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ABSTRACT

We explore several language modeling strategies for increasing the

recognition accuracy among large sets of proper nouns in a map-

based multimodal dialogue system which provides restaurant infor-

mation. In particular, we evaluate several mechanisms for exploiting

dialogue context, the two most promising of which involve a semi-

static metropolitan-region based large set of proper nouns compet-
ing with a smaller, in-focus subset. We show that these techniques

decrease word, concept, and proper noun error rates under several

training conditions. We also present a technique to generalize sparse

training data through derived templates to improve language model

robustness.

Index Terms— multimodal dialogue system, language model-

ing, context-sensitive, restaurants, proper nouns

1. INTRODUCTION

The quality of a user’s interaction with a spoken or multimodal dia-

logue system is usually highly dependent on the ability of the system

to accurately recognize that user’s spoken utterances. In order to im-

prove recognition, many dialogue systems (especially commercially

available systems) often take strong system initiative in which they

actively constrain the set of allowed utterances by asking the user di-

rect questions (for example: Please provide a departure city). Gen-

erally, such systems will provide language models specific to each

dialogue state, prepared only to handle a narrow set of expected ut-

terances. In contrast, many research systems provide more natural,
mixed initiative dialogue. A major difficulty of such systems is that

it generally becomes much more difficult to correctly recognize what

a user says, as utterances become longer and less constrained.

While many mixed-initiative systems use a single, static lan-

guage model regardless of current dialogue context, an area of active

interest is in dynamically updating a speech recognizer’s language

model based on contextual cues. For instance, two pass systems uti-

lizing small, dialogue-state-dependent language models in the first

pass have proved successful in increasing recognition accuracy [1],

as have systems which use an interpolation of dialogue-state specific

n-gram models with larger domain models (see e.g. [2, 3]). And,

in [4], we demonstrate that dynamic classes – n-gram classes whose

contents can be dynamically modified at run time – can be popu-

lated in a context-sensitive manner with just a small set of phrases

based on values in a dialogue system’s information state to improve

recognition accuracy.
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U1: Show me Chinese restaurants in Cambridge
S2: There are 15 Chinese restaurants in Cambridge. [shown on map]
U3: What’s the phone number of the Royal East?
S4: The phone number of the Royal East is (617) 661-1660.
U5: Are there any Italian restaurants along this street. [draws line]
S6: There are 12 Italian restaurants along this street. [shown on map]
U7: Show the web page for this one. [circles a restaurant]
S8: OK. [displays web page from which the data was harvested]
U9: [Clicks menu to select “San Francisco” from metro area list]
U10: Are there any cheap restaurants near 100 Santa Cruz Avenue in

Menlo Park?
S11: There are five inexpensive restaurants near there. [shown on map]

Fig. 1. A very brief example interaction, labeled with U for user, S
for system. Gestures and system actions are bracketed. Some system

remarks have been shortened for brevity.

In this paper, we further explore techniques that utilize dynami-

cally modifiable n-gram classes to reconfigure the recognizer’s lan-

guage model in real time using dialogue context. We focus here

specifically on recognizing restaurant and street names in a mixed-

initiative, multimodal restaurant guide system, described in [5]. At

any time while interacting with the system, a user may make a re-

quest involving one out of several thousand restaurant or street names

– correctly recognizing such utterances can prove daunting, an ob-

servation confirmed in at least one similar dialogue system [6]. Here,

we explore techniques to dynamically bias the system’s language

model based on the set of restaurants and streets which the system

has deemed to be in-focus at any given time, hypothesizing that a

user is more likely to ask about a restaurant currently displayed on

the map in front of her than some unrelated restaurant. Our meth-

ods should be generally applicable to many domains involving large

sets of proper nouns, especially multimodal systems where subsets

of the proper nouns can be graphically presented. Examples include

multimodal interfaces to MP3 players (e.g. [6, 7]).

