole word exemplars [3]. First,
the two speech waveforms are converted into spectral vector time
series, {vi}

M
i=1, {vj}

N
j=1. Next, a distance matrix D is computed

by taking the pairwise distance between vectors in each utterance
such that D(i, j) = ‖vi − vj‖. Finally, dynamic programming is
used to find the lowest distortion path through the distance matrix
between D(1, 1) and D(M, N).

Recently, researchers have revisited the use of DTW for speech
recognition as well as speaker detection [4, 5]. In the context of
our work, the DTW algorithm is useful because it can be used to
measure the similarity of two utterances directly at the acoustic
level. However, performing a globally optimal alignment between
two utterances is not suitable for finding matching words when
those utterances are composed of multiple words. The start and
end points constrain the algorithm to find only the globally op-
timal alignment matching the entire utterances together, and not
local alignments which correspond to the matching subsequences.

An alternative method to this global alignment procedure is
to use segmental DTW, which finds local alignments by searching
multiple paths in the distance matrix. Given two utterances, U1

and U2, segmental DTW works by dividing the distance matrix
into a set of overlapping diagonal bands with width W and search-
ing for the best alignment within each band. The diagonal bands
serve multiple purposes. First, they constrain the degree of warp-
ing so that two sub-utterances are not overly temporally distorted
during alignment. Second, they allow for multiple alignments, as
each band corresponds to another potential path with start and end
points that differ from D(1, 1) and D(M, N).

Following path discovery, each path is trimmed by finding the
least average subsequence with minimum length L. The minimum
length criterion is used to prevent spurious matches between short
segments within each utterance. Since each cell D(i, j) corre-
sponds to the distortion between frames i and j, the least average
subsequence represents the portion of the aligned path which ex-
hibits good alignment. The algorithm used to compute the subpath
is described in [6].

At this stage we are left with a single path fragment for each
of the original bands in the distance matrix. The path fragment
with the lowest average distortion is retained as the best alignment
path between the two utterances, and this minimum average dis-
tortion is used as the distance between U1 and U2. This alignment
path along with its associated distortion forms the basis for further
processing that we will describe in the following sections.
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Fig. 1. The segmental DTW algorithm. As in normal DTW, the
distance matrix is computed between U1 and U2. The matrix is
then cut into overlapping diagonals (only one shown here) with
width W . The optimal alignment path within the diagonal band
is then found using DTW and the resulting path is trimmed to the
least average subsequence. Finally, the trimmed alignment path is
retained as the best subsequence alignment between U1 and U2.

3. EXPERIMENTAL DETAILS

3.1. Corpus

The speech data used in this paper is taken from a corpus of audio
lectures collected at MIT. The entire corpus consists of approxi-
mately 300 hours of lectures from a variety of academic courses
and seminars. The audio was recorded using an omni-directional
microphone in a classroom environment. In a previous paper, we
described characteristics of this lecture data and performed prelim-
inary recognition and information retrieval experiments [7]. Many
aspects of the lecture data make it particularly well suited for the
pattern discovery and speech clustering techniques described in
this paper. Each lecture typically contains a large amount of speech
(from thirty minutes to an hour) from a single person in an un-
changing acoustic environment. On average, each lecture con-
tained only 800 unique words, with high usage of subject-specific
words and phrases. Each of the the lectures used in our experi-
ments was the introductory lecture taken from courses in computer
science (CS), physics, and linear algebra at MIT.

3.2. Preprocessing

Prior to processing with segmental DTW, the lecture is segmented
into continuous utterances by using a basic phone recognizer to
identify regions of silence in the signal. Silent regions with dura-
tion longer than 2 seconds are removed and the portions of speech
in between those silences are used as the input to the segmental
DTW algorithm. In the absence of a phone recognizer, segmenta-
tion can also be performed using a speech activity detector.

For the CS lecture processed in this paper, the segmentation
phase resulted in 1946 segments averaging 1.2 seconds each. Each
segment was then converted into a series of 14-dimension MFCC
vectors extracted every 5 ms, then whitened using principal com-
ponents analysis over all vectors from all utterances.
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Fig. 2. Audio processing for segmental DTW. Silence detection
is used to break the original audio stream into smaller utterances.
The utterances are then compared against each other using seg-
mental DTW to produce alignment paths. The alignment paths
match a segment from one utterance to a segment in another utter-
ance together with a distortion measure for that path.

3.3. Path detection using segmental DTW

Once MFCC feature vectors have been extracted, we compute com-
mon paths between each utterance using segmental DTW. In this
phase, each utterance is compared against each other utterance.
For our experiments, we set the parameters W and L to be 15 (75
ms) and 100 (500 ms), respectively. These values were selected
somewhat arbitrarily but seemed to yield acceptable results. Fur-
ther experiments may yield more optimal settings.

