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Abstract

This paper describes a set of experiments designed to

explore the utility of simulated dialogues and automatic

rule induction in spoken dialogue systems. The ex-

periments were conducted within a flight domain task,

where the user supplies source, destination, and date

to the system. The system was configured to sup-
port explicitly about 500 large cities; any other cities

could only be recovered through a spell-mode subdia-

logue. Two specific problems were identified: the con-
flict problem, and the compliance problem. A RIPPER-

based rule induction algorithm was applied to data from

user simulation runs, and the resulting system was com-

pared against a manually developed baseline system.

The learned rules performed significantly better than the
manual ones for a number of different measures of suc-

cess, for both simulations and real user dialogues.

Introduction

Spoken dialogue systems are a natural means to interact with
on-line information sources. Although the effectiveness of
such systems has improved significantly over the past few
years, a critical barrier to widespread deployment remains
in the form of communication breakdown at strategic points
in the dialogue. Such breakdown often occurs when the user
is trying to convey a named entity from a large or open vo-
cabulary set. For example, there is no easy way to inform a
user about which cities a weather or flight domain knows.

While speech recognition has been steadily improving
over time, it is still only able to provide best hypotheses of
what a user has said, especially if the user’s intended value
is unknown. Confidence scores and unknown word models
can help; however, it is still possible for a completely incor-
rect hypothesis to have high confidence and vice versa, es-
pecially when an unknown word sounds similar to a known
word. For example, the unknown city, Chaffee, may be mis-
recognized as the known city, Chelsea.

One problem with confidence thresholds is that they are
often based on simple heuristics and they remain static
throughout the dialogue. Confidence may be a better or
worse indicator depending on the specific user, the dialogue
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context, and the noise level. One nice approach to allevi-
ating this problem has been elegantly addressed in work by
Bohus and Rudnicky (2005), in which state-specific rejec-
tion thresholds are optimized over the course of a dialogue.

For a low-confidence attribute, an alternative to rejection
is to initiate specific recovery strategies, such as a speak-
and-spell subdialogue (Filisko & Seneff 2005). While a de-
veloper can specify rules for which action to take in a given
situation, a significant amount of manual effort and time is
typically required. A more efficient alternative is to auto-
matically learn a set of rules, thus reducing the manual effort
and perhaps even improving upon the manual rule set. User
simulation facilitates this task by allowing a large number of
simulated dialogues to be generated, providing both exam-
ple training material and an automatic evaluation procedure,
independent of real user data collection.

In this paper, two specific situations are explored, for
which manually specifying decision rules is difficult: the
conflict problem, in which the system must decide between
two conflicting hypotheses for the same attribute, and the
compliance problem, in which the system must predict
whether a user has been compliant with a spelling request.

The next section describes the conflict problem and two
approaches, manual rules and learned rules, for determining
which action to take in that situation. A performance anal-
ysis of the models with a simulated user is provided. The
compliance problem is then described, along with the re-
sulting learned model. In order to test the effectiveness of
the learned models, a telephone-based dialogue system was
introduced to real users. Following an analysis of the result-
ing real user data, the paper concludes with a summary and
discussion of future plans.

The Conflict Problem

The conflict problem is defined as a situation where a new
value appears to be in conflict with a previously assigned
value for a particular attribute. How should the system react?
Should the new value be ignored, implicitly or explicitly
confirmed, or substantiated by a spelling? Figure 1 shows
a dialogue in progress between a simulated user (U) and
a flight reservation system (S), in which this situation oc-
curs. The system has already established that the source city
is Asheville. A problem is encountered when the simulated
user provides a date in U1. The system hypothesizes that the



S0:  To Spring Mount. Can you provide a date?

Ul: Well, let’s see, on fifteen June.

S1: From Vienna. Can you try saying the date again?
U2:  Okay, I want to leave Asheville on fifteen June.

S2:  Did you say on June fifteenth?

U3:  Yes.

S3:  Okay from Vienna to Spring Mount on June 15th...
U4: T would like to leave from Asheville.

S4:  Okay from Asheville to Spring Mount on June 15th...

