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ABSTRACT
In this paper, we present a noise robust landmark detection

and segmentation algorithm using a sinusoidal model representa-
tion of speech. We compare the performance of our approach un-
der noisy conditions against two segmentation methods used in the
SUMMIT segment-based speech recognizer, a full segmentation ap-
proach and an approach that detects segment boundaries based on
spectral change. The word error rate of the spectral change segmen-
tation method degrades rapidly in the presence of noise, while the
sinusoidal and full segmentation models degrade more gracefully.
However, the full segmentation method requires the largest compu-
tation time of the three approaches. We find that our new algorithm
provides the best tradeoff between word accuracy and computation
time of the three methods. Furthermore, we find that our model is
robust when speech is contaminated by various noise types.

1. INTRODUCTION

Hidden Markov Models (HMMs) have been the most dominant
frame-based acoustic modeling technique for automatic speech
recognition tasks to date. However, alternative models, such as
segment-based models, have been developed to address the limita-
tions of HMMs [1]. For example, the SUMMIT speech recognizer
uses a segment-based framework for acoustic modeling [2]. This
system computes a temporal sequence of frame-based feature vec-
tors from the speech signal, and performs spectral energy change
based landmark detection. These landmarks, representing possible
transitions between phones, are then connected together to form a
graph of possible segmentations of the utterance. To minimize the
number of interconnections among landmarks, an explicit set of seg-
mentation rules is incorporated into SUMMIT to reduce the size of
the segment graph. This existing algorithm works well in clean con-
ditions as well as telephony applications [3].

In recent years, improvements in speech recognition systems
have resulted in high performance on specific tasks under clean con-
ditions. However, the performance of these systems can rapidly de-
grade in noisy environments [4]. Similarly, the spectral change seg-
mentation algorithm used in SUMMIT performs poorly in the pres-
ence of strong background noises and non-speech sounds. Specifi-
cally, the system has difficulty locating landmarks in the presence of
noise and often produces poor segmentation hypotheses.

We have observed that noise robustness can be improved using
a full segmentation method (i.e., an exhaustive segmental search).
This technique places landmarks at equally spaced intervals and out-
puts a segment graph which fully interconnects all landmarks. While

This work was sponsored in part by an industrial consortium supporting
the MIT Oxygen Alliance and in part by the Quanta-MIT T-Party Alliance.

this approach is computationally more expensive than the spectral
segmentation method, it is more robust under noisy environments.

To address the limitations of the spectral change and full seg-
mentation methods, we have developed a new landmark detection
and segmentation algorithm from the behavior of sinusoidal compo-
nents generated from the McAulay-Quatieri Sinusoidal Model [5].
Our goal is the development of a robust method which provides a
good tradeoff between word error rate and computation time under
different noise environments. Specifically, we hope to improve upon
the word error rate of the spectral segmentation method while pro-
viding faster computation time than the full segmentation method.

In the following section, we describe our landmark detection
and segmentation algorithm. Section 3 presents the experiments per-
formed, followed by a discussion of these results in Section 4. Fi-
nally, Section 5 concludes the paper and discusses future work.

2. LANDMARK DETECTION AND SEGMENTATION

2.1. McAulay-Quatieri Sinusoidal Model

The McAulay-Quatieri (MQ) Algorithm is often used to produce a
sinusoidal representation of sounds [5]. For this work, we use a
MATLAB implementation of the MQ Sinusoidal Model developed
by Ellis.1 The algorithm assumes that a speech waveform can be rep-
resented by a collection of sinusoidal components of arbitrary ampli-
tudes, frequencies and phases. First in the analysis stage, amplitude,
phase and frequency parameters are extracted from the speech sig-
nal. Next in the peak-matching stage, tracks are formed among peaks
which occur at similar frequencies. The speech signal analyzed with
the sinusoidal model, can be expressed as follows:

�
s[n] =

N�

k=1

Ak cos(θk[n] + ψk) (1)

When examining speech waveforms, it is observable that voiced
sounds can adequately be estimated by a harmonic collection of si-
nusoids whose peaks in the Short-Time Fourier Transform occur at
close amplitudes and frequencies from frame to frame. Because si-
nusoidal tracks are connected by matching peaks at close frequencies
in contiguous frames, the proximity in peak frequencies between
frames results in long-duration tracks with peaks whose amplitude
and frequency variations are smooth and slowly varying. The births
and deaths of these long, continuous sinusoids in voiced regions typ-
ically occur at phoneme transitions.

