GENERALIZED LINEAR INTERPOLATION OF LANGUAGE MODELS

Bo-June (Paul) Hsu

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA
bohsu@mit.edu

ABSTRACT

Despite the prevalent use of model combination techniques
to improve speech recognition performance on domains with
limited data, little prior research has focused on the choice of
the actual interpolation model. For merging language models,
the most popular approach has been the simple linear interpo-
lation. In this work, we propose a generalization of linear in-
terpolation that computes context-dependent mixture weights
from arbitrary features. Results on a lecture transcription task
yield up to a 1.0% absolute improvement in recognition word
error rate (WER).

Index Terms— Language modeling, interpolation, adap-
tation, mixture models

1. INTRODUCTION

With the increasing focus of speech recognition and natu-
ral language processing applications on domains with lim-
ited amount of in-domain training data, enhanced system per-
formance often relies on approaches involving model com-
binations. For language modeling, these techniques include
improving the estimation of the underlying probability dis-
tributions via class n-grams [1] and topic mixtures [2], and
adapting to additional training text from the web [3] and the
initial recognizer hypotheses [4]. While many of these tech-
niques involve the combination of multiple n-gram language
models, most existing works only evaluate their performance
using simple linear interpolation [5].

1.1. Existing Techniques

Given a set of M training texts, we can build a combined
language model (LM) using multiple techniques. One of the
simplest techniques, sometimes referred to as the brute-force
approach, is to merge all texts and train a single smoothed
n-gram LM. Because the training corpora often differ in size
and relevance to the target domain, simply summing the n-
gram counts rarely achieves the best result.

Linear interpolation, the most popular model combination
technique, first trains individual n-gram LMs from each train-
ing corpus. Given the resulting set of n-gram language mod-

978-1-4244-1746-9/07/$25.00 ©2007 IEEE 136

els, it computes the weighted average of the component model
probabilities p“f (w|h) = Y, \ipi(w|h), where p;(w|h) is
the smoothed probability of word w following n-gram his-
tory h in model i. The interpolation weight \;, satisfying
>; A = 1, is typically tuned to optimize the development set
perplexity.

In practice, such an interpolated model is less efficient for
speech recognition than a single backoff n-gram LM, as it re-
quires M probability evaluations for each possible word ex-
pansion and the storages of each component LM. Thus, as an
approximation, Stolcke [6] constructs a single n-gram back-
off model where the probability for all observed n-grams is
the weighted average of the component model probabilities.
The remaining probabilities are computed via appropriately
normalized backoffs. Empirically, as is also observed by Stol-
cke, the resulting static interpolation generally achieves lower
perplexity than the original model. Thus, in subsequent us-
ages, linear interpolation will refer to this static technique.

In [4], Bacchiani et al. suggested count merging as an
alternative interpolation technique. Instead of taking the
weighted average of the n-gram probabilities, count merging
computes the overall probability by scaling the n-gram counts
as follows:

oM iy = 2 Dict " (hw)
P (wlh) = > Bici(h)

where f3; is the model scaling factor, c%**¢(hw) is the dis-
counted count that model ¢ assigns to n-gram hw, and ¢;(h)
is the count of history i in model i. Leveraging the lower
order model probabilities for unseen n-grams, we can define
the count merging interpolation model with backoff as:

pCIV[(w|h) _ pCM (w|h) if Zz Ci(hw) >0
bo a(h)pSM(wlh') otherwise

where a(h) is the backoff weight and 1’ is the backoff his-
tory for history h. Similar to linear interpolation, the scaling
factors 3; are tuned against a disjoint development set. As
observed in both [4] and section 3.2, count merging generally
achieves lower perplexity than linear interpolation.

Previous work has also investigated log-linear interpola-
tion [7] and exponential models [8]. Unlike linear interpola-

ASRU 2007

tion and count merging, the resulting models from these tech-
niques cannot be efficiently represented as a backoff n-gram
model. Thus, they are not suitable for use as a first-pass lan-
guage model in a speech recognizer. More typically, these
language models are used for lattice or n-best rescoring.

