
UNSUPERVISED WORD ACQUISITION FROM SPEECH USING PATTERN DISCOVERY

Alex Park and James R. Glass

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA

{malex, jrg}@csail.mit.edu

ABSTRACT

In this paper, we present an unsupervised method for automatically
discovering words from speech using a combination of acoustic
pattern discovery, graph clustering, and baseform searching. The
algorithm we propose represents an alternative to traditional meth-
ods of speech recognition and makes use of the acoustic similar-
ity of multiple realizations of the same words or phrases. On a
set of three academic lectures on different subjects, we show that
the clustering component of the algorithm is able to successfully
generate word clusters that have good coverage of subject-relevant
words. Moreover, we illustrate how to use the cluster nodes to
retrieve the word identity of each cluster from a large baseform
dictionary. Results indicate that this algorithm may prove useful
for applications such as vocabulary initialization, speech summa-
rization, or augmentation of existing recognition systems.

1. INTRODUCTION

Over the past few decades, data storage capacity, transfer speed,
and computational power have all increased at extraordinary rates.
In the area of speech and audio, this has led to a massive increase in
the volume and variety of available audio data. Audio recordings
that are now routinely archived include educational lectures, web
casts, radio programs, and meetings. Although these sources have
many potential uses, their utility is limited by the capacity of hu-
mans to listen to and digest the information contained therein. Un-
like text, which can be easily skimmed, summarized, and searched,
untranscribed audio data is tedious to browse, making it difficult
to access without time-consuming data preparation.

In order to address this problem, researchers are devoting more
effort to the problem of automatically annotating audio data, with
the goal of increasing the utility of general audio recordings. The
majority of approaches start by using automatic speech recognition
(ASR) systems to generate a text transcription which is then used
as the basis for further processing. This approach has some draw-
backs, which we note here. First, as with all recognition systems,
transcription accuracy is dependent on the amount and quality of
training data used for acoustic modeling and language modeling.
Next, because speech recognizers use a pre-specified lexicon, there
may be many instances of words in the test data that are out of vo-
cabulary (OOV). While the OOV rate can be reduced by increasing
the vocabulary size, extraneous words in the lexicon are also unde-
sirable. In particular, we have observed that for many educational
lectures, the active vocabulary is typically very small, but includes

Support for this research was provided in part by the National Science
Foundation under grant #IIS-0415865.

many topic specific terms and phrases that are not frequently oc-
curring in conversational speech [1]. Recognition experiments on
these lectures show that reducing the OOV rate improves accu-
racy, but that including unnecessary words is detrimental to per-
formance [2]. These experiments underscore the challenge of bal-
ancing coverage and generality against relevance and compactness
when performing vocabulary selection.

In this paper, we present a conceptually simple algorithm
which can analyze an audio recording and automatically discover
and identify recurring patterns which are likely to be significant
with respect to the content of the recording. The initial compo-
nent of our algorithm is a completely unsupervised method for
grouping acoustically similar patterns into clusters using pair-wise
comparisons. Unlike the ASR-based approach, OOV words are
not an issue, because the clustering process does not utilize a pre-
specified lexicon. These clusters can potentially be used in many
ways: for directly summarizing the audio stream, for initializing a
lexicon which can be used to perform more exhaustive recognition,
or for performing information retrieval (IR) tasks on the recording.
In [3], we first introduced and demonstrated the utility of our pat-
tern discovery method for augmenting audio IR. Here, we take the
additional step of performing lexical access by using the clusters to
automatically identify words in the audio stream without explicitly
relying on an ASR system.

The rest of this paper is organized as follows: Sections 2, 3,
and 4 are concerned with the mechanics of grouping together simi-
lar sounding speech segments using dynamic time warping (DTW)
and a bottom-up clustering algorithm. While important in a prac-
tical sense, any improvements described in these sections can be
seen as refinements to the ideas introduced in our previous pa-
per [3]. The major contribution of this work is described in Sec-
tions 5, 6, and 7, where we introduce a novel method for associat-
ing words to clusters and apply the technique to a more diverse set
of data.

