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ABSTRACT

In this paper we present a hierarchical large-margin Gaus-
sian mixture modeling framework and evaluate it on the task
of phonetic classification. A two-stage hierarchical classifier
is trained by alternately updating parameters at different lev-
els in the tree to maximize the joint margin of the overall
classification. Since the loss function required in the train-
ing is convex to the parameter space the problem of spuri-
ous local minima is avoided. The model achieves good per-
formance with fewer parameters than single-level classifiers.
In the TIMIT benchmark task of context-independent pho-
netic classification, the proposed modeling scheme achieves
a state-of-the-art phonetic classification error of 16.7% on the
core test set. This is an absolute reduction of 1.6% from the
best previously reported result on this task, and 4-5% lower
than a variety of classifiers that have been recently examined
on this task.

Index Terms— hierarchical classifier, committee classi-
fier, large margin GMM, phonetic classification

1. INTRODUCTION

Over the years there has been much research devoted to the
issue of acoustic modeling for automatic speech recognition.
Topics of investigation have included feature representation,
classifier structure, and training methods. It is fair to say that
the most popular classifier structure in use today is the Gaus-
sian mixture model (GMM), typically trained via maximum
likelihood (ML) methods. To be sure, many alternative classi-
fiers have been explored - especially those of a more discrim-
inative nature such as neural-networks, conditional random-
fields, support-vector machines, and other large-margin meth-
ods. In addition, many different discriminative training meth-
ods of GMMs have also been explored including maximum
mutual information, minimum classification error [7], and more
recently large-margin methods [2, 6, 14, 15]. One of the
nice properties of large-margin-based methods is that the loss
function of the training data is convex over the parameter
space. Thus spurious local minima that may be encountered
in other training scheme can be avoided.

In this paper we explore the use of a hierarchically struc-
tured large-margin GMM classifier. The use of hierarchies for
acoustic modeling has not received as much attention in the
literature, although there are some good results that have been
achieved [1]. Hierarchies allow the potential for the classifica-
tion problem to be divided into smaller sub-problems. Thus,
there is the potential for a hierarchical classifier to be more
robust since there are more training exemplars in the pooled
classes. Hierarchies can also be used to partition a large fea-
ture vector into committees of smaller dimensionality clas-
sifiers, or to focus on particular acoustic measurements for
a given class of sounds. Smaller dimensional classifiers of-
fer the potential for more robust performance, and we have
observed considerable benefit to such committees for ML-
trained GMM classifiers in the past [5].

In this paper, we propose a hierarchical large margin GMM
that incorporates the hierarchical classification with large mar-
gin training. In the remainder of the paper we first introduce
the hierarchical GMM classifier in more detail and present
large margin training within a hierarchical framework. We
then describe experimental results on the benchmark TIMIT
task of phonetic classification. Finally, we conclude and de-
scribe our future plans for research in this area.

2. HIERARCHICAL LARGE MARGIN GMMS

In this section, we first illustrate the hierarchical GMM clas-
sifier in more detail, and then describe the large margin train-
ing scheme for the hierarchical classifier. We focus here on a
2-level hierarchical classifier, however the scheme is general-
izable to other kinds of hierarchies.

2.1. Hierarchical GMM Classifier

Consider a 2-level hierarchical GMM classifier H , illustrated
in Figure 1, which can be constructed either by human knowl-
edge or by automatic clustering algorithms. A leaf node c of
H represents an individual class label (e.g., a phone) that H
can output, and its parent node s = S(c) represents the cluster
where c belongs (e.g., a manner class). Each non-root node
of H has a set of GMM parameters to model the distribution
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Fig. 1. Hierarchical classifier

of the feature vectors at that node. For convenience, we call
class-level parameters for the GMM parameters of the nodes
at the same level as c, and, similarly, cluster-level parameters
for those at the same level as s.

To illustrate how H works, let us first consider the re-
sponse of a class-level node c when a feature vector x is fed
to H . Instead of looking at the log probability of the GMM di-
rectly, we look at the Mahalanobis distance returned by each
mixture component of the model. Let µcm and Ψcm be the
mean and inverse covariance for the mth mixture component
of c. Given x, the mixture component returns a Mahalanobis
distance

(x− µcm)TΨcm(x− µcm) + θcm, (1)

where θcm is a scalar offset that incorporates information of
the mixture weight and the determinant of the mixture compo-
nent. As in [2], we can reduce the expression of the distance
in Eq. (1) into a compact form by introducing an extended
feature vector z = [xT 1]T ∈ <d+1 and an extended parameter
matrix

