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ABSTRACT

Most automatic speech recognizers use a dictionary that maps
words to one or more canonical pronunciations. Such en-
tries are typically hand-written by lexical experts. In this
research, we investigate a new approach for automatically
generating lexical pronunciations using a linguisticallymo-
tivated subword model, and refining the pronunciations with
spoken examples. The approach is evaluated on an isolated
word recognition task with a 2k lexicon of restaurant and
street names. A letter-to-sound model is first used to gen-
erate seed baseforms for the lexicon. Then spoken utterances
of words in the lexicon are presented to a subword recognizer
and the top hypotheses are used to update the lexical base-
forms. The spelling of each word is also used to constrain
the subword search space and generate spelling-constrained
baseforms. The results obtained are quite encouraging and
indicate that our approach can be successfully used to learn
valid pronunciations of new words.

Index Terms— Letter-to-sound model, lexical pronunci-
ations

1. INTRODUCTION

Most automatic speech recognizers (ASR) use a dictionary
that maps words to one or more canonical pronunciations.
Such entries, also known as lexical baseforms, are typically
hand-written by lexical experts. When ASR systems are de-
ployed in applications that constantly evolve such as broad-
cast news transcription, music queries, or restaurant reserva-
tion systems, they require constant changes to their dictionar-
ies to account for the addition of new words that are often
application-specific keywords. One solution to this problem
is to provide these applications with access to larger dictio-
naries, but this is not always advantageous. For example, in
this research, we consider a 2k lexicon of valid restaurant and
street names collected for a restaurant reservation domain.
Examples of these words areaceituna, jonquilles, lastorias,
pepperoncinis, chungs. Of these 2k words, 500 are found in a
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150k dictionary, 600 words are found in a 300k Google sub-
set, and 1.4k words are found in a 2.5 million Google sub-
set [1]. Thus, even as the vocabulary size is dramatically in-
creased, a substantial portion of the lexicon remains unfound.
This is to be expected since the restaurant business is con-
stantly in flux and new restaurants are always emerging. An
alternative solution is to routinely and manually update the
dictionary. However, this can be time-consuming and prone to
error, particularly when the words are unfamiliar or foreign-
sounding such as proper names or restaurants.

In this paper, we propose to automatically learn and up-
date the phonetic baseforms of a lexicon using a letter-to-
sound (L2S) model as well as spoken instances of words in
the lexicon. To assess our approach, the generated baseforms
are evaluated on an isolated word recognition task.

The task of automatically generating word pronunciations
is not recent, and there has been some research in this domain
using decision trees [2] and phonetic decoding [3, 4, 5, 6].
Several researchers have also addressed the problem of L2S
modeling [7, 8, 9, 10]. This work is different in that it uses
a linguistically motivated, context-free grammar (CFG) ap-
proach to develop a robust bi-directional L2S model [11] that
is used to learn theseed baseforms of a lexicon. The seed
baseforms are then updated by presenting spoken utterances
of words in the lexicon to a subword recognizer and using the
top N hypotheses as baseforms. This research is inspired by
the work of Chung et al. [12] but differs from it in several
respects. Whereas Chung et al. used a bottom-up subword
framework, our system uses a top-down probabilistic parser
that encodes pronunciation in the pre-terminal units, and en-
codes all the spelling variants in the terminals. We also imple-
ment and evaluate our model on a larger lexicon of 2k restau-
rant names. Finally, our model has a simpler notation scheme
which ties directly to a phoneme notation typically used in
phoneme-based dictionaries.

In this paper we address the following questions: (1) How
well does the L2S model perform at automatically generating
lexical baseforms? (2) How much improvement is obtained
by generating baseforms using the spoken utterances and the
subword recognizer? (3) How much improvement is obtained
if the spelling of a word is used to constrain the search space
of the subword recognizer?