2. SEGMENTAL DTW

Historically, DTW has been used to find the optimal global align-
ment between two whole word exemplars [4]. In the basic for-
mulation, two speech waveforms are first converted into spectral
vector time series, {vi}

M
i=1, {vj}

N
j=1. Next, a distance matrix D

is computed by taking the pairwise distance between vectors in
each utterance such that D(i, j) = ‖vi − vj‖. Finally, dynamic
programming is used to find the lowest distortion path through the
distance matrix between D(1, 1) and D(M, N). This result is use-
ful to us because the path distortion directly measure the similarity
of two utterances at the acoustic level. However, the globally opti-
mal alignment is not suitable for our purposes because the start and

I ­ 4091­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

Utterance 1

U
tt

e
r
a

n
c

e
 2

Distance Matrix

W

U1

U
2

Fig. 1. The segmental DTW algorithm. As in normal DTW, the distance
matrix is computed between utterances U1 and U2. The matrix is then cut
into overlapping diagonals (only one shown here) with width W . The op-
timal alignment path within each diagonal band is then found using DTW
and the resulting path is trimmed to the least average subsequence. Finally,
the trimmed alignment paths are retained as the subsequence alignments
between U1 and U2.

end points constrain the algorithm to match the entire utterances
together, and not local alignments which correspond to matching
subsequences.

In order to address these limitations, we introduced a segmen-
tal variation of DTW in [3]. This algorithm is illustrated and ex-
plained in Figure 1 and is similar to the approach used for musical
pattern analysis in [5] . The reasons for the constrained paths are
twofold. First, via the width parameter W , they limit the amount
of temporal distortion that can occur between two sub-utterances
during alignment. Second, they allow for multiple alignments,
as each band corresponds to another potential path with start and
end points that differ from D(1, 1) and D(M, N). The algorithm
used to trim the paths finds the least average subsequence with
minimum length L [6]. The minimum length criterion is used to
prevent spurious matches between short segments within each ut-
terance. After trimming, the resulting path fragments represent
matching subsequences between the utterances.

In practice, we use silence detection to break the audio stream
into separate utterances and then repeat the segmental DTW pro-
cess for each pair of utterances. As utterances are compared
against each other, the concentration of path fragments at particu-
lar locations in the audio stream will indicate higher recurrence of
the pattern occuring at that location.

3. NODE EXTRACTION

The result of the segmental DTW phase is a set of alignment paths
distributed throughout the audio stream. Although the alignment
paths overlap common time regions, path boundaries typically do
not coincide with each other and multiple intervals exist for each
point in time. In [3], we showed how to extract a set of time indices
from the audio stream by aggregating the inverted distortion pro-
files of the alignment paths to form a similarity profile over time.
After smoothing the similarity profile with a triangular averaging
window, we take the peaks from the resulting smoothed profile
and use them to represent the multiple paths overlaying that point

Adjacency Graph

1
2

34

Audio Stream

⇒

1 2 3 4

Fig. 2. Production of an adjacency graph from alignment paths and ex-
tracted nodes. The audio stream is shown as a timeline, while the align-
ment paths are shown as pairs of colored lines at the same height above the
timeline. Node relations are captured by the graph on the right, with edge
weights given by the path similarities.

in time. The extracted time indices demarcate locations that bear
resemblance to other locations in the audio stream.

The reasoning behind this procedure can be understood by not-
ing that only some portions of the audio stream will have high
similarity (i.e. low distortion) to other portions. By focusing on
the peaks of the aggregated similarity profile, we restrict ourselves
to finding those locations that are most similar to other locations.
Since every alignment path covers only a small segment, the simi-
larity profile will fluctuate over time. This causes the audio stream
to separate naturally into multiple nodes corresponding to distinct
patterns that can be joined together in an adjacency graph as shown
in Figure 2.

4. GRAPH CLUSTERING

In [3], we performed a similar graph conversion as described in the
previous section, but used an edge weight threshold in order to sep-
arate the graph into groups of connected components. These con-
nected components were then demonstrated to correspond strongly
to relevant words and phrases from the audio. Although we relied
on explicit separability to dictate the clustering results in that work,
more sophisticated algorithms for automatic graph clustering have
been proposed by a number of researchers in other fields [7, 8, 9].