Φcm =
[

Ψcm −Ψcmµcm

−µTcmΨcm µTcmΨcmµcm + θcm

]
. (2)

By introducing z and Φcm, the distance in Eq. (1) can be
expressed as

d(Φcm, z) = zTΦcmz. (3)

Note that if we increment θcm by a constant, we can make
the extended matrix Φcm positive semi-definite. Combining
the Mahalanobis distances of all mixture components of c, the
overall distance of x to c can be computed by

D(Φc, z) = − log(
∑
m

exp(−d(Φcm, z))), (4)

where Φc denotes the set of all extended parameter matrices
{Φcm} for all the mixture components of c. Similarly, for a
cluster-level node s, we can have a set of parameter matrices
Θs for the cluster-level model, and when given a feature x,
the model of s returns distance

D(Θs, z) = − log(
∑

k

exp(−d(Θsk, z))). (5)

With the distances computed by the two levels of nodes,
H outputs a predicted label ŷ for z by the following criterion:

ŷ = arg min
c
{wCD(Φc, z) + wSD(ΘS(c), z)}, (6)

where wC and wS are the relative weights that reflect how H
trusts the information from the two levels, respectively, and
S(c) is the parent of c. Generally, wC and wS can be deter-
mined by cross-validation with held-out training data. Note
that since the computation for the classification involves only
basic calculations of GMMs plus fixed amounts of additions
and multiplies, the overall complexity of the hierarchical clas-
sifier is similar to conventional GMM classifiers.

2.2. Hierarchical Large Margin Training

Here we present the parameter training scheme for the hi-
erarchical classifier given a set of labeled training examples
{(xn, yn)}N

n=1, where xn ∈ <d and yn ∈ {1, 2, . . . , C}.
Given the class label yn, we can get the cluster label sn =
S(yn) by the hierarchical tree. We use {ΦML

c } to denote the
maximum-likelihood (ML) class-level parameters before the
large margin training, and similarly use {ΘML

s } for the cluster-
level parameters. Also, we use zn to denote the extended vec-
tor of xn.

As in [2], we seek model parameters such that each train-
ing example is correctly classified by a large margin. For each
xn (or equivalently zn), consider the distance

wCd(Φynmn , zn) + wSd(Θsnkn , zn), (7)

where mn = arg minm{zTnΦML
ynmzn} is the mixture compo-

nent of yn that is closest to zn according to the initial model
ΦML

yn
and kn = {arg mink zTnΘML

snkzn}. Note that the distance
in Eq. (7) is a lower bound of the distance of the correct label
used in classification. If we can have

∀c 6= yn,
wCD(Φc, zn)) + wSD(ΘS(c), zn) ≥

1 + wCd(Φynmn , zn) + wSd(Θsnkn , zn) , (8)

then we can guarantee zn is correctly classified by at least 1
unit margin. Any violation of the criterion in Eq. (8) is con-
sidered a loss, and we can compute the loss for each training
example by

`n =
∑

c[1 + wC(d(Φynmn , zn)− D(Φc, zn))
+wS(d(Θsnkn , zn)− D(ΘS(c), zn))]+

, (9)

where the function [f ]+ = max(0, f). By this definition, `n

is a convex function over the parameter space of Φ and Θ.
We also use a weighted sum of `n to be the final loss func-

tion we try to minimize; that is

L =
∑

n

wn`n, (10)

where `n is computed by Eq. (9) and the weight wn is chosen
such that correcting each training sample contributes roughly
the same amount of reduction in the loss function. More
specifically, as in [2], we choose wn = min(1, 1

`ML
n

), where
`ML
n is the loss of the nth example under the initial ML model.



By setting wn in this way, we can effectively prevent the out-
liers in the training example from seriously affecting the re-
sult. Because the loss function in Eq. (10) is convex to the
positive semi-definite parameter matrices Φ and Θ, we can
use a convex optimization algorithm such as conjugate gra-
dient (CG)[9] or other positive semi-definitive programming
methods to find the optimal set of parameters[10].

Since we have two levels of parameters, we can imple-
ment the training by the following method. We first fix cluster
level matrices Θ and adjust Φ and L using CG. After a certain
number of iterations, we then switch to adjust Θ while fixing
Φ. We repeat these two steps for several rounds until the CG
terminates automatically, or a maximum number of iterations
is reached. The idea of this training scheme is similar to that
of a turbo code in that we use the output of the first level
in the hierarchy to help optimize the second level, and vice
versa. By doing this, we can reduce the original optimization
problem into 2 sub-problems with fewer parameters to update
and thus the algorithm can run more efficiently. In our TIMIT
phonetic classification experiments we set t1 = 50, t2 = 60,
and r = 3.

