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ABSTRACT 150k dictionary, 600 words are found in a 300k Google sub-

) ) - set, and 1.4k words are found in a 2.5 million Google sub-
Most automatic speech recognizers use a d_|ct'|onary tha$maget [1]. Thus, even as the vocabulary size is dramatically in
words to one or more canonical pronunciations. SUCh ergeaseq 4 substantial portion of the lexicon remains unfou
tries are typically hand-written by lexical experts. Insthi pisis +4 he expected since the restaurant business is con-
research, V‘I’e !nviasugate a new approachl.for gqtoﬂn;aﬂcal@tamly in flux and new restaurants are always emerging. An
Qe”erat'”g exica pronunmatlo'ns. using a mgws.uc. 9-  alternative solution is to routinely and manually update th
tivated subword model, and refining the pronunciations W'thﬂictionary. However, this can be time-consuming and prone t

spoken examples. The approach is evaluated on an isolatggl, 1 articularly when the words are unfamiliar or foreig

word recognition task with a 2k lexicon of restaurant andSounding such as proper names or restaurants.

street names. A letter-to-sound model is first used to gen- | i paper, we propose to automatically learn and up-

erate seed baseforms for the lexicon. Then spoken uttesancg., . o phonetic baseforms of a lexicon using a letter-to-

of words in the lexicon are presented to a subword recognizer | (L2S) model as well as spoken instances of words in

and the top hypqtheses are used t_o update the lexical ba_stﬁé lexicon. To assess our approach, the generated baseform
forms. The spelling of each word is also used to constralgﬂe evaluated on an isolated word recognition task.

the subword search space and generate spelling-constraine The task of automatically generating word pronunciations

baseforms. The results obtained are quite encouraging ari]sdnot recent, and there has been some research in this domain

|nd_|cate that our approach can be successfully used to Ieaﬁnsing decision trees [2] and phonetic decoding [3, 4, 5, 6].
valid pronunciations of new words.

Several researchers have also addressed the problem of L2S
Index Terms— Letter-to-sound model, lexical pronunci- modeling [7, 8, 9, 10]. This work is different in that it uses

ations a linguistically motivated, context-free grammar (CFG) ap

proach to develop a robust bi-directional L2S model [11} tha

is used to learn theeed baseforms of a lexicon. The seed

baseforms are then updated by presenting spoken utterances

of words in the lexicon to a subword recognizer and using the

Most automatic speech recognizers (ASR) use a dictiona%p N hypotheses as baseforms. This research is inspired by

that maps words to one or more canonical pronunciation§he work of Chung et al. [12] but differs from it in several

Such entries, also known as lexical baseforms, are typicall
. ' . ' respects. Whereas Chung et al. used a bottom-up subword
hand-written by lexical experts. When ASR systems are dz— P g P

loved i licati that tantl | h as by ramework, our system uses a top-down probabilistic parser
ployed in applications that constantly Volve SUCh as broaGy, 5t encodes pronunciation in the pre-terminal units, and e
cast news transcription, music queries, or restaurantvase

i ¢ h k tant ch 1o their digti codes all the spelling variants in the terminals. We alsdémp
uon systems, they requiré constant changes 1o ter A@lo o 1 and evaluate our model on a larger lexicon of 2k restau-
ies to account for the addition of new words that are ofte

"tant names. Finally, our model has a simpler notation scheme
application-specific keywords. One solution to this proble Y. P

. : o A .. which ties directly to a phoneme notation typically used in
Ins tr? prc;)w?teh;[h?ser:] ippll\;\fat'onz\\/m;? access tlg Ifrg)](errgj*f“ nhoneme—based dictionaries.
aries, but this 1S not always acvantageous. =or examp'e, In this paper we address the following questions: (1) How
this research, we consider a 2k lexicon of valid restaunadt a : .
) well does the L2S model perform at automatically generating
street names collected for a restaurant reservation doma||n . . . .
. . . . exical baseforms? (2) How much improvement is obtained
Examples of these words aaeeituna, jonquilles, lastorias, b inq basef ina th K dth
eroncinis, chungs. Of these 2k words, 500 are found in a y generating asetorms using the Spoken utterar_lces an the
Pepp ' subword recognizer? (3) How much improvementis obtained
“This research was funded by the Industrial Technology Reseasti- 1T the spelling of a word is used to constrain the search space
tute. of the subword recognizer?