2. THE MULTIMODAL RESTAURANT GUIDE

The restaurant guide is a multimodal dialogue system which is ac-

cessible via a dynamic webpage. Users navigate to the page in a

web browser, and can then interact with the system multimodally

by talking, typing, drawing on the map, or clicking on restaurants

displayed on the map. A very brief example dialogue shown in fig-

ure 1 demonstrates some capabilities of the system. By drawing

on the map while speaking, users can indicate geographical areas

of interest via circles, points, and lines, and can also circle sets of

restaurants. The gestures are then disambiguated in the context of

the utterance, as in utterances U5 and U7 in figure 1. For a detailed
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description of the architecture, please see [5]. Videos demonstrating

an interaction with the system can be viewed at http://www.mit.
edu/∼alexgru/rest-videos/.

The system differs from similar dialogue systems we are aware

of ([6, 8]) in that it has access to large restaurant databases harvested

from the web (see [5]), comparable in size to those found on com-

mercial, web-based restaurant guides. Each database of restaurants

encompasses a metropolitan region in the United States. At the time

of the experiments discussed here the system supported five major

metropolitan areas: Boston, Chicago, San Francisco, Seattle, and

Washington DC. These metropolitan areas consist of 50-250 nearby

cities, containing approximately 3,000 to 9,000 restaurants (exclud-

ing filtered-out fast food restaurants). In addition, a geographical

database of street names permits the recognition of arbitrary street

addresses and intersections.

3. DYNAMIC LANGUAGE MODELING

We utilize dynamic classes in the class n-gram language model to ac-

commodate several sets of proper nouns used in the restaurant-guide.

The within-class weights for the following classes are uniform, with

the exception of street names, which are weighted according to the

number of restaurants on that street (see [5]).

Restaurant Names The names of all the restaurants in a given

metropolitan area. This set is, in fact, larger than the actual num-

ber of restaurants since we also include alternative ways of referring

to each restaurant. For instance, Caprice Restaurant and Lounge
can also be referred to as Caprice Restaurant or simply Caprice.

This set of aliases is semi-automatically created, as described in [5],

yielding name sets containing 5,860 to 11,247 aliases, depending on

the metropolitan area.

Street Names The names of all the streets in a given metropoli-

tan area. In the experiments below, we drop suffixes such as “street”

and “road,” leaving these outside of the dynamic class. The fact that

street names are often reused significantly reduces the size of the set,

yielding from 1,177 to 2,243 street names per metropolitan area.

Cities and Neighborhoods The set of cities and neighborhoods

in each metropolitan area, approximately in the range of 50 to 250.

Since this set is relatively small, we currently only change it de-

pending on the active metropolitan area, according to the per-metro
configuration described below.

In the next section, we describe four methods we have developed

for dynamically manipulating the restaurant and street name classes

in the dialogue system’s language model. An evaluation of the four

methods is given in the following section.

3.1. Per-metro configuration
The most straightforward configuration is the per-metro configura-

tion, in which each set of proper nouns has a corresponding dynamic

class in the language model, which we’ll refer to as $restaurant and

$streetname. At run-time, whenever the user switches to a different

metropolitan area, the contents of each dynamic class is updated to

contain all restaurant and street names in that area. The contents

of the classes remains fixed for as long as the user stays in that

metropolitan region, yielding an essentially static configuration: any

restaurant or street is available at any time in a given metropolitan

area.

3.2. Context-specific configuration
In the context-specific configuration – first developed in [9] – each

set of proper nouns has a single corresponding class in the language

model, which we’ll refer to here as $dynrestaurant and $dynstreet-
name. However, in contrast to the previous approach, each dynamic

class is populated only after some relatively small set of restaurants

and streets have been explicitly brought into focus. For instance,

while both dynamic classes are empty while recognizing utterance

U1 in figure 1, by the time we reach U3 they have been populated

with the names of the 15 Chinese restaurants in Cambridge and of

all the streets in Cambridge respectively.

Critically, the contents of the classes can also be reconfigured

between recognition passes on a single utterance. Using an efficient

two-pass approach of MIT’s SUMMIT recognizer (see [10]), a sec-

ond recognition pass can take place if the system determines that the

contents of the dynamic classes should be reconfigured. An example

of this is U10, in which the mention of a new city (Menlo Park) in

the first recognition pass triggers the system to load the names of the

restaurants and streets in that city before performing a second pass.

To facilitate this capability, each dynamic class always supports an

out-of-vocabulary (OOV) model represented acoustically by a phone

n-gram. In the first recognition pass for U10, the street name Santa
Cruz can match this OOV model, resulting in the token $street oov
appearing in the first pass recognition result.

