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ABSTRACT

We investigate an asynchronous two-stream dynamic Bayesian
network-based model for audio-visual speech recognition. The
model allows the audio and visual streams to de-synchronize
within the boundaries of each word. The probability of de-
synchronization by a given number of states is learned during
training. This type of asynchrony has been previously used
for pronunciation modeling and for visual speech recognition
(lipreading); however, this is its first application to audio-
visual speech recognition. We evaluate the model on an audio-
visual corpus of English digits (CUAVE) with different lev-
els of added acoustic noise, and compare it to several base-
lines. The asynchronous model outperforms audio-only and
synchronous audio-visual baselines. We also compare mod-
els with different degrees of allowed asynchrony and find that
the lowest error rate on this task is achieved when the audio
and visual streams are allowed to desynchronize by up to two
states.

Index Terms— Speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) has become a key com-
ponent in efforts to produce more natural human-computer
interfaces. Most modern ASR systems use a hidden Markov
model (HMM) representation with a single audio signal as
their input. Such systems are highly accurate in controlled
environments, but their performance degrades rapidly in the
presence of noise [14]. This has led researchers to incorpo-
rate visual information into ASR systems. Several types of
audio-visual speech recognition (AVSR) models using both
modalities have been proposed, including those dealing with
large vocabulary, continuous speech [14].

One of the goals of AVSR research is to find effective
ways of combining video with existing audio-only ASR sys-
tems [11]. Several models have been proposed for fusing au-
dio and visual speech input using two parallel HMMs for the
two inputs. Most of these models are special cases of dynamic
Bayesian networks (DBNs) [10]. A subset of AVSR models
allows the audio and visual state streams to de-synchronize to

achieve further performance gains. In this paper, we propose
and evaluate an asynchronous two-stream DBN for audio-
visual speech recognition. This model allows the audio and
visual streams to de-synchronize by up to several states within
each word. The probability of de-synchronization by a partic-
ular number of states is learned during training. This type of
asynchrony has been previously used for pronunciation mod-
eling [8, 9] and for lipreading [15]; however, this is its first
application to audio-visual speech recognition.

2. RELATED WORK

Since this paper focuses on the audio-visual fusion aspect of
AVSR, we will not discuss other related topics such as lip
tracking or feature extraction. For a comprehensive review of
AVSR research we refer the reader to [14].

Several multi-stream models have been developed to take
advantage of complementary sources of speech information.
The streams can be multi-modal (e.g. audio-visual [7]), dif-
ferent types of features extracted from only the audio [12] or
only the video [15], or a mix of both [6]. These models can
be thought of as instances of the more general class of DBNs
[16]. Here we focus on two-stream models, with one stream
emitting audio and the other visual observations.

Asynchronous multi-stream models allow the hidden state
streams to de-synchronize, in order to capture the natural asyn-
chrony between sensory modalities. We can think of a con-
tinuum of different degrees of coupling: At the one extreme,
the streams are completely independent; at the other extreme,
they are fully synchronized. Most models, including the Fac-
torial HMM [5] and the Coupled HMM [3], fall somewhere in
between. It has been shown (e.g. [7]) that allowing a limited
degree of asynchrony is beneficial for AVSR. However, mod-
els differ in their implementation of synchrony constraints.
For example, the CHMM couples the hidden streams by con-
ditioning the current state of each stream on both the previ-
ous state in that stream and the previous state in the other
stream(s). In this paper, we propose a different type of syn-
chrony constraint than has been used previously for AVSR.
Instead of introducing direct dependencies between each state
in a given stream and the states in the other stream(s), we



Fig. 1. Asynchronous DBN for AVSR. t is time, and iFt is an
index into the state sequence of stream F , where F ∈ {A, V }.
Shaded nodes correspond to observed variables. Additional
variables associated with synchronization at word boundaries
have been omitted from the figure for brevity.

model the overall probability of the state indices differing by
some number of states, regardless of the word or the particu-
lar state in the word. This type of asynchrony in a multistream
DBN was first proposed for an articulatory feature-based pro-
nunciation model in [8]. The model was also extended to
visual-only speech recognition (lipreading) from multiple vi-
sual articulatory feature streams in [15]. In this paper, we
apply this asynchronous DBN model to audio-visual speech
fusion and evaluate its performance on a database of English
digits.

3. MODEL DESCRIPTION

The proposed model (see Fig. 1) is implemented as a dy-
namic Bayesian network. For each word in the vocabulary,
the model essentially consists of two parallel HMMs, one for
the audio stream and one for the video stream, each having
N states per word. The joint evolution of the HMM states
is constrained by synchrony requirements imposed by addi-
tional random variables. This is a modification of the model
proposed in [9].

