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ABSTRACT

In this paper, we present an approach to fundamental frequency
contour modeling of English for speech synthesis, based on a sta-
tistical learning technique called Additive Models that was success-
fully applied to the modeling of Japanese F0 contour previously.
In an attempt to model English F0 contour, we defined a three-
layer additive model consisting of an intonational phrase compo-
nent, a word-level component representing lexical stress types, and
a pitch-accent component related to accented syllables. These com-
ponent functions are estimated simultaneously using a backfitting
algorithm derived from a regularized least-squares error criterion
specified on the model with regard to the training data. The pro-
posed method was trained and tested using the widely used ToBI-
labeled speech corpus and promising results were obtained.

1. INTRODUCTION

Corpus-based concatenative approach to speech synthesis has been
widely explored in the research community in recent years [1, 2,
3]. Intonation modeling, or generation of fundamental frequency
(F0) contour plays a crucial role in synthesizing natural sounding
speech from input text. Target F0 contour is generated using the
features extracted from input text, and it is used either to modify
the pitch of selected synthesis units, or in the unit selection where
the discrepancies between target F0 contour and the F0 values of
the synthesis units to be selected are attempted to be made as small
as possible in the overall cost minimization through a search in the
space of all available synthesis units. There has been a number of
efforts in the context of F0 contour generation for English speech
synthesis in the past decade, such as dynamical system [4], linear
regression-based approach [5], combination of parametric models
with regression trees [6, 7], and the combination of regression trees
and kernel smoother [2].

In this paper, we attempt to apply an F0 modeling frame work
that uses statistical learning technique named Additive Models [8,
9] to English F0 modeling. Additive Models are a class of nonlinear
regression models, which can be regarded as a generalization of
linear models (or multiple linear regression). It and its extension
by link function, called Generalized Additive Modes [9] have been
applied to various statistical modeling practices such as weather
forecast [10] and public health research [11], among others.

We previously proposed a framework of F0 modeling using
Additive Models and applied it to Japanese speech [12, 13]. The
model basically consisted of the long-term intonational phrase com-
ponent and the short-term accentual phrase component and we at-
tained a quite encouraging result. After a success in Japanese, we
are interested in applying it to English speech.

In the next section, we describe the additiveF0 modeling frame-
work and the specific formulation for the modeling of English into-
nation. We then describe the experiments using a commonly used
Boston University Radio News corpus, followed by a discussion.

2. ADDITIVE F0 MODELING

We first review the additive F0 modeling framework briefly, using a
two-layer case for simplicity. The basic formulation for the F0 con-
tour is similar to previous work that models F0 in a superpositional
way, e.g., [14, 15]. In a two-layer additive modeling approach, the
F0 contour, Y , is regarded as the output of a statistical model that
combines a fist-layer component, such as intonational phrase, g,
and a second-layer component, such as accentual phrase, h:

Y = f(I, U,A, V ) + ε

= α + gI(U) + hA(V ) + ε, (1)

where α is a constant, I is a discrete input variable that represents
a type of the first layer component such as intonational phrase, and
indexes the relevant function gI . U is a continuous variable repre-
senting a time point relative to the starting point of the component
of type I . Similarly, discrete variable A designates a type of the
second layer component such as accentual phrase, and V repre-
sents a time point relative to the starting point of the component of
type A. ε, is a random error term with zero mean. Figure 1 shows
how the three terms form the entire F0 contour function.

(b) g (U)

(c) h (V)

(a) alpha (constant)

I

A

(A=’1:1p’)

(A=’2:1p’)

(I=’3:L-L%’)

U

V

V

0

0

0

0

nn = n
0

fn
0

V

Un0

n0

A  =’1:1p’

I =’10m’
n0

n0

f = alpha + g (U) + h (V)
I A

Fig. 1. A schematic diagram of the additive F0 model f(I, U, A, V ) = α +
gI(U) + hA(V ). A constant α and component functions g and h are summed up to
form the F0 contour f .