Figure 1: Dialogue between a simulated user (U) and a flight
reservation system (S). The system hypothesizes Vienna from the

user’s utterance (U1), implicitly confirming this incorrect city (S1).

user said Vienna, with high confidence. The conflicting and
incorrect source city, Vienna, is then implicitly confirmed in
S1; ideally, it should have been ignored. Incidentally, no
date was hypothesized. Consequently, in U2, the user must
again provide the date, but must also correct the source city.
The user repeats Asheville until the system finally correctly
recognizes the city name and implicitly confirms it in S4.

A Manual Solution

One way to address the conflict problem is to manually spec-
ify a rule set, dictating how to react to the new value, condi-
tioned on dialogue history. An initial rule set is often basic
and inadequate; however, the developer typically modifies
and refines the rules as the system is used. One drawback
of such a method is the amount of time required to devise
and hand-tune the rules. In addition, the developer is likely
unable to objectively handle all possible dialogue situations.
In our experiments, a baseline system was first developed
using a small set of ordered rules to handle the situation
where a new value is hypothesized for a previously assigned
source or destination. If the prior belief is grounded, because
either the user confirmed it or it had been spelled, then the
new value is ignored, unless its confidence score is suffi-
ciently high. Once the decision is made to acknowledge the
new value, it is subjected to the same rules that would ap-
ply if it were being introduced for the first time — the system
consults a spectrum of static, manually specified confidence
thresholds to determine whether to invoke explicit or im-
plicit confirmation, or to initiate a spell-mode subdialogue.

A Learned Solution

An alternative approach to addressing the conflict prob-
lem is to employ a learning mechanism. Reinforcement
learning has commonly been used in dialogue management
to learn optimal strategies (Singh et al. 2002; Hender-
son, Lemon, & Georgila 2005), while supervised learn-
ing has been used to predict problematic dialogues (Lit-
man & Pan 2000; van den Bosch, Krahmer, & Swerts 2001;
Walker et al. 2002), as well as user corrections (Hirschberg,
Litman, & Swerts 2001). Supervised learning approaches
typically learn from static corpora, as opposed to simulated
dialogues. However, simulated dialogues can be useful for
some purposes since they enable the generation of a large
number of dialogues without the need for real users (Levin,
Pieraccini, & Eckert 2000).

cur_gnd Grounding of currently believed city
conf Confidence score of new city name
num_nbest_values | No. unique cities for slot in N-best list
value_is_oov Is new value unknown hypothesis?
nbest_dominance | No. slots with new value in N-best list
found_in_sas_list Current belief was spelled by user

Table 1: A subset of the 16 features chosen to predict the “ideal”
system response in the case of the conflict problem.

The method used here to learn a decision model is as fol-
lows: in a simulated dialogue, upon encountering the con-
flict problem, the system records a set of features from the
N-best list and the dialogue state, along with an “ideal”
action; that is, the response that should lead to the fewest
number of turns to successfully complete the dialogue task.
This action is determined from the current state of beliefs,
including the user’s true intentions, which are provided to
the dialogue manager by the simulated user. Of course, this
information is used only for the purpose of assessing the ac-
tions taken by the system; it does not influence which action
the system actually takes. These data can then be used to
produce a model, mapping a feature vector to an action.

The “ideal” actions are defined as follows:

Ignore: when the system’s belief is the user’s intended city

Implicit Confirm: when the newly hypothesized city is the

user’s intended city

3. Explicit Confirm: when the newly hypothesized city is not the
user’s intended city, but the user’s intended city is a known city

4. Request Spelling: when the user’s intended city is unknown

e

If a city is unknown, spelling is the only way for the sys-
tem to acquire it. While unable to provide information on
that city, the system could, for example, propose a nearby
city or tell the user that it does not have information on that
specific city. For Explicit Confirm, the system asks, for ex-
ample, “Did you say Houston?”. If the suggested city were
incorrect, users have been observed to include the correct
city name in their reply, such as, “No, | said Boston”. The
system would hopefully be able to correctly recognize the
user’s intended, known city if it were repeated.