Although we implement and evaluate our model on an iso-
lated word recognition task, we envision our approach imple-
mented in open-ended continuous-speech applications. For
example, given audio waveforms and their corresponding word
transcription, the CFG-based L2S and subword models can be
used to automatically update the dictionary correspondingto
the data. Other applications are open-ended spoken queries
that allow users to introduce manual corrections in case of
transcription errors. Both spoken utterances and corrections
can be used to update the lexical baseform of a pre-existing
word or add the baseform of a new word to the dictionary.

In the rest of this paper, the approach is described in Sec-
tion 2. This includes the CFG-based subword model, the L2S
model, and the subword recognizer. The data collection is de-
scribed in Section 3, and the experiments in Section 4. The
paper concludes with a discussion and summary in Section 5.

2. THE APPROACH

2.1. A CFG-based Bidirectional Subword Model

The context-free grammar (CFG) used in this research has
been designed to encode positional and phonological con-
straints in sub-syllabic structures [11]. The decision to rep-
resent sub-syllabic as opposed to whole-syllabic structures is
motivated by the hypothesis that the former would general-
ize better to unseen data. Syllables are primarily decomposed
into onset and rhyme which become the subword pronuncia-
tion units that are used to generate lexical baseforms. Hence,
the subwords are intermediate units between phonemes and
syllables, and they only contain pronunciation information.
The grammar also makes use of sonority rules within a syl-
lable combined with maximal stress and onset principles to
make informed decisions about syllable boundary locations.
Apart from onset and rhyme, the following linguistically mo-
tivated categories are introduced in the CFG:

ambi which denotesambisyllabic, is introduced for a subset
of intersyllabic consonants to allow ambiguity in the
syllable assignment.

affix accounts for the typically coronal consonants that vio-
late sonority rules in the coda (e.g. crept, sixth ).

first stressed/unstressedare introduced to capture the statis-
tics of the first stressed and unstressed syllables by dis-
criminating between them and the rest of the stressed
and unstressed syllables in a word.

usyl which stands forunstressed syllable, denotes a set of
combined onsets and rhymes that form frequently oc-
curring unstressed syllables.

The CFG uses 13 rules to describe the sub-syllabic structure
of words. The following is a sample of those rules:
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Fig. 1. Parse tree of the worddiction obtained using the CFG.

WRD =⇒ rhyme1 (affix | usyl)

WRD =⇒ rhyme1 affix onset rhyme2 affix [affix]

WRD =⇒ onset1 rhyme1 [usyl] rhyme2 (usyl | affix)

where[] denotes optional and(|) denotes OR.

Further rules describe all possible ways the sub-syllabic
structures map to subword units as well as all possible ways
a subword unit can be spelled. Figure 1 illustrates in detail
the parsing of the worddiction into subword units such as on-
set and rhyme (denoted with+ and - respectively). As can
be seen from the parse tree, subword units are the pretermi-
nals and letter clusters are the terminals. The total number
of pre-terminals and terminals are 677 and 1573 respectively.
Furthermore, one by-product of the CFG is an automatically
derived mapping between subwords and their spellings (pre-
terminals and terminals), which results in hybrid units that
contain both pronunciation and spelling information. The to-
tal number of these hybrid units, which we denote as spell-
nemes, is 2541. We illustrate below the parsing of a sample
lexicon in terms of subword units.

abatements -ax+ b+ -eyt maxnt +s

biderman b+ -ih df -er maxn

demolition d+ -ehm -axl -ih shaxn

Next, we illustrate the parsing of the same lexicon in terms
of spellnemes. The<\d+> tag denotes the index to the pro-
nunciation of the corresponding letter cluster. The pronunciation-
to-spelling mappings can be used to create statistical bi-directional
L2S models.

abatements a<217> b<565> ate<378> ment<610> s<6>

biderman b<565> i<385> d<573> er<332> man<608>

demolition d<570> em<298> ol<226> i<385> tion<643>

A separately supplied lexicon maps the subword units to their
phonemic realization as shown below:
-ayth ay th

-ehb eh bd

-uhng uh ng



The framework underlying the CFG is a probabilistic top-
down parser [13]. In this framework, the linguistic knowl-
edge, which is manually encoded in the CFG, is complemented
with statistics by superimposing the parse tree with a trigram
model that captures the statistics of a child conditioned onits
parent and its left sibling. We note that the main purpose of
parsing is to align the letters with their pronunciations inorder
to automatically generate the spellnemes of the words.