One concern regarding this stage of processing is that perform-
ing path detection over all pairs of utterances might be computa-
tionally prohibitive. In practice, however, we have observed that
the amount of time required for processing the comparisons on one
hour of speech is roughly the same as performing recognition with
a large vocabulary recognizer. Moreover, because each pairwise
comparison is independent of the other comparisons, the entire
computation can be easily parallelized for further gains. The only
major computational drawback of our method is that performing a
global set of comparisons necessitates off-line processing. How-
ever, in an on-line scenario, the results of incremental comparisons
can be obtained by processing utterances as they are received.

4. ACOUSTIC SIMILARITY FOR LECTURE BROWSING

The output of the segmental DTW algorithm can be thought of
as an undirected adjacency graph, with utterances representing the
nodes, and the alignment paths between utterances representing
the edges. In this graph, the average distortions associated with
each alignment path are a natural analogue to edge weights, with
lower distortion edges corresponding to more similar utterances.

Left as is, the adjacency graph can be useful for browsing
through audio lectures by providing pointers to portions of the lec-
ture that are acoustically similar to the current playing utterance.
Using the current utterance as a query, nearby nodes in the graph
can be thought of as acoustically relevant segments in the lecture.
Two query examples and their associated outputs are shown in Fig-
ure 3 and 4. For both examples, each of the nearest neighbours
contains at least one word in common with the query utterance.

Though useful for browsing, substituting utterances as queries
does not fit well with traditional models of evaluation for informa-
tion retrieval. In previous work, we used recognition transcriptions

well are very unlike parentheses in conventional mathematics 

2.67685   and it sort of doesn't hurt if sometimes you leave out 

                parentheses if people understand that that's a group

2.71682   and in general it doesn't hurt if you put in extra 

                parentheses

2.73775   flashing parentheses

2.76504   right because putting in parentheses always mean

2.84133   in lisp you cannot leave out parentheses

2.86766   you see the parentheses close close the minus

2.89815   close parentheses which is going close the

2.90602   well

3.00560   that looks very much like the case analysis you use 

                in mathematics

Query Utterance

Nearest Neighbours

Fig. 3. An example of an actual acoustic query. Transcriptions
of the query utterance and its nearest neighbours are included for
illustrative purposes only. The numbers in the lefthand column are
the average distortion measures for the alignment path between the
query and the returned result. Words common to both utterances
within the alignment path are shown in bold.

to perform information retrieval on the lecture with a set of key-
words and phrases taken from the index of the course textbook [7].
With the segmental DTW system, it is difficult to generate com-
parable statistics. However, we can still evaluate the utility of our
algorithm by considering the incremental benefits that it may offer
to the recognition based information retrieval system when the two
are combined together.

We illustrate one possible augmentation strategy using queries
where the recall rate using the recognition-based IR system is less
than 100 %. These query terms, along with their recall rate, and
missed instances, are shown in Table 1. For each query, we can
incorporate the output of our segmental DTW algorithm by rank-
ing all lecture utterances by their average similarity to the found
results. We can see from the table that in most cases, the missed
results rank quite highly as neighbours of the found results when
using acoustic similarity. The wide variability of the recognition
hypotheses for the missed instances also highlight the difficulty of
trying to recover these results from the transcription alone. While
further experiments are necessary to determine how our approach
can be used globally to improve recall while minimizing the effect
on precision, we can see that acoustic similarity scoring is bene-
ficial because of the added flexibility it offers. During search for
a particular query term, we can easily expand the search beyond
the recognition results to get a ranked list of candidates without
having to rely on multiple word hypotheses or confidence scores.

5. GRAPH CLUSTERING FOR WORD DISCOVERY

The adjacency graph described in the previous section connects
multi-word utterances to each other. Initially, we had planned
to use graph clustering techniques to discover words by finding
densely connected groups of utterances. The main difficulty with
our proposed idea can be illustrated using the example in Figure 3.
Because the query utterance contains multiple words, there are
also multiple ways in which each query can match its neighbours
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Query Utterance

Nearest Neighbours

and it's not about computers in the same sense that

2.83921   now the reason we think computer science is about 

                computers

2.85811   or we'll actually see that computer

2.87800   the essence of computer science

2.93215   sense that geometry

2.93642   computers in the same set

2.95375   and the real issues of computer science are of 

                course not

2.96034   besides computer scientists deal with

2.97730   that computer science in some sense

3.03468   what do i mean by the essence of computer science 

                what do i mean by the essence of geometry

Fig. 4. Query results for a second example as in Figure 3.