In order to know the ideal action, the system must know
the user’s true intentions. When real users are involved, this
information is only available following manual annotation
by experts. User simulation, however, enables access to this
knowledge, allowing the automatic assessment of its deci-
sions as they are made.

Features Various features have been used by researchers
in learning approaches to dialogue management, including
prosodic cues (Hirschberg, Litman, & Swerts 2001) and dis-
course features (Higashinaka, Sudoh, & Nakano 2005).

A set of 16 features was utilized for this work, a sub-
set of which is illustrated in Table 1. These features are
based on information from the recognizer, as well as from
the dialogue state. Several of them are derived from the
recognizer’s N-best list, including num_nbest_values and
nbest_dominance. For example, if num_nbest_values is rela-
tively high, it might suggest that the user’s intended value is
unknown and that a spelling request might be appropriate.

Some features are also based on information stored in the



2. (:nbest_doni nance >= 0.722222)

and (:nbest_sl ot _absence <= 0)

and (:num.nbest_val ues <= 4)

and (:first_occur_depth <= 0.0625)

and (:conf <= 4766)

=> action = inplicit (11.0/2.0)
5. (:cur_gnd = hi_conf)

and (:nbest_oov_count >= 1)

=> action = spelling (104.0/18.0)
11. => action = ignore (551.0/50.0)

Figure 2: Three rules from the set learned by JRip to predict the
“ideal” response to the conflict problem. The numbers in parenthe-
ses represent coverage/errors in the training data.

dialogue state. One example is cur_gnd, which represents
the grounding of the system’s current belief. It can assume
values of not confirmed, high confidence, and confirmed by
user. Not confirmed indicates that the value was recognized
with a relatively low confidence. If a conflicting value were
hypothesized in this case, it would seem more likely for the
currently believed value to be overridden than if the value of
cur_gnd were confirmed by user or high confidence.

The Learned Rules The training data were obtained by
simulating 596 dialogues with a compliant user; that is, the
user always provided a speak-and-spell utterance when re-
quested. Most utterances were generated with a concate-
native speech synthesizer, combining real and synthesized
speech (Filisko & Seneff 2005), while any spelling utter-
ances were generated by DECtalk. The recognizer had ex-
plicit knowledge of about 500 major cities. In 298 dialogues,
the user asked about flights from a city known to the recog-
nizer to a city unknown to the recognizer. In the remaining
dialogues, the user asked about flights from an unknown to a
known city. The 298 known cities were each used twice, and
the 596 unknown cities, only once. The city names were ran-
domly combined into unique pairs prior to the simulations.

The task of the simulated user was to get the system to
correctly understand the source city and state, the destina-
tion city and state, and the date. The user’s first utterance
contained only the source and destination cities; the state
and date were provided only when requested by the system.

The simulated dialogues gave rise to 890 instances of the
conflict problem, for which the corresponding feature vec-
tor/ideal action pairs were recorded. These data were fed
into JRip, an implementation of the RIPPER rule induction
algorithm (Cohen 1995), provided through Weka, a pub-
licly available, Java-based machine learning toolkit (Witten
& Frank 2005). A RIPPER-based implementation was cho-
sen since RIPPER is commonly used in supervised learning
approaches to dialogue management (Litman & Pan 2000;
Hirschberg, Litman, & Swerts 2001; van den Bosch, Krah-
mer, & Swerts 2001; Walker et al. 2002).

Figure 2 shows three of the 11 learned rules, for which
the actions are implicit confirm, request spelling, and ignore.
The rules are traversed linearly and the action correspond-
ing to the first matching rule is performed. All but two of
the original 16 features were represented in the rules. The
cur_gnd feature occurs in eight of the rules, indicating the
importance of the current belief’s grounding when consider-

NumSucc | AvgTurns | AvgAttrAcc
Manual 33.2 7.8 86.4%
Learned 35.9 7.7 89.0%

Table 2: Results for the Manual and Learned models in number
of successful dialogues (NumSucc), average turns per successful
dialogue (AvgTurns), and average attribute accuracy (AvgAttrAcc).
The values represent averages over ten runs.

ing whether to doubt its correctness.