2.2. The Letter-to-Sound Model

One of the advantages of the CFG-based framework is the
ability to leverage from its tools to build an L2S model fairly
easily. The task is facilitated by the spellneme units which
encode both spelling and pronunciation information. The L2S
model,TL2U , is modeled using finite state transducers (FST)
as follows [14]:

TL2U = TL2SP o GSP o TSP2U (1)

whereTL2SP and TSP2U are deterministic mappings from
letters to spellnemes and from spellnemes to subwords re-
spectively, andGSP is a spellneme trigram. A search through
TL2U produces anN-best list of pronunciations corresponding
to the input spelling. Hence, the L2S model is used to gener-
ate seed lexical baseforms automatically from the spellings.

2.3. The Subword Recognizer

The subword recognizer is used to automatically generate lex-
ical baseforms from spoken utterances of words. The sub-
word search space is implemented as a weighted FST,R:

R = C o P o L o G (2)

whereC denotes the mapping from context-dependent model
labels to context-independent phone labels,P the phonologi-
cal rules that map phone labels to phoneme sequences,L the
subword lexicon, which is a mapping from phonemic units to
subwords obtained from the CFG, andG the subword trigram.
A search throughR produces anN-best list of pronunciations
corresponding to the spoken word.

In some of the experiments in Section 4.2, the subword
search space is constrained with the spelling of the corre-
sponding word in the lexicon. The L2S model,TL2U is used
to generate a constraining subword lattice,K, from the spelling
of each word. The constrained subword search space,RK is:

RK = C o P o L o K o G (3)

3. DATA COLLECTION

For the purpose of this research, a list of∼2k restaurant and
street names in Massachusetts is selected as the lexicon. These
particular words are of interest to us because they form crit-
ical vocabulary in our multimodel restaurant guide domain

[15]. The names are purposefully chosen to have relatively
low Google hit counts. In order to automatically generate
baseforms from data as well as to evaluate the approach, spo-
ken instances of the words in the lexicon are required.

An online user interface was designed for the purpose of
data collection. Each subject is presented with a word and is
prompted to speak it. A subword recognizer complemented
with a sound-to-letter model is used to generate hypothesized
spellings of the spoken word. The spellings are then filtered
using the 2k lexicon, and the top 5 candidates are presented
to the subject. The framework used to hypothesize spellings
from spoken utterances is similar to that in [16]. If the correct
spelling is not in the proposed list, the subject is promptedto
speak the word again. The same process is then repeated, and
a new list of top 5 candidates is presented to the subject. If,
again, the correct spelling is not in the proposed list, the sub-
ject spells the word. Although, in the future, we plan to inte-
grate the data collected in spelling mode into our approach,it
is not currently used in this research.

Excluding the data recorded in spelling mode, 2842 ut-
terances were collected from 19 speakers, 12 males and 7 fe-
males. We note that each word is spoken by only one speaker.
A breakdown and description of the collected data is shown
in Table 1. As implied by Table 1, the lexicon of the First and
Second set is one and the same.

Name Size Description

Single 1142 Words that were spoken once
First 850 First utterance of words spoken twice

Second 850 Second utterance of words spoken twice

Table 1. Description of the collected data. A total of 2842
utterances are obtained for a 2k lexicon.