The context-specific configuration is particularly appropriate if

the system can, with high accuracy, choose the correct subset of

proper nouns with which to fill the dynamic classes. This can work

well if a user can come to understand this limitation. After watching

naive users interact with the system, however, it becomes apparent

that this is not a natural restriction for users – they do not immedi-

ately understand that they can use a specific restaurant or street name

in some contexts but not in others. To address this problem, we have

developed two further approaches which attempt to meld the per-
metro and context-specific configurations discussed thus far.

3.3. Independent-competing configuration
The independent-competing configuration is inspired by language

model techniques first developed in [4] in which very small context-

specific dynamic classes are populated based on dialogue context in

the flight reservation domain. Often, these classes compete against

larger static classes of proper nouns (for instance, recently men-

tioned airline names compete in a separate dynamic class against

the set of all airlines). In this approach, co-occurrence statistics for

both the small and large class are incorporated directly into the lan-

guage model by properly tagging instances of each class in the train-

ing data. Thus, variations on the relative distributions of the context-
specific as compared with the larger static class are naturally and pre-

cisely captured in the process of training an n-gram language model,

because each class has its own independent distribution in the train-

ing data.

In this domain, we can apply the same basic principle with a

slightly different twist. For both restaurant and street names, we in-

clude the dynamic class types developed for both the per-metro and

context-specific configurations, and allow them to compete against

one another. For instance, in our language model we will have two

independent dynamic classes for restaurant names: $restaurant and

$dynrestaurant, where the former behaves as in the per-metro con-

figuration, and the latter as in the context-specific.

Training the n-gram now requires first differentiating the $restau-
rant and $dynrestaurant classes in the training data. This can be ac-

complished – as in [4] – by using the dialogue system log files to

appropriately tag each street or restaurant name in each utterance as

being in one of these two sets. In our case, we tag any restaurant or

street name which the system deemed to be in-focus during a partic-
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ular utterance as an instance of the context-specific dynamic classes,

while all others are tagged as the per-metro classes.

Finally, we note that in this configuration we do not include a

corresponding OOV class, since all restaurant and street names are

active at all times in a given metropolitan area.

3.4. Tied-competing configuration
The tied-competing approach is similar to the previous approach in

that we again allow all restaurant and street names in a metropoli-

tan area to compete with a smaller, context-specific set. Unlike the

previous approach, however, we here make the assumption that the

occurrences of the context-sensitive versions of classes are not inde-

pendent of the per-metro versions; instead, they are tied. This frees

us from having to tag our training data based on the dialogue-system

context in which it was collected. Instead, after training, we sim-

ply modify the language model directly such that, instead of a single

dynamic class, we now have two competing dynamic classes in par-

allel. The modifications work just as described in [9] for adding the

competing OOV class in the context-sensitive configuration; how-

ever instead of a parallel OOV model, we now have a parallel per-
metro dynamic class.

While this configuration does not capture the potential distribu-

tional differences between the two types of classes, it is nonetheless

quite natural if these distributional differences are not pronounced,

or if too little training data is available to characterize them. As a re-

sult, it may allow training data to be more effectively utilized than the

previous configuration. Similarly, synthetic training data, or user ut-

terances collected outside of actually using the system (e.g. through

wizard-of-oz experiments) can be used, since properly tagging this

data based on dialogue system logs is unnecessary.

4. EVALUATION

We recorded and transcribed utterances from a number of users’ in-

teractions with the system, while also logging the dialogue man-

ager’s information state as the conversations proceeded. Subjects,

who ranged from naive to expert, were asked to use the system to

find four appealing restaurants at which they hadn’t eaten before:

two in the Boston area, and two elsewhere. A total of 546 utterances

were collected from 10 different subjects. An earlier set of 228 “pi-

lot” utterances, collected during system development, was also used

for language model support. All data collection took place using a

Thinkpad X41 tablet in the lab, which allowed subjects to use a pen

for multimodal input and a headset for speech input. At the time of

data collection, the system was run in the context-specific configu-

ration described in section 3.2. The language model was trained on

a set of developer utterances, and hence differs from the language

models described below. Results comparing the context-specific and

per-metro configurations trained on this set can be found in [5].