Some of these rules demonstrate a degree of complexity
not likely to arise from manual specification. Rule 2, for
example, says that if at least 72.2% of the relevant slot values
in the N-best list are the newly hypothesized value, none
of the N-best hypotheses lack a value for the relevant slot,
the N-best list contains at most four unique values for the
relevant slot, the newly hypothesized value occurs in the top-
best utterance, and the confidence of the new value is at most
4766, then the new value should be implicitly confirmed.

On the other hand, some learned rules are similar to man-
ual rules. For instance, Rule 5 says that, if the current belief
was acquired with high confidence and the N-best list con-
tains at least one unknown word hypothesis for the relevant
slot, then the system should request a spelling from the user.

Testing and Results

In order to compare the performance of the learned and man-
ual models, 50 test scenarios, distinct from the training sce-
narios, were processed through each of the two system con-
figurations. In each scenario, a compliant simulated user had
to convey a known source, an unknown destination, and a
date to the system. Each scenario was run ten times, and the
results were averaged. The initial utterance for each scenario
was identical, but the wording of subsequent utterances var-
ied since they were randomly chosen from a set of templates,
as described by Filisko and Seneff (2005).

Table 2 provides a comparison of the average results for
both models. Each dialogue involved five attributes: source
city and state, destination city and state, and date. For the
learned model, the average number of successful dialogues
was 35.9, as contrasted with 33.2 for the manual model,
along with a significant increase in the average attribute ac-
curacy (p<.002) and a slight, though not significant, de-
crease in the number of turns per successful dialogue.

A detailed analysis revealed how well each model was
able to predict the ideal action in response to the conflict
problem. Tables 3 and 4 provide confusion matrices for the
action taken when the manual and learned models, respec-
tively, were followed. Overall, the learned model signifi-
cantly outperformed the manual model, with an accuracy of
76.1% compared to 61.7%.

Both models performed best in predicting the ignore ac-
tion — the manual model was correct just over 71% of the
time, while the learned model achieved nearly 85% accu-
racy. The models also predict the ignore action with similar
frequencies — a little over 77% of the time. Since ignore is
the default action for the learned rules, the learned model’s
superior performance is a consequence of the greater refine-
ment and complexity of the rules preceding the default rule.



Reference— Ignore | Implicit | Explicit | Spelling
Prediction) (64.0%) | (10.7%) | (3.4%) | (21.9%)
Ignore (77.4%) 38.6 3.9 1.8 10.0
Implicit (14.1%) 6.2 1.8 0.2 17
Explicit (2.1%) 0.0 0.7 0.0 0.8
Spelling (6.4%) 0.1 11 0.4 2.9

Table 3: Confusion matrix for decision made using the manual
decision model. An overall accuracy of 61.7% was obtained. The
values represent average number of decisions over ten runs.

Reference— Ignore | Implicit | Explicit | Spelling
Prediction. (71.7%) | (9.5%) | (2.7%) | (16.1%)
Ignore (77.3%) 43.6 2.3 0.8 4.6
Implicit (8.6%) 2.7 1.9 0.0 1.1
Spelling (14.1%) 13 2.1 1.0 5.0

Table 4: Confusion matrix for decision made using the learned
decision model. The overall accuracy was 76.1%. The values rep-
resent the average number of decisions over ten runs.

In the case of implicit confirmation, neither model per-
formed very well (18% manual, 33% learned). Both models
tended to predict implicit confirmation when the ideal ac-
tion was, in fact, to ignore the newly hypothesized value.
This confusion can be quite punishing since implicitly con-
firming a value, when it is not correct, places a burden on the
user to correct the value. This can be difficult and frustrat-
ing for the user, especially if the system is highly confident
in the incorrect value.

Explicit confirmation was never predicted by the learned
rules. While it did happen to be the ideal action in a very
small number of cases, the manual model also never suc-
cessfully made that prediction, so the conservative approach
of the learned rules was probably appropriate.