Keyword
Recall Cluster Recognition
Rate Rank Hypothesis

absolute value 6/8
1 us to tell you
2 drafted guidelines

abstraction 8/16

1 and check and
2 and track and
3 for traction
5 subtraction
6 subtraction
7 interaction
9 stretch

15 instruction

black box 5/7
1 like rock
2 like bach

fixed point 12/14
1 takes point

21 exp one

Table 1. Query terms with less than 100 % recall rate. For each
term, the missed instances are listed, along with their cluster rank
and the recognition hypothesis for that particular term. The clus-
ter rank is found by sorting all non-returned utterances by their
average acoustic similarity to returned results.

in the adjacency graph. Although the majority of returned results
contain the word “parentheses”, there are also results matching the
words “well” and “mathematics”. Expanding our view to consider
edges between the returned results as well, we can easily imagine
situations like the one shown in Figure 5, where a single utterance
belongs to multiple clusters, each one corresponding to a different
word. Thus, if we use only edge weight information, the graph
clustering problem remains a difficult soft clustering problem. Our
solution is to use the locality of the alignment paths to generate a
refined set of nodes from the original group of utterances.

5.1. Node refinement

In the node refinement stage, we extract a set of time indices from
each utterance and use those indices as refined nodes. The re-
fined indices demarcate locations within an utterance that bear re-

1

23
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4

6

Fig. 5. An example illustrating the soft clustering problem that
results from using utterances as nodes in the adjacency graph. Ut-
terance 1 has words in common with all other nodes shown, with
clusters {1,2,3}, {1, 4, 5, 6}, and {1,7,8,9} corresponding to dif-
ferent words. If utterances 2 and 4 also shared a common word,
the graph becomes difficult to separate.
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Fig. 6. The node refinement process. The solid line indicates
the inverse distortion (similarity) profile generated by aggregating
alignment paths for this segment of time. The dashed line is the
result of smoothing the similarity profile with a triangular window.
The refined node locations, which are found by picking peaks from
the smoothed profile, are indicated by circles.

semblance to locations within other utterances. First, we collect
all alignment paths falling under an average distortion threshold
and aggregate the inverted distortions to form a similarity profile
within the utterance. After smoothing the similarity profile with a
triangular averaging window, we take the peaks from the resulting
smoothed profile as the refined nodes. The refinement process is
shown and explained in Figure 6.

The reasoning behind this procedure can be understood by not-
ing that only some portions of any particular utterance have high
similarity (i.e. low distortion) to other utterances. By focusing on
the peaks of the aggregated similarity profile, we restrict ourselves
to parts of the utterance that are most similar to other utterances.
Since every alignment path covers only a segment of the utterance,
the similarity profile will fluctuate, allowing the utterance to sepa-
rate naturally into multiple nodes corresponding to different word
identities. Edges in the refined adjacency graph are given by the
alignment paths that overlap the time index of a particular node.
Figure 7 illustrates how breaking utterances into refined nodes can
potentially aid word level clustering.
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Fig. 7. The same example as in Figure 5, but with utterance nodes
broken into refined nodes. Refinement eliminates the problem of
the same node belonging to multiple clusters because each refined
node represents a single time index.

5.2. Word cluster output

Once the utterance level nodes have been refined into time index
nodes, we can generate an adjacency graph by pruning away edges
that are above a specified distortion threshold. With a pruning
threshold that keeps only the lowest 5 % of edges by distortion,
a relatively sparse graph can be produced which can be extremely
useful for visualization and word discovery. In Figure 8 (a), three
of the larger connected components of the adjacency graph are
shown. The nodes in the graph are labeled with the actual word (or
words) that overlap the node time index, but these labels were not
used at any point in the generation of the adjacency graph. These
connected components are found solely based on the consistency
of the underlying acoustic sequences and can therefore be thought
of as patterns discovered by simply comparing speech utterances
against each other. In the majority of cases, the nodes in connected
components point to the same underlying word. Figures 8 (b) and
(c) show similar sets of connected components that were extracted
using the same procedure on lectures from two different subjects.
At first glance, the component labels seem to have a high degree
of relevance to the subject material. In Table 2, we attempt to
examine the relevancy of the clusters from the computer science
lectures more thoroughly. The top connected components with at
least 6 nodes are listed, sorted in order by their cluster density. The
cluster density, which is given by the percentage of edges that exist
between the nodes of a cluster out of the number of possible edges,
offers a measure of reliability for each connected component.

The lecture examined here consists of an example-based intro-
duction to Lisp programming using arithmetic functions. In order
to examine the relevancy of some of the terms found using our
method, Table 2 also includes the frequency rank of each term
in the lecture (with common words removed). Although several
of the clusters correspond to common words, the majority of the
clusters correspond to highly relevant terms, with six of the terms
occuring in the top ten most frequent lecture words. Frequently oc-
curing lecture words that are not listed in the table include: “lisp”,
“define”, “primitive”, and “language”.