1.2. Motivation

By definition, an n-gram LM with discounting assigns proba-
bility p(w|h) = c¥*¢(hw)/c(h) to observed n-grams. Refac-
toring the terms, we see that count merging is simply a gen-
eralization of linear interpolation, where the interpolation
weight \;(h) = Bici(h)/ >, Bjc;(h) now depends on the
n-gram history via its count:

> Bici(h)pi(w|h)
Z Bjcj(h) Z)\

Instead of a constant interpolation weight, count merging ap-
plies an interpolation weight proportional to the number of
observances of n-gram history h. The more data used to
train the word distribution following h, the more we trust and
weigh the resulting estimate.

Motivated by Witten-Bell smoothing [9], Zhou et al. pro-
posed a linear interpolation model where the interpolation
weight is defined as a function of not just ¢(h), but also
the number of unique words that follow A [10]. However,
this heuristic-based scheme assumes the existence of an in-
domain training set and does not perform parameter optimiza-
tion to maximize data likelihood. Intuitively, we should be
able to obtain better performance by both leveraging addi-
tional features and optimizing interpolation model parameters
on a development set.

In this work, we will investigate a data-driven approach
to learn the interpolation weight function. As an extension to
both linear interpolation and count merging, the generalized
linear interpolation model significantly reduces the perplexity
and WER over both existing techniques.

M(wlh) =)pi(w|h)

2. GENERALIZED LINEAR INTERPOLATION

The generalized linear interpolation model extends the con-
stant mixture weights \; in linear interpolation to interpo-
lation weight functions A;(h) over arbitrary n-gram history

features. Specifically, given language models p;(w|h) for
it = 1,..., M, we define the generalized linear interpolation
model as:

pCL (wlh) = Z Xi(h)pi(w|h)

where A\;(h) > 0and Y~ A\;(h) = 1, for all observed history
h. Similar to count merging, we can define the corresponding
backoff model as:

Pt (w]h)

if Y. c;(hw) >0
GLI(1, _{ 2
Pyo (’UJ‘) a(h)pl?oLl(w|h/)

otherwise

137

where 1’ is the backoff history for history h and «(h) is the
backoff weight computed to satisty >, pS&Ef (w]h) = 1.

In general, we can model the interpolation weight func-
tion with both parametric and non-parametric functions. In
this work, we will focus on the following log-linear family of
parametric functions ! and leave additional choices of inter-
polation weight functions for future work:

rel; (h)
>, vely ()

This particular parametric family computes the interpola-
tion weights by normalizing the relevance functions rel;(h)
for each model. It was designed such that the constraints
on \;(h) are always satisfied regardless of the feature vectors
fi(h), feature parameter values @, and model bias parameter
values 7. Furthermore, an easily computed gradient helps im-
prove the performance of gradient-based optimization tech-
niques when tuning the interpolation parameters. Lastly, we
can interpret the learned parameters as adjusting the multi-
plicative effect a feature has on the component model prob-
abilities. Since a constant offset to <y yields identical inter-
polation weights due to cancellation, we will set vy, = 1 to
constrain the solution space.

Within this framework, linear interpolation can be repre-
sented as a special case where f;(h) = [] is an empty vec-
tor, resulting in constant interpolation weights \;(h) oc e7:.
Count merging can be represented with f; (k) = [log (¢;(h))],
0 = [1], and count scaling parameter 3; = e7:.

Training the generalized linear interpolation model in-
volves adjusting the model parameters that characterize the
interpolation weight functions to minimize the development
set perplexity. Since no constraints are placed on the param-
eters, we can apply any numerical optimization technique to
iteratively estimate the optimal parameter values. By choos-
ing the parametric family of the interpolation weight function
to include linear interpolation and count merging as special
cases, we guarantee that the interpolated model will at least
match and almost always exceed the performance of the ex-
isting techniques on the development set. Given a sufficiently
large development set to avoid overfitting, this gain generally
will also carry over to unseen test sets.

Ai(h) = rel;(h) = exp (fi(h) -0 + i)

2.1. Features

Unlike existing model combination methods, generalized lin-
ear interpolation supports arbitrary combination of features in
the computation of the interpolation weight function. In order
to compare fairly with existing techniques, in this work, we
will limit ourselves to features that can be automatically de-
rived from n-gram counts. Specifically, we will examine the
use of the n-gram history count c¢(h), the left branch count,
and the right branch count (defined below) to derive the model

'We can also interpret this interpolation weight function as a two-layer
neural network with a softmax activation function on the output layer [11].

features. We will leave other features such as part-of-speech
tags, topic labels, and document counts to future work.