The learned model requested significantly more spellings
—14.1% of its predictions, versus the manual model’s 6.4%.
Perhaps as a result of such aggressiveness, the learned model
was less accurate (5.0/9.4=53%) than the manual model
(2.9/4.5=64%) when predicting a spelling request.

Confusing ignore with a spelling request can be quite
damaging, since the system must initiate a spelling request to
acquire an unknown word. The rightmost columns of the ta-
bles show that the manual model made a greater percentage
of such confusions (10.0/15.4=65%) than the learned model
(4.6/10.7=43%). However, when a spelling request was the
ideal action, the lower right corners of the tables show that
the learned model predicted it correctly 47% (5.0/10.7) of
the time versus 19% (2.9/15.4) for the manual model.

The Compliance Problem

Since modeling the conflict problem proved promising, the
same techniques were applied to address the compliance
problem. A system was configured which supported both
the main recognizer and a spelling recognizer in parallel,
whenever a spelling was requested. A decision then had to
be made as to which recognizer to trust.

In previous work, it was found that users do not always
provide a speak-and-spell utterance when requested by the
system (Filisko & Seneff 2004). In fact, it was shown in
simulated user experiments that noncompliance (i.e., repeat-

1. (:ngramscore <= -34.1935)

and (:total _score <= 93. 2063)

=> action = nonconpliant (240.0/0.0)
2. (:total _score <= 34.5113)

=> action = nonconpliant (30.0/0.0)
3. => action = conpliant (330.0/0.0)

Figure 3: The rule set learned by JRip to predict user compliance
in response to a spelling request from the system. The numbers in
parentheses represent coverage/errors in the training data.

ing the city name rather than spelling it) is a good strategy
for the user when the city in question is known by the rec-
ognizer. Hence this option should be available to users.

It was also discovered that users are inclined to simply
spell the word when a speak-and-spell request is made. In
fact, it seems that a simple spelling request is more natural.
Therefore, the speak-and-spell recognizer was replaced by
a simple spelling recognizer for these experiments. It is in-
tuitively expected that acoustic and language model scores
from a spelling recognizer would be poor if the user were to
speak a sentence instead of spelling a word. It was therefore
decided to supply these scores from the spelling recognizer
to a learning algorithm for predicting user compliance.

The simulated user generated both a valid spelling and
a noncompliant utterance for each of the 298 known and
596 unknown cities used to train the conflict problem model.
This process resulted in 1,788 training samples.

After each utterance, the dialogue manager recorded the
feature vector as well as whether the user was compliant or
noncompliant. These data were processed by JRip to ob-
tain a model consisting of three rules, as shown in Figure 3,
where the possible predictions were compliant and noncom-
pliant. Only the top-hypothesis ngram_score and total score
(acoustic_ plus ngram_score) features appeared in the rules.

The learned model was tested with the same set of 50
scenarios used to test the conflict problem models; the sim-
ulated user was compliant for exactly one-half of the dia-
logues. However, there were, as expected, more predictions
required for the noncompliant user since, as the user per-
sisted in being noncompliant, the system would continue to
request more spellings. All 57 compliant predictions and
all 162 noncompliant predictions were correctly classified,
yielding 100% accuracy for this task. But it remained to be
seen if these results would hold up for real user data, which
would likely be much more variable.

Experiment with Real Users

In order to provide a more realistic test of the learned mod-
els, a telephone-based dialogue system was developed to
collect data from real users. The user’s goal was to get the
system to understand a source city and state, a destination
city and state, and a date, in a flight reservation domain.
Upon visiting a specified webpage, each user was tasked
with calling the system and asking about flights according
to a unique scenario provided. To minimize bias, no exam-
ple utterances were suggested.

Before the data collection began, a set of scenarios was
generated by pairing each of 50 known cities with each of
50 unknown cities, taken from the simulation test scenarios,



NumSucc | AvgTurns | AvgAttrAcc
Manual | 31/40 (77.5%) 8.97 93.0%
Learned | 34/40 (85.0%) 8.50 96.0%

Table 5: Results for the Manual and Learned models in number
of successful dialogues (NumSucc), average turns per successful
dialogue (AvgTurns), and average attribute accuracy (AvgAttrAcc).

to yield a total of 2,500 scenarios. The source city in each
scenario was always known to the recognizer, and the desti-
nation city was always unknown. A date for each scenario
was selected at random.