Algorithm 1 Turbo Training
1: Fix Θ, run CG on Φ for t1 iterations to minimize L.
2: Fix Φ, run CG on Θ for t2 iterations to minimize L.
3: Repeat 1 and 2 until CG stops or r rounds have reached.
4: Use held-out training data to choose the final models.

Note that the margin in the training is not necessarily fixed.
We can set up different margin constraints by scaling the pa-
rameter matrices Φ and Θ with a factor α before computing
`n. Different values of α can have a large impact on the result-
ing models. Effectively, a smaller α results in a larger margin.
This will potentially make more training samples have a pos-
itive loss and thus make more training examples considered
during training. In general, more samples being considered in
the optimization can result in a more robust decision bound-
ary so that the resulting model will be more generalizable to
unseen data. However, if we choose a very small α, the large
margin training will include many examples that may not be
very informative for selecting a good decision boundary and
will therefore limit the gain of the large margin training. Thus,
choosing a good scaling factor is important and we will dis-
cuss this issue in the next section.

3. EXPERIMENTS

In this section, we present the classification results of the hi-
erarchical large margin GMMs on the well-defined TIMIT
benchmark task of context independent phonetic classifica-
tion [13]. In addition to exploring single hierarchical classi-
fiers, we also explored the use of committee-based classifiers
to improve performance [5].

Method Feature Error Rate
Hierarchical GMM[1] Seg 21.0%

Hidden CRF[3] Frame 21.7%
Large Margin GMM[2] Frame 21.1%

RLS2[4] Seg 20.9%

Table 1. Recent reported results on TIMIT core test set. Fea-
ture type refers to segmental (1 vector/phone) or frame-based.

3.1. Corpus Setup

In our experiments we used the standard NIST training set
(462 speakers, 3696 utterances, 140225 tokens) for training,
and standard core test set (24 speakers, 192 utterances, 7215
tokens) for testing. In addition, we also used the standard de-
velopment set (50 speakers, 400 utterances, 15056 tokens) to
decide the relative weights of the two level models in the hi-
erarchy, to provide early stopping of the training, and to tune
the weight of the phone prior. The development set was also
used to tune the optimal value of the margin scaling factor α
that was used during training.

The standard 61 TIMIT phone labels were reduced into
48 classes as in [8]. When evaluating the models, we further
mapped the labels into the commonly used 39 classes [1]-
[4] to calculate the classification error rate. As in commonly
done, we also ignored glottal stops (/q/) for both training and
testing. The error rate of the reduced 39-class classification
on the core test set of TIMIT is a well-defined benchmark
problem. Table 1 lists the results of some recently reported
experiments for this task.

3.2. Features

In the experiments, we trained models for the eight different
segmental feature measurements (i.e., one vector per phone)
that were used in [5]. The eight different measurements, S1-
S8, are summarized in Table 2. They differ primarily in a)
the duration of the Hamming window used to compute the
short-time Fourier transform, b) the number of Mel-frequency
Cepstral Coefficients (MFCCs) or perceptual linear prediction
(PLP) coefficients used and c) whether the coefficients were
consolidated via a temporal basis function (that extended 30ms
beyond the segment boundaries) of either averages or cosine
transforms. Each feature vector also included log duration.
The number of dimensions of each type of feature is deter-
mined by number of spectral coefficients and the number of
temporal basis functions. For example, S1 has 5∗12+1 = 61
dimensions.

3.3. Baselines

For the classification experiments, we built the 2-level hier-
archy by clustering the phone class into nine clusters accord-
ing to their broad manner of articulation. The nine clusters



# Window Spectral Temporal
Dims [ms] Representation Basis

S1 61 10 12MFCC 5 avg
S2 61 30 12MFCC 5 avg
S3 61 10 12MFCC 5 cos
S4 61 30 12MFCC 5 cos
S5 64 10 9MFCC 7 cos
S6 61 30 15MFCC 4 cos
S7 61 20 12PLPCC 5 avg
S8 61 20 12PLPCC 5 cos

Table 2. Summary of features used for experiments.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 24.8% 23.8% 23.5% 24.7% 23.8%
Test 25.2% 24.4% 24.1% 25.2% 24.3%

Table 3. Error rates of the ML GMM classifiers.