1. INTRODUCTION




Although we implement and evaluate our model on an iso-

lated word recognition task, we envision our approach imple WRD

mented in open-ended continuous-speech applications. For

example, given audio waveforms and their correspondingwor onsetl rhymel usyl
transcription, the CFG-based L2S and subword models can be | | |
used to automatically update the dictionary correspontting d+ -ihk shaxn
the data. Other applications are open-ended spoken queries | | |
that allow users to introduce manual corrections in case of d ic tion

transcription errors. Both spoken utterances and coorsti
can be used to update the lexical baseform of a pre-existifgd- 1. Parse tree of the womdiction obtained using the CFG.
word or add the baseform of a new word to the dictionary.

In the rest of this paper, the approach is described in Sec-
tion 2. This includes the CFG-based subword model, the L28RD = rhymel (affix | usyl)
model, and the subword recognizer. The data collection-is d&'RD = rhymel affix onset rhyme2 affix [affix]
scribed in Section 3, and the experiments in Section 4. TheRD = onset1 rhymel [usyl] rhyme2 (usyl | affix)
paper concludes with a discussion and summary in Section 5.

where[ ] denotes optional and| ) denotes OR.

2. THE APPROACH Further rules describe all possible ways the sub-syllabic
structures map to subword units as well as all possible ways
2.1. A CFG-based Bidirectional Subword Model a subword unit can be spelled. Figure 1 illustrates in detail

the parsing of the wordiction into subword units such as on-
The contgxt-free grammar (CF.G') used in this rese{:\rch hagt and rhyme (denoted with and - respectively). As can
been designed to encode positional and phonological cofye seen from the parse tree, subword units are the pretermi-
straints in sub-syllabic structures [11]. The decisionép-r na|s and letter clusters are the terminals. The total number
resent sub-syllabic as opposed to whole-syllabic strastis'  of pre-terminals and terminals are 677 and 1573 respegtivel
motivated by the hypothesis that the former would generalryrthermore, one by-product of the CFG is an automatically
ize better to unseen data.' Syllables are primarily decosdnos derived mapping between subwords and their spellings (pre-
into onset and rhyme which become the subword pronuncigerminals and terminals), which results in hybrid unitsttha
tion units that are used to generate lexical baseforms. élenccontain both pronunciation and spelling information. Tore t
the subwords are intermediate units between phonemes agg numper of these hybrid units, which we denote as spell-

syllables, and they only contain pronunciation informatio nemes, is 2541. We illustrate below the parsing of a sample
The grammar also makes use of sonority rules within a sylexicon in terms of subword units.

lable combined with maximal stress and onset principles to
make informed decisions about syllable boundary locations

. . . abatements -ax+ b+ -eyt maxnt +s
Apart from onset and rhyme, the following linguistically mo

. . . . bi der man b+ -ih df -er maxn
tivated categories are introduced in the CFG: o .
demolition d+ -ehm-axl -ih shaxn

ambi which denotesambisyllabic, is introduced for a subset . ] ] ]
of intersyllabic consonants to allow ambiguity in the Next, we illustrate the parsing of the same lexicon in terms
syllable assignment. of spelinemes. The<\ d+> tag denotes the index to the pro-

nunciation of the corresponding letter cluster. The pramation-
affix accounts for the typically coronal consonants that vioto-spelling mappings can be used to create statisticalbéetibnal
late sonority rules in the coda (e.g. ctegixth). L2S models.

first str_essed/uns_,tressedare introduced to capture the statls—_abatemants a<217> b<565> at e<378> ment <610> S<G>
tics of the first stressed and unstressed syllables by d|%—i der man b<565> | <385> d<573> er <332> MAN<608>
criminating between them and the rest of the stressegerml ition d<570> emx298> ol <226> i <385> tion<643>

and unstressed syllables in a word.