To compare the performances of the manual and learned
models for the conflict problem, the system guided each user
to perform two sequential dialogues. The manual model was
employed in the first dialogue for half of the sessions, while
the learned model was used first in the remaining half. Once
the first dialogue had ended (i.e., when the system recog-
nized that the user had said, “Start over”, as instructed), the
system transparently switched to use the other model for the
second dialogue. The user was asked to solve the same sce-
nario both times, in order to minimize variability.

Forty-eight sessions were recorded by 34 unique users.
Each dialogue was transcribed and tagged for ideal actions
and user compliance by the first author. Each session ide-
ally consisted of two dialogues; however, if a user hung up
before starting the second dialogue, only one dialogue was
available. Five such sessions were excluded from the anal-
ysis. Three more sessions were removed since at least one
of the component dialogues was outside two standard devi-
ations from the mean number of turns per dialogue. This
filtering left a total of 40 valid sessions and 30 unique users.

Results

Table 5 shows that the learned model realized a greater num-
ber of successful dialogues, a slightly lower average number
of turns per successful dialogue, and a greater average at-
tribute accuracy than the manual model.

The results of a more detailed analysis are shown in Ta-
bles 6 and 7, which provide confusion matrices for the ac-
tions taken when the manual and learned models, respec-
tively, were utilized. Overall, the learned model substan-
tially outperformed the manual model with an accuracy of
84.1% versus 52.1%.

As observed with the simulated dialogues, the best per-
formance for both models was achieved in the case of the
ignore action. When the predicted action was ignore, the
manual model was correct almost 66% (25/38) of the time,
while the learned model showed over 86% (19/22) accuracy.
The same argument applies in the case of real users as for
simulated users: although ignore is the default action for the
learned rules, both models predicted this action in roughly
50% of their total responses to the conflict problem.

Implicitand explicit confirmation were never predicted by
the learned model. However, the manual model never pre-
dicted a truly ideal explicit confirmation, consistently con-
fusing it with a spelling request. It also made many more
confusions when spelling request was the ideal action. Such
confusions can lower performance, since the relevant city

Reference— Ignore | Implicit | Explicit | Spelling
Prediction) (52.1%) | (12.7%) | (5.6%) | (29.6%)
Ignore (53.5%) 25 4 2 7
Implicit (19.7%) 7 5 0 2
Explicit (7.1%) 0 0 0 5
Spelling (19.7%) 5 0 2 7

Table 6: Confusion matrix for the decision made using the manual
decision model. An accuracy of 52.1% was obtained.

Reference— Ignore | Implicit | Explicit | Spelling
Prediction. (52.3%) | (0.0%) | (0.0%) | (47.7%)
Ignore (50.0%) 19 0 0 3
Spelling (50.0%) 4 0 0 18

Table 7: Confusion matrix for the decision made using the learned
decision model. An accuracy of 84.1% was obtained.

was unknown to the recognizer and spelling would be the
only way to acquire the intended value. Any confusions
would only lead to superfluous turns until a spelling request
was finally initiated. While the manual model misclassified
67% (14/21) of the actions that should have been a spelling
request, the learned model only misclassified 14% (3/21).

The percentage of spelling request predictions increased
compared to the simulated dialogues from 6.4% to 19.7% for
the manual model, and from 14.1% to 50.0% for the learned
model, indicating the learned model is much more aggres-
sive than the manual model in this respect. One possibility
is that these large differences are due to an unrealistic or in-
adequately modeled simulated user.

A difference was also observed in the models’ accura-
cies when a spelling request was predicted. In the sim-
ulated dialogues, the manual was more accurate than the
learned model. However, with the real user dialogues, the
learned and manual models were correct 82% (18/22) and
50% (7/14) of the time, respectively. It was common for
both models to predict a spelling request when ignore was
ideal; however, this type of confusion is much less damaging
than others. If the system already believed the correct value,
a spelling request would merely allow the user to clearly,
albeit excessively, convey the intended city to the system.