4. EXPERIMENTS AND RESULTS

In all our experiments, the SUMMIT segment-based speech
recognition system is used [17]. Context-dependent diphone
acoustic models are used and their feature representation is
based on 14 MFCCs (Mel-Frequency Cepstral Coefficients)
averaged over 8 regions at hypothesized phonetic boundaries.
The diphones are modeled with diagonal Gaussian mixture
models with a maximum of 75 Gaussians per model, and are
trained on telephone speech. The spellneme trigram,GSP ,
is built with 55k parsed nouns extracted from the LDC pron-
lex dictionary. The subword trigram,G, is generated from
300k Google words parsed with the L2S model. Finally, the
isolated word recognizer has a 2k vocabulary as described in
Section 3, and only uses a word unigram.

Section 4.1 describes the automatic generation of the pho-
netic baseforms using the L2S model and reports on results.
Section 4.2 describes the baseform update process which uses
spoken instances of the lexicon, and the subword recognizer.



Results are reported for baseforms generated with the uncon-
strained as well as spelling-constrained subword recognizer.
Section 4.3 reports the results obtained when the baseforms
generated by the different setups are combined.

4.1. Pronunciations generated with the L2S model

In this section, we report the results obtained for the phonetic
pronunciations automatically generated with the L2S model
described in Section 2.2. First, the 2k lexicon is presentedto
the L2S model and the topn | n = 1, ..5, 10, 20, 50 seed base-
forms are generated for each word. We illustrate below the
top 2 L2S seed baseforms for two sample words:

yainnis : ( y ay n ax s | y ey n ax s )

shawarma: ( sh ao aa r m ax | sh ax w aa r m ax )

We evaluate the baseforms on the 2842 utterances and re-
port the results for the three sets, Single, First, and Second in
Table 2. We first observe that the Single set has a lower word
error rate (WER) than the sets First and Second. This is to
be expected since Single is the set of words that is recognized
in the first round during data collection and is likely therefore
to be aneasier set than First and Second. Next, the WER of
Second is lower than that of First. One possible explanation
is that subjects tend to speak the words more carefully on the
second round upon failing the first one. Finally, as expected,
the WER improves significantly as the number of alternative
baseforms is initially increased, however the WER starts dete-
riorating as pronunciation confusion is increased, in thiscase
beyond 20 baseforms.

Single First Second
top1 25.7 52.4 47.8
top2 20.3 47.9 42.8
top3 17.9 47.6 41.2
top4 17.3 47.3 39.9
top5 17.1 47.8 39.5
top10 16.5 47.5 40.0
top20 16.9 48.5 40.2
top50 18.6 47.8 42.6

Table 2. WER of the three data sets, Single, First, Second
as a function of the topn | n = 1, ..., 5, 10, 20, 50 baseforms
generated by the L2S model.

For comparison purposes and to evaluate the effectiveness
of the L2S model at generating the lexical baseforms, manual
corrections are carefully introduced into the top1 baseforms
obtained with the L2S model. As shown in Table 3, absolute
improvements of 2.2%, 1.9%, and 3.1% are obtained for the
Single, First, and Second sets respectively. The modest im-
provement obtained following manual corrections is encour-
aging since it indicates that the L2S model is very good at

generating valid pronunciations. In fact, in comparing Table
2 with Table 3, it can be noted that just 2 automatically pro-
duced alternative pronunciations outperform a single manu-
ally corrected one.

Single First Second
top1 23.5 50.5 44.7

Table 3. WER of the three data sets, Single, First, Second.
The top 1 baseform is generated by the L2S model and sub-
sequently manually corrected.