usyl which stands founstressed syllable, denotes a set of A separately supplied lexicon maps the subword units ta@ thei

combined onsets and rhymes that form frequently ocPhonemic realization as shown below:

curring unstressed syllables. -ayth ay th
-ehb eh bd

The CFG uses 13 rules to describe the sub-syllabic structur@hng  uh ng
of words. The following is a sample of those rules:



The framework underlying the CFG is a probabilistic top-[15]. The names are purposefully chosen to have relatively
down parser [13]. In this framework, the linguistic knowl- low Google hit counts. In order to automatically generate
edge, which is manually encoded in the CFG, is complementedseforms from data as well as to evaluate the approach, spo-
with statistics by superimposing the parse tree with adrigr ken instances of the words in the lexicon are required.
model that captures the statistics of a child conditioneidson An online user interface was designed for the purpose of
parent and its left sibling. We note that the main purpose ofiata collection. Each subject is presented with a word and is
parsing is to align the letters with their pronunciationstider  prompted to speak it. A subword recognizer complemented

to automatically generate the spellnemes of the words. with a sound-to-letter model is used to generate hypothdsiz
spellings of the spoken word. The spellings are then filtered
2.2. The Letter-to-Sound Model using the 2k lexicon, and the top 5 candidates are presented

~to the subject. The framework used to hypothesize spellings
One of the advantages of the CFG-based framework is th@om spoken utterances is similar to that in [16]. If the eatr
ability to leverage from its tools to build an L2S model fgirl spelling is not in the proposed list, the subject is prompeed
easily. The task is facilitated by the spellneme units WhiChspeak the word again. The same process is then repeated, and
encode both spelling and pronunciationinformation. ThE L2 5 new list of top 5 candidates is presented to the subject. If,
model,T7,5y, is modeled using finite state transducers (FSThgain, the correct spelling is not in the proposed list, the s
as follows [14]: ject spells the word. Although, in the future, we plan to inte
grate the data collected in spelling mode into our appraéach,
is not currently used in this research.

whereTrssp and Tspoy are deterministic mappings from Excluding the data recorded in spelling mode, 2842 ut-
letters to spellnemes and from spellnemes to subwords réerances were collected from 19 speakers, 12 males and 7 fe-
spectively, and7sp is a spellneme trigram. A search through males. We note that each word is spoken by only one speaker.
Trou produces ail-best list of pronunciations Corresponding A breakdown and description of the collected data is shown
to the input Spe”ing. Hence, the L2S model is used to genei‘n Table 1. As Implled by Table 1, the |EXiCOH Of the FiI’St and
ate seed lexical baseforms automatically from the spalling Second set is one and the same.

Trov =Trasp o Gsp o Tspoy 1)

| Name | Size | Description |
Single | 1142 Words that were spoken once
The subword recognizer is used to automatically generate le|  First 850 First utterance of words spoken twice

ical baseforms from spoken utterances of words. The sub-Second| 850 | Second utterance of words spoken twice
word search space is implemented as a weighted RST,

2.3. The Subword Recognizer

Table 1. Description of the collected data. A total of 2842
R=CoPoLoG (2)  utterances are obtained for a 2k lexicon.

whereC denotes the mapping from context-dependent model
labels to context-independent phone labé&lshe phonologi-
cal rules that map phone labels to phoneme sequehadbe, 4. EXPERIMENTS AND RESULTS
subword lexicon, which is a mapping from phonemic units to
subwords obtained from the CFG, afidhe subword trigram.  In all our experiments, the SUMMIT segment-based speech
A search througtk produces aiN-best list of pronunciations recognition system is used [17]. Context-dependent diphon
corresponding to the spoken word. acoustic models are used and their feature representation i