According to the Karhunen-Loève analysis, unvoiced signals
can only be sufficiently modeled by a very large number of sinu-

1http://www.ee.columbia.edu/ dpwe/resources/matlab/sinemodel/
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soids. In unvoiced regions, peaks do not occur at close amplitudes or
frequencies between neighboring frames. Here, the rapid frequency
variation of peaks in unvoiced regions results in many short-duration,
rapidly fluctuating tracks. The sinusoidal births and deaths often oc-
cur too frequently and randomly to signal a phonetic transition.

2.2. Landmark Detection

In this section, we describe our method for detecting landmarks from
sinusoidal components. Because only sinusoids in voiced regions
are useful for landmark detection, we first describe our method to
distinguish voiced and unvoiced regions of the speech utterance, and
then proceed to discuss our method of landmark detection in each of
these regions.

2.2.1. Voicing Detection Method

Short-time energy is often used in speech processing to distinguish
between voiced and unvoiced speech segments. The short-time en-
ergy, e[n], is defined to be the sum of the squared-magnitude of a
windowed speech signal, i.e.:

e[n] =

N�

m=1

(s[m]w[n − m])2 (2)

where n is the center sample of the windowed speech region, s[m]
are the speech samples, and w[n−m] corresponds to the window. In
voiced regions the signal energy is typically high, while in unvoiced
regions the signal energy is usually low. While the short-time en-
ergy has been conventionally used to distinguished between voiced
and unvoiced segments, this measure becomes less reliable in noisy
environments. Specifically, in noisy environments it becomes diffi-
cult to accurately detect regions of voicing with a low signal-to-noise
ratio.

Harmonicity, a measure of the strength of the pitch perception
for a sound, can also be used to distinguish between voiced and un-
voiced speech regions. Harmonicity can be calculated as the ratio of
harmonic energy, eh[n], to the total signal energy, as follows:

h[n] =
eh[n]2

e[n]2
, 0 < h[n] < 1 (3)

where eh[n] is determined from the harmonic components of the
automatically estimated fundamental frequency of the speech signal.

Voiced regions can be modeled by a collection of harmonically
related sinusoids, and thus contain high harmonicity. However, un-
voiced regions are modeled with non-harmonic sinusoids and con-
tain very little harmonicity. In regions of weak voicing where the
short-time energy does not provide a precise voicing decision, the
harmonicity is more prominent and often helps to yield a more accu-
rate voicing detection. Therefore, the signal energy may be used to
identify general regions of voicing, but the harmonicity can help to
make the locations of these regions more precise. In our approach,
sharp changes in harmonicity in conjunction with changes in short-
time energy are used to hypothesize voicing change landmarks.

2.2.2. Landmark Detection Method

In order to determine the best method for detecting phonetic land-
marks, we look at the behavior of sinusoids with respect to the
actual phonetic boundaries obtained from forced transcriptions of
clean speech. In voiced regions, we hypothesize phonetic landmarks
by examining a set of features found useful for landmark detection.

The most useful features are the number of harmonically related si-
nusoids that are born or die within a set frame interval (see [6] for
details). We also set various parameters for the minimum number of
frames required between hypothesized landmarks. Landmarks are
hypothesized when specified features, such as the number of new
sinusoids born at a given frame, exceed a predetermined threshold.
The thresholds are determined by examining the receiver-operating
characteristic (ROC) of landmark detection and finding suitable set-
tings which offer a high landmark detection rate while limiting the
landmark over-generation rate.

As stated previously, in unvoiced regions sinusoidal births and
deaths occur too frequently to indicate phonetic transitions. Further-
more, the full segmentation approach, which places potential land-
marks at a fixed interval, has a much lower word error rate in the
presence of noise than the spectral segmentation approach. There-
fore, in unvoiced regions we decided to place landmarks at a fixed
frame interval.

2.3. Segmentation

After landmarks are detected, they are interconnected together to
form a network of hypothetical segmentations. It is computation-
ally expensive to search a segmentation network that fully connects
all hypothesized landmarks. Thus an explicit segmentation phase
is used to reduce the search space by removing segments that are
unlikely to correspond to single phonetic units. While the segmenta-
tion phase reduces the computation time of the recognizer, excessive
pruning of the segment network can result in the deletion of actual
phonetic segments. Thus, we have explored a variety of different
segmentation methods [6].

To minimize landmark interconnections, we label the subset of
voicing landmarks as major landmarks. These voicing landmarks are
placed at locations predicted to contain a change in voicing. In [6],
we detail several methods for predicting voicing landmarks based
on short-time energy, harmonicity, and spectral change across the
potential landmarks. In this paper, we utilize a metric that combines
short-time energy and harmonicity. Furthermore, in this paper we
reclassify these major voicing landmarks as hard major or soft major
landmarks based on the energy difference across the landmark. All
other predicted landmarks within voiced and unvoiced regions are
termed minor landmarks.

