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ABSTRACT 

Speech utterance classification has been widely applied to a variety 

of spoken language understanding tasks, including call routing, 

dialog systems, and command and control. Most speech utterance 

classification systems adopt a data-driven statistical learning 

approach, which requires manually transcribed and annotated 

training data. In this paper we introduce a novel classification 

model training approach based on unsupervised language model 

adaptation. It only requires wave files of the training speech 

utterances and their corresponding classification destinations for 

modeling training. No manual transcription of the utterances is 

necessary. Experimental results show that this approach, which is 

much cheaper to implement, has achieved classification accuracy at 

the same level as the model trained with manual transcriptions. 

1. INTRODUCTION 

Speech utterance classification has recently been widely applied to 

a variety of spoken language understanding tasks. Call routing is 

one of the most common applications [1-3]. Other applications 

include dialog systems and command and control [4]. Most speech 

utterance classification systems adopt a data-driven statistical 

learning approach, which requires manual transcriptions of speech 

utterances and annotations of classification destinations for the 

utterances. Data transcription and annotation are time-consuming 

and expensive, and have become a bottleneck for the rapid 

development of spoken language applications. 

Recently many researchers have been investigating different 

learning algorithms to address the problem. Most of the work 

focuses on active learning and unsupervised/semi-supervised 

learning algorithms [5-7] that reduce the requirement of 

classification destination annotation. However, in many real 

application scenarios, transcriptions of speech utterances are more 

difficult to obtain than the classification destinations. One such 

scenario is the Wizard-of-Oz data collection, in which a wizard 

interacts with users on behalf of an automated system by choosing 

a classification destination after hearing the users’ utterance. In the 

case of call-routing, applications are often developed to replace an 

existing manual system. Data can be collected by recording the 

users’ utterances and the corresponding routing destinations 

selected by live agents in the manual system. At the initial stage of 

a system deployment, live agents are often involved in monitoring 

the system and correcting its classification errors to ensure a 

smooth transition from using a human operator. In all the 

scenarios, the classification destinations of the users’ utterances 

can be obtained for free by recording the wizards’ or agents’ 

actions. Manual transcription of speech utterances remains as the 

only major bottleneck in model training and tuning. 

In [8, 9], phone sequence based classification systems have been 

proposed to eliminate the need for manual transcription in 

classification model training. In both systems, phone n-gram 

models are iteratively trained and then used by phone recognizers 

to produce phone sequences. Salient phone subsequences can be 

selected and used as features by a classifier.  

While it is reported that the phone-based classification achieved an 

accuracy close to that of a word-based model trained on manual 

transcriptions, it has its own limitations in practical applications: 

not all speech recognizers support phone recognition; word 

recognition is often necessary to recover additional attribute values 

(like phone numbers); sometimes the operational cost is too high 

when multiple n-gram models and acoustic models are required to 

cope with the lower detection rate of salient phone sequences or 

ambiguous salient phone sequences in an utterance [9]. 

In this paper, we investigate classification model training based on 

automatic word transcriptions. We first study the effect of using 

different amounts of seed data for language model adaptation for 

speech utterance classification. We further study different 

unsupervised self-adaptation schemes for a word-based language 

model. We demonstrate the importance of cross-validation in 

unsupervised adaptation. We illustrate that, even though there is no 

recognition accuracy improvement over the LM adaptation 

iterations, classification accuracy may keep improving as long as 

the errors made by the speech recognizer become more consistent. 

The paper is organized as follows: Section 2 gives a brief 

introduction to the maximum entropy classification algorithm that 

is used as the statistical classifier in this study. Section 3 describes 

various language model adaptation algorithms. Section 4 presents 

experimental settings and results. Section 5 concludes the paper.  

2. MAXIMUN ENTROPY CLASSIFIER 

Given an acoustic signal A , the task of speech utterance 

classification is to find the destination class Ĉ from a fixed set C

that maximizes the conditional probability P |C A :
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HereW represents a possible word sequence that is uttered in A .