An advantageous characteristics of the additive model approach,
as compared to previous work on superpositional F0 modeling, is
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that we do not have to assume any parameterized functional form.
Instead, we assume a smoothness defined in terms of curvature, and
use an estimation scheme derived from a least-squares error crite-
rion with a regularization term, or roughness penalty [8, 9]. For the
two-layer model, we define the penalized residual sum-of-squares
(PRSS) error in the following form:

PRSS = RSS + λgJ(g) + λhJ(h)

=
N�

n=1

{yn − α − gin(un) − han(vn)}2 +

λg

�
s∈r(I)

�
g′′

s (w)2dw + λh

�
t∈r(A)

�
h′′

t (x)2dx, (2)

where (in, un, an, vn, yn) (n = 1, ..., N) are a set of training
data corresponding to the variables (I, U,A, V, Y ), and λg , λh are
fixed smoothing parameters. r(I) and r(A) represents the set of
possible values (or range) for I and A, respectively. The number
of elements in a set will be denoted by vertical bars, e.g., |r(I)|
meaning the number of different values for I . The first term in (2)
measures the closeness to the data, while the second and third terms
penalize the curvatures in the functions, and smoothing parameters
λg and λh establish a tradeoff between them. Large values of λ’s
yield smoother curves, while smaller values result in more fluctua-
tion.

It can be shown that the minimizer of (2) is an additive cu-
bic spline model, where gI ’s and hA’s are natural cubic splines
in the predictor variables U and V , with knots, or break points, at
each of the unique values of (in, un) and (an, vn). We can find
the solution for the minimization problem for (2) with a backfit-
ting algorithm [8], a simple iterative procedure depicted in Figure
2. To make the solution unique, we assume that � N

1 gin(un) =� N
1 han(vn) = 0, therefore α will be the overall mean of yn (n =

1, ..., N). In the algorithm, we apply a natural cubic-spline smoother
matrix, e.g., Si, to the vector of partial residual, {yi,l − α̂ −
ĥai,l(vi,l)}Ni

l=1 to obtain a new estimate ĝi. Smoothing of partial
residual is done for gi’s and ha’s in turn, using the current estimate
of the other component function. The iteration is continued until
the estimates ĝi’s and ĥa’s stabilize. Derivation of this backfitting
algorithm from the penalized least square criterion is described in
detail in [12].

3. MODELING ENGLISH F0

In our first attempt at modeling English F0, we opted to use the
Boston University Radio News Corpus [16] to facilitate the com-
parison of experimental results with other approaches. This corpus
is hand-annotated for prosody in the ToBI labeling framework [17].
We make use of information such as boundary tones, break indices,
and pitch accent markers available with this corpus for our three-
layer modeling consisting of intonational phrase (or IP)-level com-
ponents, word-level components, and syllable-sized pitch accent
components:

f(I, U,A, V, C, T ) = α + gI(U) + hA(V ) + kC(T ) (3)

For the IP feature I for indexing the first-layer component func-
tion, we use the combination of a ToBI boundary tones and the
number of syllables in the intonational phrase. We define an intona-
tional phrase as an interval between phrase boundary tones (which

(1) Initialize: α̂ = 1
N

� N
n=1 yn, ĝi ≡ 0, ĥa ≡ 0, ∀ i ∈

r(I), ∀ a ∈ r(A)

(2) Cycle: repeat (2g) and (2h) until the functions ĝI and ĥA change
less than a prespecified threshold.

(2g) Partition the set of training data {(in, un, an, vn, yn) | n =
1, ..., N}, into |r(I)| subsets {(i, ui,l, ai,l, vi,l, yi,l) | l =
1, ..., Ni} (i ∈ r(I)), so that each training point has
the same value of i if in the same subset. Note that� i∈r(I) Ni = N .

For all i ∈ r(I),

ĝi ← Si[{yi,l − α̂ − ĥai,l(vi,l)}Ni
l=1].