In [6] we also detail various methods for connecting landmarks
to generate a segmentation graph. In this paper, our experiments use
a connectivity algorithm with the following rules:

1. Segments starting at a minor landmark can end at any future
landmark as long as no hard major landmarks are crossed and
at most one soft major landmark is crossed.

2. Segments starting at a major landmark can end at any fu-
ture minor landmark as long as no hard major landmarks are
crossed and at most one soft major landmark is crossed.

3. Segments starting at a major landmark can end at any future
major landmark as long as at most one major landmark is
crossed.

The spectral change segmentation algorithm used by SUMMIT

uses similar connectivity rules to those expressed above, though it
makes no distinction between soft and hard major boundaries. Our
full segmentation approach places landmarks at fixed intervals of
30ms apart with full connectivity allowed up to 250ms away. Ex-
periments using full segmentation at 10ms intervals was explored
in [6], but performed considerably worse than the 30ms interval case
in both accuracy and computation time.
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3. EXPERIMENTS

3.1. Corpora

Our recognition experiments draw from two distinct corpora. The
AV-TIMIT corpus is a collection of speech recordings developed for
research in audio-visual speech recognition [7]. The corpus consists
of phonetically balanced utterances based on SX sentences drawn
from the TIMIT Corpus. The vocabulary for this corpus consists
of 1793 words. In addition, the language model uses an unweighted
word-pair grammar, where a transition from one word to another can
only occur if the word pair exists in at least one of the AV-TIMIT
sentences. Because 1411 words in the corpus occur in only one of
the 453 AV-TIMIT sentences, this heavily constrains the grammar,
resulting in an average perplexity of 3.

We simulate noisy speech by adding noise from the Noisex-92
database [8] to clean AV-TIMIT utterances at signal-to-noise ratios
in the range of -10db to 20db in 5db increments. In this work we
look at three specific types of noises, white-noise, speech babble
and destroyer operations room noise.

We also performed experiments using the AURORA 2
database [9], which consists of clean TI-digit utterances with arti-
ficially added noise at levels of -5db to 20db in 5db increments. For
this work, we report results only on Test Set A, which contains noise
types similar to those seen in the training data, namely subway, bab-
ble, car, and exhibition hall noise.

3.2. Experimental Setup

Our experiments compare word error rate and recognizer computa-
tion times using the SUMMIT recognizer with the sinusoidal model,
full, and spectral segmentation methods for both corpora. Further-
more, to observe the tradeoff between word error rate and compu-
tation time for the three methods, we compute both statistics as we
vary the Viterbi pruning threshold which limits the number of possi-
ble paths at each step in the recognition search. For AV-TIMIT, each
experiment uses acoustic models matched to the test data’s SNR and
noise type. For Aurora 2, global multistyle acoustic modeling is used
for all experiments.

4. RESULTS

4.1. Word Error Rate

Tables 1 and 2 show that, as the noise level increases, the perfor-
mance of the spectral segmentation method degrades rapidly com-
pared to the full and sinusoidal model segmentation methods. The
spectral segmentation technique, which detects landmarks from dif-
ferences between adjacent MFCC feature-vectors, becomes ineffec-
tive in regions of small signal-to-noise ratios. However, the sinu-
soidal method is able to detect long, continuous tracks of harmoni-
cally related sinusoids even as the noise level is increased. Discus-
sion on this observation can be found in [6]. The full segmentation
method generally performs better than the sinusoidal model for the
AV-TIMIT task, but the converse is true for the Aurora task.

4.2. Word Error Rate vs. Computation Time

Figures 1 and 2 illustrate the tradeoff between word error rate and
computation time under noisy conditions as the pruning threshold
is varied for the AV-TIMIT and Aurora tasks. When the computa-
tion time is large, the sinusoidal and full segmentation approaches
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Fig. 1. Word error rate vs. computation time for spectral, full and
sinusoidal methods on the AV-TIMIT corpus averaged over the 3
noise conditions at a signal-to-noise ratio of 5dB.
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Fig. 2. Word error rate vs. computation time for spectral, full and
sinusoidal methods on the Aurora 2 corpus averaged over the 4 noise
conditions at a signal-to-noise ratio of 10dB.

have a significantly lower word error rate than the spectral segmen-
tation method. As the computation time is decreased, the word error
rate of the full segmentation method increases sooner than the sinu-
soidal model approach. Finally, when the word error rate is high for
all three methods, the sinusoidal model and spectral segmentation
methods offer a much faster computation time than the full segmen-
tation method. Thus, the sinusoidal model provides the best tradeoff
between accuracy and computation time under all noise conditions.