In some of the experiments in Section 4.2, the subwordpased on 14 MFCCs (Mel-Frequency Cepstral Coefficients)
search space is constrained with the spelling of the correaveraged over 8 regions at hypothesized phonetic boursdarie
sponding word in the lexicon. The L2S mod&},.r is used  The diphones are modeled with diagonal Gaussian mixture
to generate a constraining subword latti&g from the spelling models with a maximum of 75 Gaussians per model, and are
of each word. The constrained subword search spagds:  trained on telephone speech. The spellneme trigi@gy,

is built with 55k parsed nouns extracted from the LDC pron-

Rxk=CoPoLoKoG (3)  lex dictionary. The subword trigrang;, is generated from
300k Google words parsed with the L2S model. Finally, the
3. DATA COLLECTION isolated word recognizer has a 2k vocabulary as described in
Section 3, and only uses a word unigram.
For the purpose of this research, a list~ak restaurant and Section 4.1 describes the automatic generation of the pho-

street names in Massachusetts is selected as the lexicese Thnetic baseforms using the L2S model and reports on results.
particular words are of interest to us because they form critSection 4.2 describes the baseform update process whish use
ical vocabulary in our multimodel restaurant guide domairspoken instances of the lexicon, and the subword recognizer



Results are reported for baseforms generated with the uncogenerating valid pronunciations. In fact, in comparingl@ab
strained as well as spelling-constrained subword recegniz 2 with Table 3, it can be noted that just 2 automatically pro-
Section 4.3 reports the results obtained when the baseforndsiced alternative pronunciations outperform a single manu
generated by the different setups are combined. ally corrected one.

Single | First | Second

4.1. Pronunciations generated with the L2S model topl | 235 | 505 44.7

In this section, we report the results obtained for the ptione i i
pronunciations automatically generated with the L2S mode]2P!e 3 WER of the three data sets, Single, First, Second.
described in Section 2.2. First, the 2k lexicon is presetded '€ top 1 baseform is generated by the L2S model and sub-
the L2S model and the taf n = 1,..5, 10, 20, 50 seed base-  Seduently manually corrected.
forms are generated for each word. We illustrate below the
top 2 L2S seed baseforms for two sample words:

4.2. Pronunciations generated with Subword Recognizer
yainnis : ((yaynax s | yeynaxs)

We proceed, in this section, to report the results for the pro
shawarma: ( sh ao aar max | sh ax waar max )

nunciations generated with the subword recognizer de=trib

in Section 2.3. The pronunciations are generated from tie fir
We evaluate the baseforms on the 2842 utterances and I€54ken utterances for all the words that were spoken twice.

port the resullts for the three sets, Single, First, and SBI0N  yance the words in the First set are presented to the subword

Table 2. We first observe that the Single set has a lower Worﬂecognizer and the generated {dp: = 1, 2..5 baseformse-

error rate (WER) than the sets First and Second. This is 1§ 506 the L2S seed baseforms of their corresponding words.

be expected since Single is the set of words that is recodinizery,q |exical baseforms of the Single set remain the L2S seed.

in the first round during data collection and is likely themef 11,4 top 2 baseforms obtained with the subword recognizer
to be aneasier set than First and Second. Next, the WER of 4 illustrated below:

Second is lower than that of First. One possible explanation
is that subjects tend to speak the words more carefully on t
second round upon failing the first one. Finally, as expectetﬁ
the WER improves significantly as the number of alternative
baseformsis initially increased, however the WER starts-de
riorating as pronunciation confusion is increased, in thise
beyond 20 baseforms.

innis : (yuwnax s | yuwn ax eh s td)
awarma: ( shwaor m| shwaor ml ax s )

Since the baseforms are obtained from the First set, only
the Single and Second sets are evaluated. As shown in Ta-
ble 4, the top WERSs of the Second set are significantly im-
proved as a consequence of these pronunciation-based base-