4.2. Pronunciations generated with Subword Recognizer

We proceed, in this section, to report the results for the pro-
nunciations generated with the subword recognizer described
in Section 2.3. The pronunciations are generated from the first
spoken utterances for all the words that were spoken twice.
Hence, the words in the First set are presented to the subword
recognizer and the generated topn | n = 1, 2..5 baseformsre-
place the L2S seed baseforms of their corresponding words.
The lexical baseforms of the Single set remain the L2S seed.
The top 2 baseforms obtained with the subword recognizer
are illustrated below:

yainnis : ( y uw n ax s | y uw n ax eh s td )

shawarma: ( sh w ao r m | sh w ao r m l ax s )

Since the baseforms are obtained from the First set, only
the Single and Second sets are evaluated. As shown in Ta-
ble 4, the topn WERs of the Second set are significantly im-
proved as a consequence of these pronunciation-based base-
forms. However, WERs for the Single set are consistently
worse than before. One possible explanation for this degrada-
tion is the increased pronunciation confusion introduced by
the subword recognizer.

Single Second
top1 27.8 45.9
top2 23.4 42.0
top3 20.1 39.8
top4 19.4 37.8
top5 19.1 37.3

Table 4. WER of the Single and Second sets as a function of
the topn | n = 1, 2..5 baseforms generated by the subword
recognizer. The baseforms of Single remain the L2S seed.

Next, the spelling of each word in the First set is presented
to the L2S model and a corresponding pronunciation lattice,
K, is generated.K is used to constrain the search space of
the subword recognizer. The resulting topn | n = 1, 2..5 base-
formsreplace the L2S seed baseforms of their corresponding
word. Similarly as before, the lexical baseforms of the Single



set remain the L2S seed. As illustrated below, the top 2 base-
forms obtained with the constrained subword recognizer are
clearly closer to the canonical pronunciations than the ones
obtained with the unconstrained model.

yainnis : ( y ey n ax s | y ay n ax s )

shawarma: ( sh ax w ao r m ax | sh ao w ao r m ax )

Table 5 illustrates the WERs of the Single and Second sets
as a function of the topn | n = 1, 2..5 baseforms. Compared
to the L2S seed baseforms, the top 1 WER for the Single set
has an absolute deterioration of 0.8%, which is substantially
better than the 2.1% deterioration obtained with the uncon-
strained subword baseforms. On the other hand, the absolute
improvement for the Second set has dramatically increased
from 1.9% to 12.2% absolute.

Single Second
top1 26.5 35.6
top2 22.1 34.0
top3 19.8 33.6
top4 19.3 32.4
top5 19.1 32.7

Table 5. WER of the Single and Second sets as a function of
the topn | n = 1, 2..5 baseforms generated by the spelling-
constrained subword recognizer for words spoken twice.

4.3. Baseforms Combination

So far, we have replaced the L2S seed baseforms of the words
in First with the ones acquired from the spoken utterances.
We now proceed to combine the different acquired baseforms
and report on WERs in Tables 6, 7, and 8. It is important
to note, again, that whereas the Second lexicon has alterna-
tive pronunciations obtained from the spoken utterances, the
Single lexicon does not. For example, if #total baseforms = 4
and # subword baseforms = 2, this implies that, for the Second
lexicon, the last two L2S pronunciations (seed) are replaced
with those obtained from the spoken utterances and the sub-
word recognizer. On the other hand, for the Single lexicon,
all 4 baseforms are from the L2S model.

Table 6 shows the WERs of the Single and Second sets
as a function of both total number of baseforms as well as
number of baseforms generated with the subword recognizer.
The observed trend is for the WERs of Single and Second
to decrease as the total number of baseforms is increased.
However, for a fixed total number of baseforms, the perfor-
mance of the Single set suffers while that of the Second set
improves, as more baseforms are replaced with subword base-
forms. This trend is consistent with the previously observed
results in Tables 2 and 4 where the WER improves as the num-
ber of alternative pronunciations is initially increased.Fur-
thermore, the increased pronunciation confusion introduced

by the spoken utterances leads to performance deterioration
for the Single set. We also note that the overall results are sig-
nificantly better than those obtained with the L2S seed base-
forms alone or the spoken utterances.