The first approximation in Eq. (1) assumes that class C  depends 

only on the word sequence and not on the acoustics A . Many 

practical systems also make the second Viterbi approximation by 

adopting a two-pass approach, in which an automatic speech 

recognition (ASR) engine obtains the best hypothesis of W  from 

A  in the first pass; and a classifier takes W as input and identifies 

its destination class. The text classifier models the conditional 

distribution P |C W  and picks the destination according to Eq. 

(1). There are many different ways to implement a text classifier. 

We used a Maximum Entropy (ME) classifier [10] for the study in 

this paper. 

A ME classifier builds the conditional distribution on a set of 

features F. Each feature is a function of C  and W . The classifier 

selects a conditional distribution P |C W  that maximizes the 

conditional entropy |H C W  from a family of distributions, 

with the constraint that the expected count of a feature predicted by 

the conditional distribution equals to the empirical count of the 

feature observed in the training data:  
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here P  stands for empirical distributions over the training set.  

It has been proven that the maximum entropy distributions that 

satisfy Eq. (2) have the following exponential (log-linear) form 

[10]: 
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Z W f W C  is a normalizing 

constant. 

In the application of speech utterance classification, we used 

binary unigram and bigram features. Formally,  

 when 

otherwise                  ,

1
,
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where u is a word or a word bigram, c  is a destination class. 

In Eq. (3), i ’s are the parameters of the model. They are also 

known as the weights of feature if , which can be optimized from 

training data. For model training, we applied the stochastic 

gradient descent algorithm [11], which converges faster than the 

frequently used generalized iterative scaling (GIS) algorithm [12] 

in our task. 

3. LANGUAGE MODEL ADAPTATION 

A straightforward way to train a ME classifier without manual 

transcriptions is to use ASR transcriptions. Because in-domain 

transcriptions are not available for language model (LM) training, 

a general large vocabulary (60K words) dictation trigram language 

model is used. As shown in the experimental results in the next 

section, the mismatch of the language model results in an over 

50% increase in classification error rate compared to a language 

model and a classification model trained with manual 

transcriptions. This is a clear indication that LM adaptation may 

improve recognition and hence classification accuracy. 

One way to adapt the language model involves a small amount of 

transcribed data. The data is used to train a trigram model, and the 

resulting model is then interpolated with the large vocabulary 

trigram model. The interpolation weights are estimated with an 

automatically transcribed development set. This is a supervised 

adaptation. 

The supervised adaptation approach still requires transcribed data. 

An alternative is self-adaptation, or unsupervised adaptation [13]. 

In this case, the wave files of speech utterances are first recognized 

with the large vocabulary trigram model. The recognized strings 

are then used to train a domain specific language model. This new 

language model is interpolated with the original language model 

used in recognition. Then, iteratively, the newly interpolated model 

is used to perform recognition again, and the recognition results in 

turn are used to adapt the original language model.  

One problem with the self-adaptation mechanism in [13] is that the 

recognition errors are fed back to the new language model in the 

same trigram context. This feedback reinforces the errors in the 

context and makes it difficult to improve recognition accuracy over 

iterations. For example, if the word sequence “a b c” is 

misrecognized as “a b d” in the first iteration, then it is almost 

hopeless to recover from this error in the subsequent iterations 

because the error in the first iteration boost the wrong trigram 

probability in LM adaptation. In this paper we introduce a two-fold 

cross-validation unsupervised self-adaptation mechanism. The 

training wave files are randomly partitioned into two disjoint sets, 

A and B. The original large vocabulary trigram model is used to 

recognize utterances in A. It is then adapted with the recognized 

text for the recognition of the utterances in B. The text recognized 

from B is in turn used to adapt the original language model to 

recognize again the utterances in A.  This process iterates until 

there is no improvement of classification accuracy on the 

development set. In the example above, because the word “c” may 

have different bigram and trigram context in data sets A and B, the 

cross-validation may alleviate the error reinforcement problem.