Single | First | Second forms. However, WERSs for the Single set are consistently
topl | 25.7 | 52.4)| 47.8 worse than before. One possible explanation for this degrad
top2 | 203 | 47.9| 4238 tion is the increased pronunciation confusion introducgd b
top3 | 17.9 | 47.6| 412 the subword recognizer.
top4 17.3 | 47.3 39.9
top5 | 17.1 | 47.8| 395 Single | Second
topl0| 16.5 | 47.5| 40.0 topl| 27.8 45.9
top20| 16.9 | 485 | 40.2 top2 | 234 42.0
top50| 18.6 | 47.8| 42.6 top3| 20.1 39.8

top4 | 194 37.8
Table 2. WER of the three data sets, Single, First, Second top5| 19.1 373

as a function of the top| n = 1, ..., 5, 10, 20, 50 baseforms
generated by the L2S model. Table 4. WER of the Single and Second sets as a function of
the top, | n = 1,2..5 baseforms generated by the subword
For comparison purposes and to evaluate the effectivenesscognizer. The baseforms of Single remain the L2S seed.
of the L2S model at generating the lexical baseforms, manual
corrections are carefully introduced into the topl basafor Next, the spelling of each word in the First setis presented
obtained with the L2S model. As shown in Table 3, absoluté¢o the L2S model and a corresponding pronunciation lattice,
improvements of 2.2%, 1.9%, and 3.1% are obtained for thé&, is generated K is used to constrain the search space of
Single, First, and Second sets respectively. The modest inthe subword recognizer. The resultingtdp: = 1,2..5 base-
provement obtained following manual corrections is encourformsreplace the L2S seed baseforms of their corresponding
aging since it indicates that the L2S model is very good awvord. Similarly as before, the lexical baseforms of the &ng



set remain the L2S seed. As illustrated below, the top 2 baséy the spoken utterances leads to performance deterinratio
forms obtained with the constrained subword recognizer arfor the Single set. We also note that the overall resultsigre s
clearly closer to the canonical pronunciations than thesonenificantly better than those obtained with the L2S seed base-

obtained with the unconstrained model. forms alone or the spoken utterances.
yainnis : (yeynaxs | yaynaxs) # total bf | # subword bf| Single | Second
shawarma: ( sh ax wao r max | sh ao wao r max ) 2 1 22.2 33.8
3 1 20.1 32.2
Table 5 illustrates the WERs of the Single and Second sets 3 2 208 328
as a function of the tap| n = 1, 2..5 baseforms. Compared 2 1 197 59.9
to the L2S seed baseforms, the top 1 WER for the Single set : :
o S . 4 2 20.1 31.2
has an absolute deterioration of 0.8%, which is substéntial 7 3 501 317
better than the 2.1% deterioration obtained with the uncon- - -
strained subword baseforms. On the other hand, the absolute S 1 188 | 31.6
improvement for the Second set has dramatically increased = 2 193 | 306
from 1.9% to 12.2% absolute. 5 3 19.7 | 29.9
5 4 19.9 29.9
Single | Second
topl| 26.5 35.6 Table 6. WER of the Single and Second sets as a function of
top2 | 22.1 34.0 combined baseforms. The first column is the total number of
top3| 19.8 | 33.6 baseforms, and the second column is the number of subword
top4 | 19.3 32.4 baseforms for words spoken twice.
top5| 19.1 32.7

Table 7 exhibits similar behaviour as that in Table 6 except
Table 5. WER of the Single and Second sets as a function ofhat the subword baseforms are generated with a spelling-
the top, | n = 1,2..5 baseforms generated by the spelling-constrained subword search space. We observe that com-
constrained subword recognizer for words spoken twice.  bining the spelling-constrained baseforms to the seed-base
forms does not result in as much gain as that reported in Table
6. One possible explanation is that the spelling-constidin
4.3. Baseforms Combination baseforms are not very different from the seed basefornds, an

hence do not introduce as muoéw information to the seed
So far, we have replaced the L2S seed baseforms of the worglg seforms as the unconstrained subword baseforms.

in First with the ones acquired from the spoken utterances.