A final noteworthy confusion is the manual model’s ten-
dency to predict implicit confirm when ignore is the ideal
action. This confusion is certainly detrimental since the sys-
tem consequently believes a spuriously hypothesized value,
placing a burden on the user to initiate correction of the er-
ror. Users are often uncertain how to phrase a correction
that will be understood by the system. Ameliorating such an
error can further be complicated by the fact that the system
believes the incorrect value with relatively high confidence.
This situation could lead to frustrated users who give up be-
fore completing their tasks.

Assessment of the Compliance Problem

The compliance prediction model was deployed in the data
collection system to assess its performance with real users.
The results were very positive, showing an overall accuracy
of 96.3%. For a total of 174 spelling requests, 77.6% be-
longed to compliant users who provided just the spelling of
the city name as requested. Users were successful at spelling



names ranging from Rush to Ski Sundown Ski Area.

Partially compliant user responses (e.g., “Stockbridge S
TOCKBRIDG E”) included a spelling among other
words, and comprised 5.7% of the total responses. When
such responses occurred, the recognizer hypothesized spuri-
ous letters for the words, but typically correct letters for the
spelling. Thus, the system was usually able to determine the
intended city following a spelling correction step.

A noncompliant user is one who does not provide a
spelling as requested, but instead, for example, repeats the
city name (e.g., “l wanna go to Yamhill, Oregon”) or refuses
to spell (e.g., “l don’t wanna spell the name”). Nearly 17%
of all responses were from noncompliant users.

Fifteen responses contained spellings (e.g., “The city is W
Al M E A Waimea”) but were uttered when a spelling was
not requested. These responses are very interesting, since
their format and timing are frequently unanticipated. A les-
son here is that, once the system reveals to the user that it
can accept spellings, it should be prepared for a spelling at
any point in the dialogue.

Notable confusion occurred when a partial city spelling
by the user (due to a clipped utterance) matched a city name
in the database. One example of this is when the user was
trying to spell Myrtle Point, but was cut off after spelling
Myrtle. The system asked, “Did you say from Myrtle?”, and
the user replied, “Yes”. In a similar example, the user’s in-
tended city was Redwood Valley, and when asked, “Did you
say from Redwood?”, the user simply continued spelling:
“UhVV ALLEY?”. Once discovered, such unanticipated re-
sponses can be handled in subsequent versions of a system.

Summary and Future Work

This paper presented an effective technique for learning
strategies for resolving specific issues that arise in spoken di-
alogue systems, namely the conflict problem and the compli-
ance problem. A simulated user was effective in providing
training data for a RIPPER-based learning algorithm, and
significant improvements were demonstrated over a base-
line system that had used manually developed rules. Ex-
perimental results indicate that the learned model attained a
much greater accuracy than the manual model in selecting
the “ideal” action in response to the conflict problem. The
learned model also made fewer detrimental confusions, con-
tributing to its increased overall performance.

An additional assessment was performed on a model,
learned from simulations, which predicted the compliance
of a user in response to a system spelling request. The model
performed very well, confirming its utility for this task.

In general, the results obtained for the dialogues with real
users are comparable to those obtained with the simulated
user. In some cases, better performance was observed for
the real user dialogues, which is possibly a consequence of
an inadequate simulated user model. More realistic behav-
ior on the part of the simulated user could produce results
more similar to those obtained with the real users. Such a
possibility could be explored in future work.

The real user responses obtained in the data collection are
valuable, not only for assessing the utility of the learned de-
cision models, but also for providing real examples of user

behavior when errors are encountered in an attribute acqui-
sition dialogue. For example, the behavior in which a user
spelled a multi-word city name across two utterances could
be further explored via user simulation, and a strategy to
handle such behavior could be developed.

Future work may also include applying this framework to
learn decision models for other problems, such as predicting
whether a user has spoken Mandarin or English in a multi-
lingual dialogue system.
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