4. EXPERIMENTAL RESULTS 

We conducted experiments with the ATIS data [14]. The original 

purpose of ATIS is not for speech utterance classification. 

However, since the data is broadly accessible to the research 

community, the results we report with ATIS data can be easily 

reproduced. We followed the practice in [15] to use the main 

database table name in the reference SQL query for each utterance 

as the classification destinations for the utterance. This resulted in 

14 different classes. We used the ATIS2 and ATIS3 Category A 

data (utterances that can be interpreted without context 

information) for training (5798 utterances), ATIS3 1993 and 1994 

Category A test set (914 utterances) for testing, and the ATIS3 

development set (410 utterances) for tuning the interpolation 

parameters and the stopping criterion described in the previous 

section. In all the experiments we used the recognizer that was 
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provided as part of the Microsoft Speech API (SAPI) without

adaptations to its acoustic model. 

To see the potential classification accuracy we can expect, a 

maximum entropy classification model was trained using all the 

manually transcribed training data. A trigram language model was 

also trained using the same data for the recognition of the test 

utterances. Table 1 shows the best-scenario ASR and classification 

error rates (CER). 

Input to Classifier Test WER Test CER 

Manual Transcript 0% 4.81% 

ASR Output 4.82% 4.92% 

Table 1. Performance of the ME classifier on text inputs and 

speech inputs for the ATIS domain. Both the classifier and the LM 

for ASR are trained from in-domain manual transcriptions.  

In the first experiment, we investigated the effect of LM adaptation 

with small amounts of in-domain data on the recognition and 

classification results. Table 2 shows the results for up to 400 

randomly selected manually transcribed utterances. The baseline 

60K dictation trigram model yielded a 7.44% classification error 

rate (CER), which is a 51% increase over the 4.92% CER of the 

best scenario in Table 1. 

Adapt. set size Train WER Test WER Test CER 

0 (baseline) 18.23% 16.93% 7.44% 

100 11.66% 11.34% 5.58% 

200 10.02% 10.46% 6.02% 

300 9.13% 9.73% 5.35% 

400 8.59% 9.60% 5.58% 

Table 2. Impact on the WERs and the CERs of using small 

amounts of manually transcribed data for training the language 

model. The transcribed utterances were used to adapt the 60K 

vocabulary dictation trigram LM using linear interpolation. 

We applied the unsupervised self-adaptation algorithm [13] to 

adapt the large vocabulary trigram model with the training wave 

files. The adapted language model was then used to recognize the 

training data and the recognized text was used to train the 

classifier. Table 3 shows the word error rates on the training and 

test set, as well as the classification error rates on the test set. This 

self-adaptation mechanism reduces the classification error rate by 

26% over the baseline, and it outperforms the approach of LM 

adaptation with partially transcribed in-domain data in Table 2.  

Iteration Train WER Test WER Test CER 

1 13.49% 10.18% 5.47% 

2 13.38% 10.04% 5.91% 

3 13.44% 9.90% 5.47% 

4 13.49% 9.93% 5.47% 

Table 3. WERs and CERs with unsupervised LM self-adaptation. 

The row in bold face is the model with the best classification 

accuracy on development set. 

It is interesting to note that the WERs of the training set are about 

30% higher than the corresponding WERs of the test set. This 

indicates that improvement can be achieved if we correctly address 

the error feedback problem in the self-adaptation mechanism as 

originally introduced in [13]. This leads to the third experiment, in 

which we applied the self-adaptation algorithm with two-fold 

cross-validation. Table 4 shows the word error rates on the training 

and test set, as well as the classification error rates on the test set. 