A detailed treatment of the graph clustering problem is out-
side of the scope of this paper. Instead, we focus on an effi-
cient, bottom-up algorithm proposed Newman [8]. Starting with
all edges removed and each node in its own group, the algorithm
merges groups together in a greedy fashion by adding edges back
to the graph in the order that maximizes a modularity measure, Q,
which is given by

Q =
X

i

(eii − a
2

i)

where eij is the fraction of edges in the original network that con-
nect vertices in group i to those in group j, and ai =

P
j
eij .

As noted by Newman, Q is the fraction of edges that fall within
groups, minus the expected value of the same quantity if edges fall
at random without regard for the community structure of the graph.
The value of Q ranges between 0 and 1, with higher scores indicat-
ing more favorable partitionings of the graph. The advantages of
this algorithm are threefold. It easily allows us to incorporate edge
weight information in the clustering process, it is extremely fast,
and it includes a data-driven criterion for determining how many
clusters a graph should break into.

Because our goal is to separate the graph into groups join-
ing nodes sharing the same word(s), multiple groups containing
the same word are more desirable than fewer groups containing
many different words. We therefore associate a higher cost with

I ­ 410

Cluster C

1
2

34

Transcriptions

1 : a b c d

2 : d b c d

3 : e b e d

4 : d a b c

⇒

N -phone Sets

n1 = {a|b|c, b|c|d}
n2 = {d|b|c, b|c|d}
n3 = {e|b|e, b|e|d}
n4 = {d|a|b, a|b|c}

⇒

Fig. 3. Conversion of cluster nodes into groups of n-phones. The intervals
under the nodes are phonetically transcribed, then separated into sets of n-
phone sequences. In this example, n = 3.

the action of mistakenly joining two unlike groups than that of
mistakenly leaving two like groups unmerged. This observation
leads us to choose a conservative stopping point for the clustering
algorithm at 80% of peak modularity.

5. CLUSTER IDENTIFICATION

The procedure we use to assign words to the clusters generated
from the previous section is relatively straightforward. For a given
cluster, C, a phonetic recognizer is used to transcribe the inter-
val underlying each node and convert it into a set of n-phones, as
shown in Figure 3. Likewise, the pronunciations for all words in a
large baseform dictionary (150K words, in our case), W , are con-
verted into sets of n-phones. This process reduces each node, ni,
and each word, wj , into sets of n-phone sequences. By comparing
the similarity of the words in the dictionary to the nodes in C, the
most likely candidate word common to the cluster can be found.
The hypothesized cluster identity is given by

w
∗ = arg max

wj∈W

2

|C|

X

ni∈C

|ni ∩ wj |

|ni| + |wj |
.

In this equation, we use the normalized intersection between the
sets ni and wj as a measure of similarity and aggregate this over
all nodes in the cluster for each word. We include the |ni| + |wi|
factor in the denominator to normalize for the size of ni and wi, so
that longer/shorter words are not favored due to their length. The
factor of 2 in the numerator is included so that the overall score
ranges between 0 and 1. Using this similarity score, we can easily
generate an N -best list of word candidates for each cluster.

6. EXPERIMENTAL DETAILS

6.1. Speech Data

The speech data used in this paper is taken from a corpus of audio
lectures collected at MIT [1]. The entire corpus consists of approx-
imately 300 hours of lectures from a variety of academic courses
and seminars. The audio was recorded using an omni-directional
microphone in a classroom environment. In a previous paper, we
described characteristics of this lecture data and performed recog-
nition and information retrieval experiments [2]. Each lecture typ-
ically contains a large amount of speech (from thirty minutes to an
hour) from a single person in an unchanging acoustic environment.
On average, each lecture contained only 800 unique words, with
high usage of subject-specific words and phrases. Each of the lec-
tures used in our experiments was taken from courses in computer
science (CS), physics, and linear algebra.

6.2. Preprocessing and Path Detection

Each lecture is segmented into continuous utterances by using a
basic phone recognizer to identify regions of silence in the signal.
Silent regions with duration longer than 2 seconds are removed
and the portions of speech in between those silences are used as
the input to the segmental DTW algorithm. In the absence of
a phone recognizer, segmentation can also be performed using a
speech activity detector. Each segment was then converted into a
series of 14-dimension MFCC vectors extracted every 5 ms, which
were whitened using principal components analysis over all vec-
tors from all utterances. After extracting MFCC feature vectors,
we compute common paths between each utterance using segmen-
tal DTW. In this phase, each utterance is compared against each
other utterance. For our experiments, we set the parameters W

and L to be 15 (75 ms) and 100 (500 ms), respectively.