Our description of this word clustering technique is certainly
not intended to be an exhaustive treatment on the problem of word
discovery. Many aspects of the algorithm can be improved upon
or explored in a deeper manner. For example, we currently rely on
graph components being separated in order to find word groups.
This approach necessitates a distortion threshold in order to re-
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(b) A physics lecture on electricity and magnetism.
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(c) A mathematics lecture on linear algebra.

Fig. 8. Several connected components of the adjacency graphs for
different academic lecture generated by retaining a small percent-
age of edges connecting the refined nodes. The nodes are labeled
according to the words overlapping the node time index for refer-
ence purposes only. (The threshold used for the adjacency graph
in (a) differs from that used for Table 2)

move edges and produce a sparse adjacency graph. In addition to
pruning nodes and edges from each of the clusters, it also discards
edge weight information. A more sophisticated graph clustering
algorithm will eliminate the need for a distortion threshold and al-
low us to use the edge weights directly in the clustering process.
Despite the simplicity of our clustering algorithm, however, the
purity of the groups shown in Table 2 and their relevance to the
lecture subject material is encouraging.

57



Cluster Label Density (%) Size Purity (%) Rank
definition 100.0 6 100.0 21

square 94.9 13 100.0 1
five 93.3 6 100.0 -

combination 93.3 6 100.0 10
product 92.9 8 100.0 33
average 87.9 12 100.0 11
value 86.6 6 100.0 6

parentheses 81.8 11 100.0 15
computer 80.0 15 100.0 6

that 80.0 6 83.3 -
procedure 76.7 33 100.0 5
reduces 60.0 6 66.7 94

square root 59.5 68 89.7 2
for/four 53.0 12 66.7 -
about 51.5 22 90.9 -

Table 2. List of connected components in the thresholded adja-
cency graph for the computer science lecture. The cluster label is
determined by the label for the majority of the nodes. The purity of
the cluster is given by the percentage of nodes whose label agrees
with the cluster label. The density of the cluster is given by the
percentage of edges that exist between nodes out of the number
of possible edges. The rank column indicates the frequency rank
of the word(s) in the lecture after removing the 300 most common
words from Switchboard.

6. FUTURE WORK

Our goal in this paper has been to simply introduce the segmen-
tal DTW algorithm and show how the unsupervised nature of this
algorithm makes it suitable for several applications in speech pro-
cessing. Some specific applications are discussed below.

One of the most promising directions for future work concerns
the problem of word discovery, which we touched upon in Sec-
tion 5. Ultimately, we would like to find pure clusters of different
instances of the same underlying word, and exploit latent consis-
tencies to construct a robust representation of that word. Such a
technique would be immensely useful for speech recognition, and
could also provide insights into the problem of language acquisi-
tion. More immediately, there are several ways that we can im-
prove the node refinement and clustering procedures discussed in
Section 5. Instead of relying on time indices alone, we may be able
to extract word boundaries by repeating the segmental DTW pro-
cess on node neighbourhoods. As mentioned earlier, we can use
more powerful graph clustering algorithms to find word clusters
without requiring total separation in binary adjacency graphs.

Following upon the experiment discussed in Section 4, we
plan to examine how segmental DTW clusters can be used in com-
bination with a conventional speech recognizer. Since recogni-
tion is typically performed in a very localized manner, automatic
systems do not exploit the consistency constraints that exist be-
tween multiple utterances of the same word. The clusters gener-
ated by our algorithm can act as a secondary knowledge source
which identifies these multiple instances. Consistency can then be
enforced using, for example, a voting scheme that ensures cluster
members have word hypotheses that agree with each other.

Finally, speech summarization is another area that can bene-
fit from segmental DTW. Several researchers have already shown

how pattern discovery can be used for music summarization and
multimedia retrieval [8, 9]. In those works, direct acoustic com-
parison was used to successfully extract the chorus from a song
by looking for repeating themes and melodies across time. Like-
wise, we can envision generating direct audio summaries by sim-
ply playing back instances of the salient words found by clustering.

7. CONCLUSION

In this paper, we have presented a simple, unsupervised technique
for processing speech using a variation of dynamic time warping.
By performing pairwise comparisons on a set of segmented ut-
terances, we have demonstrated how direct acoustic comparison
can be useful for augmenting speech recognition in information
retrieval. Of more interest, perhaps, we have shown how the same
procedure can be useful for discovering words and phrases directly
from speech. The underlying insight behind our approach is that
word and phrase information is inherent in speech data in the form
of repeating occurrences of acoustic patterns. By aligning these
patterns, we can potentially identify which patterns correspond to
the same underlying words. Although our results at this stage are
mostly qualitative, we believe that these results have promising
implications for a variety of problems in speech research.
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