The training set word error rates in Table 4 are much lower than 

those in Table 3. In fact, they are in the same range as the word 

error rates of the test data. This shows that the two-fold cross-

validation reduces the error feedback problem in LM self-

adaptation. The improvement in the training set recognition 

accuracy results in training data that better matches the test 

condition. This accounts for the improvement in the test set 

classification error rates, which are significantly lower than those 

in Table 3. 

Iteration Train WER Test WER Test CER 

1 10.76% 10.06% 5.58% 

2 11.03% 10.25% 5.24% 

3 11.15% 10.49% 5.03% 

4 11.16% 10.36% 4.92% 

5 11.17% 10.41% 4.92% 

6 11.15% 10.40% 4.81% 

7 11.14% 10.41% 5.25% 

8 11.17% 10.35% 5.14% 

Table 4. WERs and CERs with unsupervised LM self-adaptation 

and two-fold cross-validation. The row in bold face is the model 

with the best CER on the development set. 

Another important observation in Table 4 is that, although there is 

no improvement of recognition accuracy after the first iteration (a 

similar observation was reported in [13]), the test set classification 

error rate keeps improving until iteration 6. Using the development 

set CER as the stopping criterion, the model in iteration 4 was 

chosen. Its CER is the same as the best scenario, when all ATIS 

manually transcribed training data are used. Our hypothesis is as 

follows. Once the word error rate is lower than a certain level, 

further improvement in word error rate may not matter very much. 

The important issue here is what kind of errors the recognizer 

makes. As long as the errors are consistent, the classifier can be 

robustly trained to handle the errors. As an example, about a 

quarter of the occurrences of the word “flight” was misrecognized 

as “Floyd,” and the maximum entropy classifier learned to include 

“Floyd” as an important feature for the “FLIGHT” class. 

To further test this hypothesis, we looked at the conditional 

entropy of the distributions of the substitution and deletion errors 

made by the recognizer, which measures the consistency of 

recognition errors: 

P P( | ) logP( | )
w v

H w v w v w  (5) 

Here P w  is the error distribution over the reference vocabulary, 

and P |v w  is the recognizer’s confusion distribution for 

reference word ,w  which includes v for deletion errors. 

Table 5 lists the conditional entropies through the LM self-

adaptation iterations. The drop of entropy correlates strongly with 

the drop of CERs in Table 4. In iteration 6, when the entropy is at 

a minimum, the classification error also reaches the lowest level. 
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This strongly indicates that consistency in ASR errors helps reduce 

CERs.

Iter. H Iter. H Iter. H 

1 1.839 4 1.748 7 1.739 

2 1.780 5 1.748 8 1.739 

3 1.750 6 1.731   

Table 5. Conditional entropy of the ASR substitution and deletion 

error distribution steadily drops in the initial six iterations of LM 

self-adaptation. This drop correlates to the classification error 

drops in Table 4.  

We believe that, by making ASR errors more consistent in training 

and test data, the LM self-adaptation with cross-validation helps 

the classifier achieve the same accuracy as the model trained with 

manual transcriptions, as Table 1 and Table 4 illustrate. 

5. CONCLUSIONS 

In this paper we investigate the problem of training speech 

utterance classification models without manually transcribed data. 

We have discussed some important application scenarios for this 

technology. We have introduced various language model 

adaptation techniques that customize a domain-independent large 

vocabulary trigram model for a specific domain, and hence 

improve the speech recognition and speech utterance classification 

accuracy. We have shown that unsupervised self-adaptation using 

all waveform training data, with or without cross-validation, 

outperforms supervised adaptation using small amounts of 

transcribed data. The cross-validation mechanism in unsupervised 

LM self-adaptation successfully mitigates the problem of error-

feedback and reinforcement. As a result, the training set 

recognition error rate is reduced by 30%, and hence the 

classification error on the test set is significantly reduced to the 

same level as that obtained from the models trained with manually 

transcribed training data. We have shown that the high 

classification accuracy obtained was largely due to the LM self-

adaptation, which makes the recognition errors more consistent.  
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