The model allows the states in different streams to pro-
ceed through their sequences at different rates (i.e. asynchro-
nously). This asynchrony is not completely unconstrained,
however: Sets of state sequences that are more “synchronous”
may be more probable than less “synchronous” ones. To make
the notion of asynchrony more precise, let the variable iFt be
the index into the state sequence of stream F at time t; i.e., if
stream F is in the nth state of a word at time t, then iFt = n.
The states are traversed in ascending order from 0 to N − 1.
We define the degree of asynchrony between the streams at
time t as |iAt − iVt |. The probabilities of varying degrees of
asynchrony are given by the distribution of the variable at.

The variable ct simply checks that the degree of asynchrony
between the two streams is in fact equal to at. This is done
by having ct always observed with value 1, and defining its
distribution as

P
(

ct = 1|at, i
A

t , iVt
)

= 1

⇐⇒ |iAt − iVt | = at,

and 0 otherwise. 1 This model therefore has only a few ex-
tra parameters in addition to the parameters of the individual
streams; if we allow asynchrony by a maximum of k states,
then we need only learn an additional k−1 probability values.

For the audio stream, the observations OA
t are features

extracted from the audio waveform, and for the video stream,
the observations OV

t are features extracted from the corre-
sponding image sequence of the speaker’s mouth. The ob-
servation models are mixtures of Gaussians, one mixture per
state. Recognition corresponds to finding the most likely set-
tings of the hidden variables, and reading off the word se-
quence corresponding to the hypothesized states.

To perform recognition with this model, we can use stan-
dard DBN inference algorithms [10]. All of the parameters
of the distributions in the DBN, including the observation
models, the state transition probabilities, and the probabil-
ities of asynchrony between streams, are learned via max-
imum likelihood using the Expectation-Maximization (EM)
algorithm [4].

4. DATA AND PROCESSING

We evaluated the above model and several baselines on the
isolated digits portion of the Clemson University Audio-Visual
Experiments (CUAVE) database [13]. This part of the database
consists of 36 speakers speaking 50 English digits each, ex-
cept for one of the speakers, who only spoke 40 digits. The
speakers all faced the camera. Although this is the isolated
digits portion of the database, it is a continuous ASR task. We
used a training set consisting of 22 speakers, a development
set with 6 speakers and a test set with 6 speakers, all chosen
at random from a 34-speaker subset of the database. 2 We di-
vided the recording of each speaker into ten-digit utterances,
each containing the digits “zero” through “nine” in order. The
total number of words in the train, development and test sets
was 1090, 300, and 300, respectively.

To evaluate our model at different levels of audio noise,
we added babble noise from the NOISEX database to the
clean audio, and extracted Mel-frequency cepstral coefficients
(MFCCs) from the clean and noisy waveforms. The audio
observations consisted of 14 MFCCs, plus first and and sec-
ond derivatives, minus the first energy coefficient, resulting

1A simpler structure without the a variables, as in [8], could be used, but
it would not allow for EM training of the asynchrony probabilities.

2Speakers 25 and 18 were left out because of problems with their visual
processing.



SNR -4dB 4dB 6dB 10dB 12dB
AHMM 70.7 32.3 23.3 13.0 7.3
VHMM 56.7 56.7 56.7 56.7 56.7
MHMM 47.3 23.7 18.7 6.0 3.3
aDBN(1) 50.0 23.3 18.0 7.0 3.7
aDBN(2) 47.3 19.3 13.0 5.0 3.0
aDBN(3) 49.3 19.7 15.3 6.3 3.3

Table 1. Word error rate (WER), in percent, on the test set for
various models.

in a 41-dimensional vector in each frame. The visual obser-
vations consisted of 35 discrete cosine transform (DCT) co-
efficients of a 16-by-16 grayscale mouth subregion, plus first
derivatives, for a total of 70 dimensions.3 Mean and variance
normalization was applied to the audio and visual features on
a per utterance basis. The original visual features were sam-
pled at 29.97Hz; however, to enable state-synchronous audio-
visual fusion as a baseline method, they were interpolated to
100Hz to match the audio frame rate.

5. EXPERIMENTS

Each model was implemented as a whole-word recognizer,
with N=16 states per word. The vocabulary consisted of the
10 digit words “zero” through “nine”, a 16-state silence word,
and a 1-state short pause word. Decoding was restricted to 10
digit words per utterance. The development set was used to
tune the number of Gaussians in the mixtures for the audio-
only and the video-only models, and the stream weights for
the audio-visual models.