(2h) Repartition the training data {(in, un, an, vn, yn) | n =
1, ..., N} into |r(A)| subsets {(ia,l, ua,l, a, va,l, ya,l) | l =
1, ..., Na} (a ∈ r(A)), so that each training point has
the same value of a if in the same subset. As before,� a∈r(A) Na = N .

For all a ∈ r(A),

ĥa ← Sa[{ya,l − α̂ − ĝia,l(ua,l)}Na
l=1].

Fig. 2. A backfitting algorithm for the two-layer additive F0 model.

also coincide with a break index of 4). For example, I = (10, L-
L%) represents an interval comprising ten syllables that ends with
a boundary tone ’L-L%’ (a “declarative” contour).

For the feature A that indexes the second-layer, word-level
component function, we use the combination of the syllable length
of the word and the lexical stress positions in the word. Addition-
ally, 20 single-syllable functionwords shown in Figure 3 are treated
as distinct values for A. For example, A = (3, 1p3s) represents a
three-syllable word with primary stress at the first syllable and the
secondary stress at the third syllable.

a, an, are, as, at, by, for, from, if, in,
is, of, off, on, per, the, to, up, was, with

Fig. 3. Function words treated as separate categories

The third-layer component functions represent the effect of pitch
accents and each component function spans one syllable interval.
We make use of seven pitch accent types, H*, !H*, L*, H+!H*,
L*+H, L+!H*, L+H*, and ¡none¿ to represent syllables with no
accents. If the syllable is accented, indicator variable C value
will designate one of the pitch accent types shown above. A syl-
lable immediately preceding or succeeding an accented syllable
within the same word is also assigned a distinct indicator. For
example, C = H∗ represents a syllable with peak accent, and
C = after : L∗ indicates a syllable immediately after a low-
accented syllable.

4. EXPERIMENTS AND RESULTS

The model described above was trained and tested using the Boston
University Radio News Corpus [16], speaker F2B. The corpus con-
sists of approximately 45 minutes of radio news read aloud by a
female speaker of American English. ToBI labels are assigned by

I - 278

➡ ➡



2

4

kHz

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3
time

oendorsementyesterday'satappearedsimmonsbeaverbeulahasdressed

L-L%HiF0H*H*H-!H*HiF0H*L-L%!H*L+!H*HiF0H*

11:L-L%6:L-L%

0

50

100

150

200

250

300

Fig. 4. An example of F0 contour from the trained model, displayed with the raw F0 from test data. The black dots are the raw F0 data
extracted from the test part of the corpus, and three light dots represent (1) the intonational phrase component gI (U), (2) the latter plus the
word-level component hA(V ), and (3) the latter with the pitch accent component kC(T ) added furthermore, which is the overall output from
the Additive F0 model, from bottom to top. The constant α is divided to three parts and added to each curve to avoid overlaps to make it
easy to see each curve.

hand to the corpus. We transcribed the corpus with syllable and
word labels by performing a forced alignment using the MIT SUM-
MIT recognizer [18] with acoustic models adapted to this corpus.
All 122 paragraphs that had full ToBI labels associated with them
were divided into 110 paragraphs containing 12,704 syllables for
training and the remaining 12 paragraphs with 1,863 syllables for
testing. F0 values were extracted from the corpus every 10ms us-
ing the Snack Sound Toolkit, a public domain toolkit developed at
KTH [19]. The mean and standard deviation of the F0 were 166.3
Hz and 47.1 Hz in the training data, and were 166.3 Hz, and 48.4
Hz in the test data.

Model estimation by backfitting was implemented in Scientific
Python [20]. We estimated component functions gI ’s, hA’s and
kC ’s in the log frequency, Mel scale, and linear frequency domain
from the training data and compared the results. In all cases, the
original pitch samples were normalized to have the same number
of samples per syllable interval by linearly stretching or shrink-
ing each syllable, before the estimation. About 15 iterations were
enough for the convergence of backfitting iteration for this three-
layer additive model. As a result, 64 distinct component functions
for the first, intonational phrase layer, and 59 distinct component
functions for the second word-level layer were obtained. 24 dis-
tinct component functions were estimated for the third, pitch ac-
cent layer. Figure 4 illustrates an example of F0 contour from the
F0 model trained in the linear frequency domain, plotted with the
raw F0 data from the test part of the corpus.