7. RESULTS & DISCUSSION

We first consider the effectiveness of the clustering component
of our algorithm. Our use of pattern discovery for finding rel-
evant words is motivated by the assumption that relevant words
and phrases in the lecture are spoken more frequently than non-
important ones. We attempted to verify this by listing the top ten
most frequent words from each lecture when ranked using term
frequency-inverse document frequency (TFIDF). These words are
shown in Table 1. Each lecture is counted as a separate document
in calculating the TFIDF measure. The lists of words generated in
this table appear to be very relevant to the subject matter of each
lecture and indicate, qualitatively, that our assumption is valid.

An encouraging observation is that the majority of the words
in Table 1 are, in fact, found as clusters in the output of our algo-
rithm. It should be noted that for two sets of words, “square root”
and “glass rod”, the words are found co-located in the same cluster.
In the linear algebra lecture, the word “equation” was not found in
its own cluster because the nodes were merged into a larger cluster
corresponding to the word “combination” due to the acoustic simi-
larity of the word endings. Other words that are not included, such
as “LISP”, and “z”, may be due to the shorter duration of these
words as spoken by the lecturers.

In Table 2, we show example clusters from each lecture ranked
by size and include the results of the cluster identification algo-
rithm. At first glance, we found that the identification procedure
worked surprisingly well given that we did not use a unigram lan-
guage model to bias the baseform dictionary prior to search. We
chose to show individual clusters rather than simply compute over-
all identification accuracy because we found the types of errors
made by the algorithm particularily enlightening.

The type a errors (indicated with superscripta) originate with
the clustering component of our algorithm. The clusters er-
roneously combine acoustically similar, but lexically dissimilar
nodes consisting of function word sequences, and word compo-
nents. Examples include {“this is”, “misses”, “which is”} and
{“would be”, “b”, “see”}. The lexical disagreement for these clus-
ters can be seen in their purity scores, which measures what frac-
tion of the nodes contain the most common reference word(s) for
the cluster. An important observation we can make, however, is
that the scores for the hypothesized words are very low, indicating
that we can use the identification score as a metric for rejecting
these types of clusters.

Type b and c errors can be attributed to limitations of the iden-

I ­ 411

CompSci Algebra Physics
root* column* charge*
LISP plane* force*

define* x* balloon*
square* matrix* electron*

procedure* equation glass*
language combination* rod*
primitive* z electricity*

x* solution atom*
computer* y* positive*

Table 1. Ten most frequent words for each lecture ranked by term fre-
quency, inverse document frequency (TFIDF) measure. Each lecture is
counted as a separate document. The starred* words occur as found clus-
ters in the output of our algorithm.

tification procedure. Multi-word phrase clusters induce type b er-
rors, where the best matching single word in the dictionary only
partially covers the reference phone sequence. In the case of “right
hand side” and “square root”, the algorithm finds one of the con-
stituent words, but for “times ten to”, the best matching word is
“tent”, which occurs phonetically, but not lexically, in the phrase.

Type c errors are characterized by single-word clusters with
relatively high purity. Upon examining the node phonetic tran-
scriptions, we concluded that the errors for these cases is due to
the inability of the phonological rules to account for the surface re-
alization of the word. Conspicuous examples are all present in the
CS lecture, where the lecturer consistently omits the “b” in “com-
bination” and omits both schwas in “parentheses”. In the future,
we may be able to mitigate these errors by using more powerful
phonological rules or by adopting a more flexible search phase. It
is interesting to note that almost all of the type c errors occurred in
the CS lecture, which suggests that the occurrence of these errors
is highly dependent on speaking style.

8. SUMMARY & FUTURE WORK

In this paper, we have described a method for identifying words
from speech without using conventional speech recognition tech-
niques. The algorithm we propose relies on the recurrence of
words in the audio stream and makes use of the acoustic simi-
larity of multiple realizations of the same word. We observed that
our algorithm can successfully find many clusters corresponding to
important words relevant to each lecture. Using our cluster iden-
tification method, we can also, in many cases, identify the correct
word corresponding to these clusters.