are stops, nasals, strong fricatives, weak fricatives, high vow-
els, low vowels, short vowels, semi-vowels, and closures (in-
cluding silences). For each of the eight features, we trained
5 kinds of ML baseline models: “Gauss”,“2-mix”, “4-mix”,
“H(1,2)”, and “H(2,4)”. “Gauss” refers to a single full co-
variance Gaussian model, while “2-mix” and “4-mix” repre-
sent GMMs with two and four Gaussian components respec-
tively. “H(1,2)” is a hierarchical model using one Gaussian
at the class-level model and two Gaussian components for
the cluster-level model; “H(2,4)” is defined similarly. The
GMMs were trained by the cross-validation EM (CV-EM) al-
gorithm [11] and selected by the development set. (Pick the
one with lower error rate among two independent trails.) For
“H(1,2)” and “H(2,4)”, we also used the development set to
find a proper set of relative weights wC and wS between the
two levels of the hierarchy.

Table 3 lists the average error rates of the ML models on
the development and core test set when trained on the eight
different feature sets, S1-S8. From the table, we can see that,
on average, the performance of “H(1,2)” is close to “Gauss”
and that of “H(2,4)” is close to “2-mix”, showing that ML
training does not derive much benefit from the hierarchical
framework. Although the data is not shown in the table, we
also observed that, for two of the feature sets, the “4-mix”
models performed worse than their corresponding “2-mix”
models, showing that in some cases the models were over-
fitting the training data.

3.4. Large margin models

3.4.1. Single classifier results

In this section we present the classification results of the mod-
els for each type of feature after the large margin training. The

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 19.2% 18.7% 18.8% 18.8% 18.5%
Test 20.6% 20.0% 20.0% 19.9% 19.6%

Table 4. Error rates of the large margin GMM classifiers.

large margin models “LM Gauss”, “LM 2-mix”, and “LM
4-mix” are trained as in [2], while “LM H(1,2)” and “LM
H(2,4)” are trained by the scheme presented in the previous
section.

As mentioned previously, the margin scaling factor α can
significantly affect the performance of the models. To illus-
trate how the model performances vary according to α, we
sample several values of α and plot the average error rate of
the eight features on the development set in Figure 2. As the
figure shows, the error rates decrease as α is reduced from
0.25 to 0.05, and increase as α gets smaller than 0.05. The
trend of the curves are as discussed in Section 2. Another in-
teresting observation is that the more complex the model is,
the greater the variation in classification performance; indi-
cating that finding a good value of α becomes important as
the model become more complex.

Table 4 shows the average results of the models for the
eight feature sets on the development and core test set, re-
spectively, under α = 0.05. From the table we can see that
although “LM 4-mix” has almost twice the number of param-
eters as “LM 2-mix”, the performances of the two kinds of
models are on average quite similar. This shows that simply
increasing the number of mixtures may not necessarily im-
prove the overall performance, since the model may over-fit
the training data. On the other hand,“LM H(1,2)” and“LM
H(2,4)” achieve better performance than the other three mod-
els on average, showing that the hierarchical models are per-
haps generalizing better to unseen data. To see whether the
proposed modeling scheme has significant improvement over
the current state of art, we compared the outputs of “LM
H(2,4)” with that of RLS2 model [4] and conducted a McNe-
mar significance test [12]. Six out of the eight models were
significantly different at the 0.001 level. This also includes
the model trained with feature set S2, which was also used
for the RLS2 experiments.

3.4.2. Committee classifiers

In addition to performing classification with a single feature
vector, we can also create a committee-based classifiers that
combines information provided by the different feature sets.
As in [5], our committee-based classifier combined the out-
puts of the individual classifiers for S1-S8 by summing their
log posterior probabilities. The performances of the committee-
based classifier was also affected by the margin scaling factor
α. Figure 3 shows the performances of the committee-based
classifiers on the development set under different value of α.
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Fig. 2. Average error rate on the development set. Error bars
show 0.25 standard deviation across feature sets.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 17.0% 16.2% 16.1% 16.5% 15.9%
Test 17.8% 17.1% 17.1% 17.2% 16.8%

Table 5. Error rates of committee classifiers.

The detailed performances of the committee classifiers on the
development and test sets (using α = 0.1) are listed in Table
5. As in the earlier large-margin experiments, the “H(2,4)”
model yields the best result.