4.3. Noise Robustness

Finally, the sinusoidal approach appears to be robust and does not
rapidly degrade under any of the noise environments. The sinu-
soidal model performs best when subject to sporadic noise condi-
tions (e.g., destroyer operations). White, car and subway noise have
a relatively flat spectrum with sinusoidal characteristics similar to
unvoiced speech. However, the babble and exhibition noise condi-
tions have characteristics which are similar to voiced speech. These
noises have a greater effect on the behavior of the sinusoidal com-
ponents in voiced regions than white and motor noises, which might
explain the decrease in performance of the sinusoidal model com-
pared to the unvoiced noise types.
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AV-TIMIT Test Results
White Babble Destroyer Operations Average

dblevel sine full spec sine full spec sine full spec sine full spec
Clean 1.5 1.1 1.1 2.2 1.7 1.1 2.4 1.4 1.5 2.0 1.4 1.2
20db 2.1 1.8 2.0 2.4 1.8 1.7 3.1 1.6 1.8 2.5 1.7 1.8
15db 3.1 2.5 3.0 2.8 1.9 1.7 2.5 2.4 2.1 2.8 2.3 2.3
10db 2.9 3.3 7.3 3.8 2.4 3.3 4.0 3.3 4.0 3.6 3.0 4.9
5db 7.1 6.6 19.8 7.2 5.2 12.0 6.5 6.5 9.2 6.9 6.1 13.7
0db 13.6 13.4 54.6 19.0 16.1 41.1 12.2 11.0 35.7 14.9 13.5 43.8
-5db 41.7 37.2 95.2 62.9 63.4 85.3 42.5 29.9 76.5 49.0 43.5 85.7
-10db 96.9 98.1 98.7 92.3 91.4 97.4 84.6 83.8 94.8 91.3 91.1 97.0

Average 21.1 20.5 35.2 24.1 23.0 30.5 19.7 17.5 28.2 21.6 20.3 31.3

Table 1. Word error rates for spectral, full and sinusoidal methods using the AV-TIMIT corpus.

Aurora 2 Test Results
Subway Babble Car Exhibition Average

db sine full spec sine full spec sine full spec sine full spec sine full spec
Clean 3.1 2.0 2.4 2.8 2.0 2.3 3.4 1.9 2.4 3.0 1.4 1.9 3.1 1.8 2.3
20db 2.5 2.1 3.0 3.5 3.4 4.5 2.8 2.6 3.0 4.2 3.5 4.7 3.3 2.9 3.8
15db 2.6 2.2 5.8 5.1 5.0 8.2 3.8 3.0 4.0 6.0 6.1 10.8 4.4 4.1 7.2
10db 5.1 5.7 16.0 9.2 10.2 22.5 6.4 6.5 21.1 12.2 13.4 26.8 8.2 9.0 21.6
5db 13.9 15.9 39.6 25.8 31.3 55.5 16.1 17.7 54.4 26.2 28.1 59.6 20.5 23.3 52.3
0db 35.6 39.7 72.0 60.6 71.5 88.5 41.8 48.2 81.8 54.4 59.5 84.4 48.1 54.7 81.7
-5db 66.7 75.4 86.7 87.3 95.9 97.8 75.3 82.0 90.5 81.8 85.8 93.8 77.8 84.8 92.2

Average 18.5 20.4 32.2 27.8 31.3 39.9 21.4 23.1 36.7 26.8 28.3 40.3 23.6 25.8 37.3

Table 2. Word error rates for spectral, full and sinusoidal methods using the Aurora 2 corpus.

5. CONCLUSIONS AND FUTURE WORK

In this work, we explored a landmark detection and segmentation al-
gorithm using a sinusoidal model. We found that our method offered
the best tradeoff between word error rate and recognition computa-
tion compared to the spectral and full segmentation methods when
used within the SUMMIT segment-based recognition system. Fur-
thermore, our method was robust to the various different noise envi-
ronments used in our experiments.

We would like to expand this work in a number of areas in the
future. Since voiced sounds can be adequately estimated by a col-
lection of sinusoids, we would like to study the effect of adding pe-
riodic noise to the speech signal. Furthermore, we would like to
observe the performance of the sinusoidal model in realistic envi-
ronments which may contain a variety of background speech and
non-speech sounds. First, we would like to examine the behavior
of sinusoidal tracks under different noise conditions to see if we
can classify acoustic regions into different sound classes. Secondly,
overlapping sounds from difference sources might correspond to dif-
ferent sinusoidal tracks. We would like to explore the use of source
separation techniques based on the sinusoidal model as a potential
means of improving the robustness of our acoustic models via speech
enhancement.
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