The collected utterances were used to train and test language

models in the four configurations described in the previous section.

Given the limited size of our data set, we partitioned the test set into

10 distinct subsets, where each subset contains the utterances col-

lected in a single user’s interaction with the system. To test each

language model configuration, we then utilized a leave-out-out pro-

cedure in which all of the pilot dataset, and 9 of 10 test subsets were

used as the training data for a language model to be tested on the

held-out subset.

In addition, we experimented with enhancing our limited train-

ing data by generating synthetic utterances using templates which

generalize on the patterns observed in the collected utterances. First,

�������������	


�����

�����

�����

�����

�	���

� � 


������� ��������
������ ����
���������
����� �������
�����

����
�	���������	


�����

�����

�����

�����

�����

� � 

����
���������������	


�����

�����

�����

�����

�����

� � 

Fig. 2. Word, concept, and proper noun error rates of the 4 configu-

rations trained on Transcripts, Synthetic data, or Both.

a general set of core templates was derived, based on the observed

patterns in the pilot data. Then, subset-specific templates were crafted

from each user’s data in turn, based on just those utterances that

yielded a high perplexity when measured from a language model de-

rived from the core templates. Finally, ten synthetic sets of 10,000

utterances each were created using the core templates augmented

with all but one of the test template sets, using a leave-one-out pro-

cedure. Due to the limited training data, it proved difficult to gener-

alize on any distributional differences which the independent-com-
peting model aims to capture. In training this model, we guaranteed

only an overall unigram statistic on the distribution of the context-
sensitive compared to the per-metro dynamic classes. Specifically,

we ensured that approximately 80% of restaurant names and 85% of

street names were in the context-sensitive class, without attempting

to capture any within-utterance distributional differences.

In the evaluations that follow, we trained and tested language

models according to each of the configurations described in the pre-

vious section using three different sets of training data: (1) actual

utterance transcripts, (2) synthetic utterances, and (3) a combination

of both synthetic and transcribed utterances. All experiments were

performed offline using the collected utterances, which has an im-

portant implication: the in-focus restaurant and street names in the

context-sensitive dynamic sets are determined using the system logs

from the user’s original interaction with the system. As a result, the

context-sensitive, independent-competing, and tied-competing con-

figurations depend on the recognition capabilities of the original live

system to determine the proper in-focus set for any given utterance

to be recognized. Since the data were collected using a fixed lan-

guage model configuration, trained on a different set of language

model training data, our current tests are somewhat dependent on

the quality of the original language models used. As the language

model training data used here appears to be superior to that used to

collect the data (the word error rates of the context-specific and per-
metro model discussed below are lower than those of the original

model1), we expect that the performance of the models reported here

is a lower bound because it relies on the inferior models to determine

the in-focus sets.

4.1. Overall Results
Figure 2 compares the performance of the four configurations as

measured by word, concept, and proper noun error rates in each of

the three training data conditions. Concept error rate, reported only

on the 500 utterances where the transcript could be parsed, is de-

termined by comparing the key concepts identified in the parse of

the transcript to those found in the top recognizer hypothesis. The

proper noun error rate, measured on all utterances in the test set, is

calculated by comparing the restaurant and street names which ap-

1Unfortunately, the concept error rate reported in [5] is not comparable to
the one reported here, since the parser coverage has been changed since the
original tests.
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Fig. 3. Error rates given a contextual oracle

pear in the transcript to those found in the top recognizer hypothesis

for each utterance, without attempting to parse the strings.

Several interesting observations can be made about figure 2.

First, we note that in all three training conditions, the per-metro con-

figuration outperforms the context-specific configuration in all met-

rics. This is interesting as it is the inverse of the results obtained

in [5]. It seems to indicate that, as the language model training

data improves, the per-metro benefits more than the context-specific
configuration. However, this is not terribly surprising since, as we

noted above, the performance of the context-specific configuration

here represents a lower bound, as it depends on the inferior model

used to collect the data.