We now proceed to combine the different acquired baseforms # constrained Single | Second
and report on WERs in Tables 6, 7, and 8. It is important # total bf subword bf
to note, again, that whereas the Second lexicon has alterna- 2 1 20.8 34.4
tive pronunciations obtained from the spoken utteran¢es, t 3 1 18.1 340
Single lexicon does not. For example, if #total baseforms = 4 3 ) 193 333
and # subword baseforms = 2, this implies that, for the Second
lexicon, the last two L2S pronunciations (seed) are replace 4 1 17.9 35.3
with those obtained from the spoken utterances and the sub- 4 2 18.9 34.0
word recognizer. On the other hand, for the Single lexicon, 4 3 19.0 32.2
all 4 baseforms are from the L2S model. S 1 179 | 35.2
Table 6 shows the WERs of the Single and Second sets S 2 185 | 35.1
as a function of both total number of baseforms as well as 5 3 19.2 33.6
number of baseforms generated with the subword recognizer. 5 4 19.1 32.2

The observed trend is for the WERs of Single and Second

to decrease as the total number of baseforms is increaset®Ple 7. WER of the Single and Second sets as a function of
However, for a fixed total number of baseforms, the perfor_combined baseforms. The first column is the total number of
mance of the Single set suffers while that of the Second s&@seforms, and the second column is the number of spelling-
improves, as more baseforms are replaced with subword basg2nstrained subword baseforms for words spoken twice.
forms. This trend is consistent with the previously obsdrve

resultsin Tables 2 and 4 where the WER improves as the num- Finally, Table 8 reports the best results obtained when the
ber of alternative pronunciations is initially increasdeur-  L2S baseforms are combined with both, the unconstrained
thermore, the increased pronunciation confusion intreduc and the spelling-constrained subword baseforms.



# subword| # constrained Single | Second
ftotalbf | = subword bf
3 1 1 20.3 29.8
5 2 2 20.9 27.9

the spelling of a word. In other scenarios, such as spoken di-
alogue systems, the user might providgpaken rendering of
the spelling of a word. We are currently investigating meth-

ods in which both the spoken word and spelling can be used

to learn valid lexical baseforms.

Table 8. WER of the Single and Second sets as a function
of combined baseforms. The first column is the total num-
ber of baseforms, the second and third columns are the num-
ber of unconstrained and spelling-constrained subword-bas [
forms for words spoken twice. 2

5. DISCUSSION AND SUMMARY

In this research, we have presented a new approach towarc@
the automatic learning of lexical pronunciations. We have
evaluated our approach on an isolated word recognition task4)
for a 2k lexicon of restaurant and street names.

A linguistically-motivated CFG-based L2S model is used
to learn the seed baseforms of the lexicon. To assess the per-
formance of the L2S model, the top 1 L2S seed baseform§5]
are manually corrected and evaluated. The modest improve-
ment obtained with the manual modifications indicates theg
effectiveness of the L2S model. The lexical baseforms are
then refined using spoken utterances of the lexicon, which
are presented to a subword recognizer. Our best results ar@l
obtained when the L2S seed baseforms are combined with
both spelling-constrained and unconstrained subword-base
forms. To provide easy comparisons among the different ex{]
periments, we show in Table 9 the results for several experi-
ments where the total number of baseforms is held constant af!
3. For the Single set, the best result is for the L2S seed base-

[10]
Table 2 4 5 6 7 8
# L2S bf 3 0 0 2 2 1
# subword bf| 0 3 0 1 0 1
# constrained 0 0 3 0 1 1 [11]
bf
Single WER | 17.9| 20.1| 19.8| 20.1| 18.1| 20.3| 12
Second WER| 41.2| 39.8| 33.6| 32.2| 34.0| 29.8

Table 9. Comparison of the WERs of the Single and Second 3,
sets as a function of baseforms. The first row refers to the Ta-
ble number of the original experiment. The second, third, an
fourth rows are the number of L2S, subword, and constrained4]
subword baseforms respectively.
forms, and the least deterioration (0.2% absolute) is obthi [15]
when the seed baseforms are combined with the constrained
subword baseforms. For the Second set, the constrained sub-
word baseforms perform better than the unconstrained setys)
as well as the L2S seed baseforms. Furthermore, combining
the three types of pronunciations provides the best refarlts [17]
the Second set and the best overall results.

In this research, we have assumed perfect knowledge of
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