# total bf # subword bf Single Second
2 1 22.2 33.8

3 1 20.1 32.2
3 2 20.8 32.8

4 1 19.7 29.9
4 2 20.1 31.2
4 3 20.1 31.2

5 1 18.8 31.6
5 2 19.3 30.6
5 3 19.7 29.9
5 4 19.9 29.9

Table 6. WER of the Single and Second sets as a function of
combined baseforms. The first column is the total number of
baseforms, and the second column is the number of subword
baseforms for words spoken twice.

Table 7 exhibits similar behaviour as that in Table 6 except
that the subword baseforms are generated with a spelling-
constrained subword search space. We observe that com-
bining the spelling-constrained baseforms to the seed base-
forms does not result in as much gain as that reported in Table
6. One possible explanation is that the spelling-constrained
baseforms are not very different from the seed baseforms, and
hence do not introduce as muchnew information to the seed
baseforms as the unconstrained subword baseforms.

# total bf
# constrained Single Second
subword bf

2 1 20.8 34.4

3 1 18.1 34.0
3 2 19.3 33.3

4 1 17.9 35.3
4 2 18.9 34.0
4 3 19.0 32.2

5 1 17.9 35.2
5 2 18.5 35.1
5 3 19.2 33.6
5 4 19.1 32.2

Table 7. WER of the Single and Second sets as a function of
combined baseforms. The first column is the total number of
baseforms, and the second column is the number of spelling-
constrained subword baseforms for words spoken twice.

Finally, Table 8 reports the best results obtained when the
L2S baseforms are combined with both, the unconstrained
and the spelling-constrained subword baseforms.



# total bf
# subword # constrained Single Second

bf subword bf
3 1 1 20.3 29.8
5 2 2 20.9 27.9

Table 8. WER of the Single and Second sets as a function
of combined baseforms. The first column is the total num-
ber of baseforms, the second and third columns are the num-
ber of unconstrained and spelling-constrained subword base-
forms for words spoken twice.

5. DISCUSSION AND SUMMARY

In this research, we have presented a new approach towards
the automatic learning of lexical pronunciations. We have
evaluated our approach on an isolated word recognition task
for a 2k lexicon of restaurant and street names.

A linguistically-motivated CFG-based L2S model is used
to learn the seed baseforms of the lexicon. To assess the per-
formance of the L2S model, the top 1 L2S seed baseforms
are manually corrected and evaluated. The modest improve-
ment obtained with the manual modifications indicates the
effectiveness of the L2S model. The lexical baseforms are
then refined using spoken utterances of the lexicon, which
are presented to a subword recognizer. Our best results are
obtained when the L2S seed baseforms are combined with
both spelling-constrained and unconstrained subword base-
forms. To provide easy comparisons among the different ex-
periments, we show in Table 9 the results for several experi-
ments where the total number of baseforms is held constant at
3. For the Single set, the best result is for the L2S seed base-

Table 2 4 5 6 7 8
# L2S bf 3 0 0 2 2 1
# subword bf 0 3 0 1 0 1
# constrained
bf

0 0 3 0 1 1

Single WER 17.9 20.1 19.8 20.1 18.1 20.3
Second WER 41.2 39.8 33.6 32.2 34.0 29.8

Table 9. Comparison of the WERs of the Single and Second
sets as a function of baseforms. The first row refers to the Ta-
ble number of the original experiment. The second, third, and
fourth rows are the number of L2S, subword, and constrained
subword baseforms respectively.

forms, and the least deterioration (0.2% absolute) is obtained
when the seed baseforms are combined with the constrained
subword baseforms. For the Second set, the constrained sub-
word baseforms perform better than the unconstrained setup
as well as the L2S seed baseforms. Furthermore, combining
the three types of pronunciations provides the best resultsfor
the Second set and the best overall results.

In this research, we have assumed perfect knowledge of

the spelling of a word. In other scenarios, such as spoken di-
alogue systems, the user might provide aspoken rendering of
the spelling of a word. We are currently investigating meth-
ods in which both the spoken word and spelling can be used
to learn valid lexical baseforms.
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