In the future, we plan to improve upon the results we have pre-
sented by iterating the word discovery process and by using phone
lattices instead of the top phone transcription during the cluster
identification stage. We can also incorporate lexical knowledge to
help identify clusters by using the word N -best lists for each clus-
ter to find the set of words that maximizes some joint probability
of all words occurring in a single document. Even without the
cluster identification component, we believe that our approach has
many potential uses. In many tasks involving the organization of
large amounts of audio data, the core idea of pattern discovery may
be more suitable than a traditional speech recognizer because it is
completely language independent and requires no training data.
The unsupervised nature of the algorithm also makes it useful for
improving our understanding of how to learn directly from speech.

Size Common Word(s) Purity Hypothesis Score

(a)

72 square rootb 1.00 square 0.23
40 procedure 0.97 procedure 0.34
21 combinationc 1.00 commination 0.43
19 computer 1.00 computer 0.63
17 primitive 0.94 primitive 0.12
14 definition 1.00 definition 0.29
12 parenthesesc 1.00 prentice 0.29
12 productc 0.83 prada 0.65
10 operator 0.80 operator 0.37
10 and 1.00 and 0.29

(b)

73 combination 0.52 combination 0.26
46 bea 0.24 woodby 0.03
45 column 1.00 column 0.85
42 anda 0.64 manthe 0.04
32 minus 0.94 minus 0.45
30 matrix 0.97 matrix 0.69
27 isa 0.56 get 0.08
22 right hand sideb 0.95 righthand 0.46
14 picture 1.00 picture 0.88
11 one andb 1.00 wanna 0.26

(c)

21 isa 0.24 paced 0.05
18 charge 1.00 charge 0.76
17 positively 0.76 positively 0.48
16 electricity 1.00 electricity 0.71
9 forces 0.89 forces 0.72
9 positive 0.89 positive 0.94
7 gravitational 1.00 invitational 0.61
6 times ten tob 1.00 tent 0.57
6 distance 0.83 distance 0.51
5 gravity 1.00 gravity 0.44

Table 2. Ten largest clusters for lectures in (a) computer science, (b)
linear algebra, and (c) physics. From left to right, the columns list cluster
size, the underlying common reference word(s) for the cluster, the cluster
purity (fraction of nodes containing the common reference word(s)), the
top cluster identity hypothesis (w∗), and the hypothesis score.

9. REFERENCES

[1] J. Glass, T. J. Hazen, L. Hetherington, and C. Wang, “Analysis
and processing of lecture audio data: Preliminary investigations,” in
Proc. HLT-NAACL 2004 Workshop on Interdisciplinary Approaches to
Speech Indexing and Retrieval, Boston, May 2004, pp. 9–12.

[2] A. Park, T. J. Hazen, and J. Glass, “Automatic processing of audio
lectures for information retrieval: Vocabulary selection and language
modeling,” in Proc. ICASSP, Philadelphia, 2005, pp. I–497–450.

[3] A. Park and J. Glass, “Towards unsupervised pattern discovery in
speech,” in Proc. IEEE Workshop on Automatic Speech Recognition
and Understanding, San Juan, Puerto Rico, 2005.

[4] L. Rabiner and B.H. Juang, Fundamentals of Speech Recognition,
Prentice Hall, 1993.

[5] R. Dannenberg and Ning Hu, “Pattern discovery techniques for music
audio,” in International Conference on Music Information Retrieval,
Paris, France, 2002, pp. 63–70.

[6] Y-L. Lin, T. Jiang, and K-M. Chao, “Effi cient algorithms for lo-
cating the length-constrained heaviest segments with applications to
biomolecular sequence analysis,” J. Computer and System Sciences,
vol. 65, no. 3, pp. 570–586, January 2002.

[7] S. White and P. Smyth, “A spectral clustering approach to fi nding
communities in graphs,” in SIAM International Conference on Data
Mining, Newport Beach, CA, 2005.

[8] M. E. J. Newman, “Fast algorithm for detecting community structure
in networks,” Phys. Rev. E, vol. 69, pp. 066133, 2004.

[9] S. van Dongen, Graph Clustering by Flow Simulation, Ph.D. thesis,
University of Utrecht, 2000.

I ­ 412