More importantly, we note that the independent-competing and

tied-competing configurations generally outperform the other two

approaches, most notably in the proper-noun error rate. Both com-
peting configurations reap the benefits of having both the per-metro
and context-specific dynamic classes active. The independent-com-
peting configuration performs poorly as measured by word and con-

cept error rate when trained only on the transcripts, indicating that,

in situations with only a small amount of training data, this model

suffers from the divvying up of each dynamic class into two distinct

sets. As the amount of training data increases, the two competing
models behavior more similarly. However, the independent-compet-
ing model does outperform the tied-competing model in terms of

proper noun error rate in all conditions, indicating that accuracy im-

proves even with only (or mostly) unigram probability differences

in the two types of dynamic classes. We hypothesize, however, that

a penalty – derived from the unigram distribution – on the compet-

ing per-metro class in the tied-competing configuration might yield

similar improvements.

In comparing the three sets of training data, it is quite interest-

ing that the word error rate is generally highest when the models are

trained only on the synthetic data, yet the concept error rate drops

quite a bit nonetheless. A closer examination of the recognition hy-

potheses shows that a large portion of the degradation in word error

rate can be attributed to the phrases “restaurant” or “a restaurant”

appearing where “restaurants” should appear. A review of the syn-

thetic data reveals that, in fact, the ratio of the occurrences of the

word “restaurant” to “restaurants” is 2.4, whereas it is 1.4 in the

transcribed set. Because our parser is generally robust to such dis-

tinctions, concept error rate is not adversely affected – in fact, it

benefits quite a bit from the synthetic data.

4.2. Oracle contextual condition
The two competing configurations have been developed in order to

incorporate contextual knowledge into the language model, while

at the same time allow for the facts that (1) a dialogue system may

make mistakes about what constitutes the current conversational con-

text, and (2) sometimes a person will change contexts unexpectedly.

To obtain an upper bound, it is informative to evaluate the language

model configurations under an oracle condition, in which the dia-

logue system has always guessed correctly about the current context.

To simulate this condition, we tested all four language model

configurations such that, when recognizing a particular utterance,

the context-specific dynamic classes were always guaranteed to be

populated with the set of proper nouns appearing in the transcript

of that utterance. We note that the classes were not populated only
with those proper nouns, but with whatever appeared in the original

system logs, plus the correct proper noun (if that proper noun was

not already in the list). Figure 3 shows the results of this experiment,

and includes the per-metro model for reference (as it was unaffected

by these manipulations).

The two competing configurations generally do almost as well

as or better than the context-specific configuration in terms of word

and overall concept accuracy. The independent-competing model

performs almost as well as the context-specific model in terms of

proper noun error rate. This result is encouraging as it shows that we

take only a minor performance hit using the competing models, even

under conditions where their large competing sets are superfluous.

5. SUMMARY

In this paper, we have explored methods to improve speech under-

standing in a multimodal dialogue system, by dynamically manip-

ulating the language models. The highest performance is achieved

by allowing a large set of proper nouns covering each metropoli-

tan region to compete with a smaller in-focus set derived from the

dialogue context. While the independent-competing configuration

generally has the highest accuracy, the tied-competing configuration

is appealing as it does not require detailed knowledge of the dialogue

context to label the training data. Significant performance improve-

ments can be achieved by training on a combination of the original

transcripts and a set of synthetic utterances automatically derived

from generalized templates.

6. REFERENCES

[1] O. Lemon and A. Gruenstein, “Multithreaded context for robust conver-
sational interfaces: context-sensitive speech recognition and interpreta-
tion of corrective fragments,” ACM Transactions on Computer-Human
Interaction, vol. 11(3), pp. 241–267, 2004.

[2] A. Aaron et al., “Speech recognition for DARPA communicator,” in
Proc. of ICASSP, 2001.

[3] F. Wessel, A. Baader, and H. Ney, “A comparison of dialogue-state de-
pendent language models,” in Proc. of ESCA Workshop on Interactive
Dialogue in Multi-Modal Systems, 1999, pp. 93–96.

[4] A. Gruenstein, C. Wang, and S. Seneff, “Context-sensitive statistical
language modeling,” in Proc. of INTERSPEECH, 2005, pp. 17–20.

[5] A. Gruenstein, S. Seneff, and C. Wang, “Scalable and portable web-
based multimodal dialogue interaction with geographical databases,” in
Proc. of INTERSPEECH, 2006.

[6] F. Weng et al., “CHAT: A conversational helper for automotive tasks,”
in Proc. of INTERSPEECH, 2006.
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