As an objective evaluation, we measured the accuracy of F0

contour production in terms of root mean square error (RMSE)
and correlation coefficient (Corr) in the voiced portions of the data,
which are widely used to measure the goodness of F0 models [4, 5,
6, 7].

Table 1 shows the comparative results for the different domains
where the additive F0 model is trained. As seen in the table, there
was not a major difference in RMSE and Corr measures among
three measures, although linear frequency and Mel-scale domains
gave a little better results than log frequency domain, and linear

Table 1. Comparative results in log frequency, Mel scale, and linear
frequency domains

Training Test
domain RMSE Corr RMSE Corr
log frequency 36.55 0.6355 38.19 0.6198
Mel scale 36.21 0.6394 37.62 0.6289
linear frequency 36.24 0.6392 37.59 0.6297

frequency domain results were slightly better than the Mel scale on
the test data.

Table 2. Comparison of the results with other approaches
method preprocessing RMSE Corr

proposed method none 37.6 0.63
Sun [7] smoothing,etc. 33.1 0.72

Dusterhoff et al. [6] fit to model 34.3 0.60
Black et al. [5] smoothing 34.8 0.62
Ross et al. [4] error removal 34.7 NA

Table 2 summarizes the comparison of the results with various
other approaches. Due to the different ways of splitting the corpus
into training and test sets, as well as different way of computing
the RMSE and Corr measures, we have to be cautious in compar-
ing these results. It can be seen, nevertheless, that the proposed
method yields as good correlation coefficient as most of the other
approaches except for [7], while RMSE is 3.5 to 5 points worse
than others. Considering, however, the fact that the other results
applies various kinds of smoothing techniques and corrections to
the raw data, to which model output is compared, it is probable
that the current results, which compares the model output with the
raw F0 data with no correction or smoothing, is as good as these
state-of-the-art results.
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Fig. 5. Pitch accent component functions for accent types
H*(peak), L+H*(rising peak), and L*(low). We can see, for ex-
ample, that there is some 60 Hz difference between L* and H* at
the peak.

5. DISCUSSION

The proposed method is advantageous in that it requires no prepro-
cessing to smooth the raw F0 extracted from the corpus, since the
method comprises a “smoother” (cubic smoothing spline) as one
of its building blocks. It shares a nice property of non-parametric
regression methods, with such technique as regression trees, that it
can be easily applied to various different languages as far as effec-
tive set of features are supplied to the training algorithm.

It is considered better than regression trees in that model out-
put is already smooth and no further smoothing is required when
it is used for F0 contour prediction. Its decomposition to multiple
additive layers is also a nice characteristics in that it suffers less
from the data sparseness compared to regression trees, when to-
tal combination of the feature value instances grows exponentially
with the number of different feature types to be used. Interpretabil-
ity of its components may be another advantage of the additive F0

models. For example, by plotting component functions at the pitch
accent layer as in Figure 5, we can see the way different pitch ac-
cent component functions are learned with an effective difference
among each other from the training data, in addition to knowing
the effect of introducing this layer into the model just by the RMSE
and Corr measures.

On the other hand, since current additive modeling utilizes the
continuous component functions, it does not have a direct way to
recover if some component functions types are missing from the
training data, while regression trees can always yield some answer
from the leaf node it reached anyway. However, this may not be a
major defect when the developer oneself is in a position to design
and collect the speech corpus.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the application of multi-layer addi-
tive models approach to English F0 modeling for speech synthesis,
and achieved a promising results. We plan to incorporate the F0

measures predicted by the model, as one of the target measures to
evaluate the goodness of the corpus units, into our next generation
speech synthesis system we are currently developing.
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