We implemented and evaluated all of the models using
GMTK, the Graphical Models Toolkit [2, 1]. First, we evalu-
ated audio-only and visual-only HMM-based models, which
we refer to as AHMM and VHMM, respectively. The best
number of Gaussian components per mixture was found to be
1 for the AHMM and 4 for the VHMM. The top two rows
of Table 1 show the performance of these single-stream mod-
els on the test set, measured in terms of the word error rate
(WER). The columns in the table correspond to the different
signal-to-noise ratios (SNRs) in the noisy audio. All mod-
els were trained on clean audio. The AHMM achieved 0.0%
error rate on the clean test set. However, its WER degraded
significantly in noise, up to 70.7% for the noisiest condition.
The visual-only model achieved a 56.7% error rate.

Next, we compared synchronous and asynchronous audio-
visual models. To achieve the best balance between input
streams at different audio noise levels, we made use of stream
weights: an audio stream weight, λ, and a video stream weight

3The visual observations were provided by Amarnag Subramanya. We
are grateful for his assistance.

SNR -4dB 4dB 6dB 10dB 12dB
MHMM 0.8 1.3 1.4 1.9 1.8
aDBN(2) 1.2 1.5 1.6 1.8 1.8

Table 2. The best audio stream weight (λ) obtained on the
development set for each audio-visual model.

(2 − λ). 4 The models were trained with both weights set to
1.0. During decoding of the development set, λ was varied
from 0.0 to 2.0 with a step size of 0.1. The weight that pro-
duced the best results on the development set is shown in Ta-
ble 2 for each model. Results on the test set were obtained
using these weights.

The synchronous model we compare to is the multi-stream
HMM (MHMM), which consists of a single stream of hid-
den states with two observation streams. The observation log
likelihood at each state is a weighted combination of the au-
dio and visual observation log likelihoods, using the stream
weights found above. The MHMM observation model pa-
rameters were initialized using the Gaussian parameters from
the AHMM for the audio stream, and from the VHMM for
the video stream. The number of Gaussians in the mixtures
was set to one. These initial parameters were trained to weak
convergence (2% relative difference in log-likelihood). Then,
the MHMM was trained to stronger convergence (.5%). As
shown in Table 1, the multi-stream HMM achieved lower
WER than the audio-only baseline across all noise conditions.

Finally, we evaluated the proposed asynchronous DBN
model (aDBN). Again, the initial parameters were those of the
weakly trained single-Gaussian AHMM and VHMM, and the
aDBN model was trained for several more EM iterations. We
also varied the maximum degree of asynchrony allowed be-
tween streams. This was achieved by setting the initial prob-
abilities of asynchrony, i.e. of values of the a variable, to 0
for all values greater than aMAX , for aMAX = 1, 2, 3. The
results are shown in Table 1 in rows titled aDBN, with aMAX

in parentheses. The results show that, for this task, the best
performance is achieved by allowing up to 2 states of asyn-
chrony. Allowing 3-state asynchrony did not further improve
the results, and the learned probability p(a = 3) was less
than 0.01. Looking at the learned parameters of aDBN(2),
the probability of the streams being completely synchronous
was 0.23, being asynchronous by 1 state 0.54 and being off
by 2 states 0.23. Comparing the results for the MHMM and
the aDBN(2), we see that the aDBN achieves a lower WER
than the MHMM on test sets for all SNRs except -4 dB. The
same was true for the development set.

4The weights sum to 2 to match the effective observation weight of a
model with no explicit weights.



6. SUMMARY AND FUTURE WORK

In this paper, we applied a two-stream asynchronous DBN
model to audio-visual digit recognition and compared it to an
audio-only HMM, video-only HMM, and synchronous multi-
stream HMM. All audio-visual models improved over the audio-
only baseline across all SNR levels, as expected on this task.
The aDBN achieved lower word error rates on the test set than
the MHMM, for all SNRs except -4 dB. We evaluated sev-
eral versions of the aDBN model corresponding to different
degrees of maximum allowed asynchrony between the audio
and visual streams. We found that the best choice for this task
is a maximum of 2 states of asynchrony.

Currently, state asynchrony is only allowed within word
boundaries in our model. That is, all state counters are reset
to 0 after a word transition. However, to account for anticipa-
tory co-articulation which occurs when the mouth starts mov-
ing in anticipation of the upcoming word, we plan to incorpo-
rate cross-word asynchrony into the model. In addition, the
current model is extremely simple, assuming that the degree
of asynchrony is context-independent and that each stream is
equally likely to outpace the other. This results in a small
number of additional parameters, but it would also be inter-
esting to investigate relaxation of these restrictions. Finally,
we would like to compare our model with other asynchronous
DBN-based models.
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