We found it interesting to observe that for all five types
of classifiers we explored the optimal value of α for an indi-
vidual classifier did not result in the best committee classifier.
The optimal value of the committee based classifiers tended
to be consistently slightly larger than that of individual clas-
sifiers. One possible explanation for this observation could
be that the diversity of the individual classifiers may tend to
decrease as α becomes smaller, since the overlap of the train-
ing examples used in the large margin training would tend to
become larger. As a result, although each individual classi-
fier became more accurate, they became less complementary
of each other and thus the overall committee was not as ef-
fective as the one with a set of more diverse but reasonably
accurate committee members.

3.4.3. Heuristic selection of α

In the previous experiments we used a brute force search on
the development set to find a good value of α. Although this
method was effective, it was also time consuming in that we
have to first have the trained models before we can evaluate
the performances on the development set. It would be much
preferable if we could find a suitable value of α before train-
ing, especially for the case of large vocabulary continuous
speech recognition where discriminative training may take a
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Fig. 3. Average error rate on the development set.

very long time.
We explored a heuristic method for finding α which was

inspired from the observation that, for a training token with
positive loss, the value of the loss also has a convex shape
variation according to α. To explain this, let us consider a
training example n with positive loss. We call such kind of
training examples “effective” since only such examples would
be considered in the large margin training. For convenience,
we shorten the expression of the loss by `n =

∑
c 6=yn

[1 +
α∆c]+.

A small α can have a two-sided effect on `n. On the one
hand, for a strong competing class c1 with ∆c1 > 0, small α
can make [1 + α∆c1 ]+ small, and in this sense, may decrease
the loss value. On the other hand, a small α may also make a
weak competing class c2 with ∆c2 ¿ 0 contribute to the loss
by making 1+α∆c2 > 0, and may also increase `n. Because
the loss is piece-wise linear to α, there exists an α̂ such that
`n can be minimized.

In other words, there exists a certain value of α that can
minimize the loss for n, and that value can potentially be a
good choice for n since it balances the two effects: trying to
increase margin as much as possible (or, equivalently, choos-
ing α as small as possible) while not letting too many weak
competing classes disrupt the training. Following this idea,
if we pick a value α̂ that minimize the average loss of the all
effective examples, that value may also be a suitable choice
of α for the whole training set.

We applied this heuristic approach to select α for “LM
H(1,2)” and “LM H(2,4)”. The performances of the resulting
model for all eight feature sets is listed in Table 6. The “com”
in the table refers to committee classifier. Both of the two
sets of models have performances very close to the models
with α = 0.05, which demonstrates the effectiveness of the
heuristic method. Note that this table shows the best overall
result for any single feature set obtains an error rate of 18.7%,
while the best overall committee-based classifier obtains an



LM H(1,2) LM H(2,4)
dev test α dev test α

S1 18.9% 20.0% 0.070 19.1% 20.4% 0.070
S2 18.9% 19.8% 0.070 18.3% 19.4% 0.072
S3 18.3% 19.6% 0.063 17.9% 19.7% 0.069
S4 18.3% 19.4% 0.067 18.1% 18.7% 0.069
S5 18.7% 19.7% 0.064 18.6% 19.6% 0.062
S6 19.1% 20.2% 0.068 18.7% 20.4% 0.069
S7 19.6% 21.0% 0.076 19.2% 20.6% 0.071
S8 18.7% 19.9% 0.067 18.7% 19.8% 0.071
avg 18.8% 20.0% 18.6% 19.8%
com 16.6% 17.2% 16.0% 16.7%

Table 6. Error rates of classifiers with pre-determined α.

error rate of 16.7%.

4. CONCLUSION AND FUTURE WORKS

In this paper we have incorporated large margin GMM train-
ing into a hierarchical classification framework. The resulting
classifier obtains excellent performance on the task of TIMIT
phonetic classification, achieving 18.71% error rate in a sin-
gle classifier case and 16.74% in the case of committee-based
classification. Because the proposed method can incorporate
additional phonetic information, it can achieve excellent per-
formance while using fewer parameters than any other state-
of-the-art technique. By using fewer parameters, the proposed
model not only requires less computations but also can avoid
over-fitting when confronted with data sparsity problems.

In the future, we plan to extend this work to the task of
phonetic recognition to see how much gain in the classifi-
cation can be transferred to phonetic recognition. Our prior
experience in this area indicates that improvements in classi-
fication typically carry over to reduced substitution errors in
recognition tasks [5]. We would also like to conduct exper-
iments on context-dependent phone models for word-based
recognition. Generally, the data sparsity problem becomes
more severe in context-dependent modeling, and our hope is
that the hierarchical large margin modeling method should be
effective for this problem as well.
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