Following the notation in [12], we define the left branch
count ¢! (h) = Ny, (eh) as the number of unique words that
appear before h. This count is used in Kneser-Ney smooth-
ing [13] to estimate the probability of lower-order models.
Symmetrically, we define the right branch count ¢"(h) =
N1+ (he), motivated by Witten-Bell smoothing [9], as the
number of unique words that appear after h. To simplify no-
tation, we will define C'(h) = [c(h), c!(h), ¢"(h)] and apply
operators on the vector element-wise.

The generalized linear interpolation model with the log-
linear weight function computes the relevance of a model as
the exponential of a weighted sum of the model features. To
include count merging as a special case, we will consider the
logarithms of the three counts log C (h) as possible features 2.

Similar to how introducing higher powers of the origi-
nal features improves the fit for polynomial regression, we
can include functions of the original counts as additional fea-
tures to the interpolation model to obtain a better fit. In this
work, we will limit our study to the squares of the log counts
from above. To obtain a monotonically increasing function,
we will add 1 to the counts and consider logSq(C(h)) =
[log(1 4+ C(h))]? as possible model features.

3. EXPERIMENTS

3.1. Setup

In this work, we will compare the performance of the general-
ized linear interpolation model against a few existing interpo-
lation techniques by evaluating the perplexity and recognizer
WER in a lecture transcription domain [14]. The target do-
main consists of 20 lectures from an introductory computer
science course, from which we withheld the first 10 lectures
for the development set (CS Dev) and used the last 10 for the
test set (CS Test). For training, we used high-fidelity tran-
scripts from approximately 115 hours of audio from 99 lec-
tures on a variety of topics (Lectures). To supplement the
oft-topic lecture transcripts with topic-specific resources, we
included the course textbook (Textbook) as additional train-
ing data. Finally, to evaluate the effect of using a large, out-
of-domain dataset on the overall performance, we added the
transcripts from the LDC Switchboard corpus of spontaneous
conversational speech [15] (Switchboard) as a third training
set. Table 1 summarizes all the evaluation data.

For each training text, we built a trigram language model
with modified Kneser-Ney smoothing [12] and the default
corpus-specific vocabulary using SRILM [6]. As models in-
terpolated over the same components share a common vocab-
ulary regardless of the interpolation technique, we can com-
pare the perplexities computed only over n-grams with non-
zero probabilities for each technique.

2Zero counts result in rel; (h) = exp(log0 + - -) = exp(—o0) = 0.

138

Dataset Sentences | Vocabulary Words
Textbook 6,762 4,686 131,280
Lectures 58,626 26,906 | 1,113,312
Switchboard 262,744 26,837 | 3,129,827
CS Dev 4,102 3,289 93,353
CS Test 3,595 3,357 87,527

Table 1. Summary of evaluation datasets.

In all experiments, the interpolation model parameters are
initialized to 0 and tuned to minimize the development set per-
plexity using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
unconstrained optimization technique [16], a quasi-Newton
method that uses the second derivative Hessian matrix itera-
tively estimated from the gradients evaluated along the search
path to improve the convergence towards the function mini-
mum.

To compute the word error rates associated with each lan-
guage model, we used a speaker-independent speech recog-
nizer [17]. The evaluation lectures were pre-segmented into
utterances via forced alignment against the reference tran-
scription [18]. Since the interpolated language models can
be encoded as n-gram backoff models, they are applied di-
rectly in the first recognition pass instead of a separate n-best
rescoring step. Table 2 summarizes the performance of vari-
ous interpolation models on the test set.

3.2. Results

For Textbook and Lectures, all model combination techniques
achieve significantly reduced perplexity (though not strictly
comparable) and WER over the individual component mod-
els. Compared with the linear interpolation (LI) baseline, the
brute-force (BF) text concatenation method resulted in worse
perplexity and no statistically significant reduction in WER.
Validating the observations in [4], count merging (CM) out-
performs linear interpolation, with p < 0.001 on the Matched
Pairs Sentence Segment Word Error significance test [19].

With log ¢(h) as the only feature, generalized linear in-
terpolation (GLI) extends count merging by allowing an ar-
bitrary exponent on the count features. Intuitively, given suf-
ficient n-gram histories to yield good estimates of the word
distribution, the count should no longer play a significant role
in determining the interpolation weight. Thus, we expect the
optimal exponent on the count to be less than the fixed value
of 1.0 for count merging. Empirically, we find this to be the
case, with the optimal exponent for the n-gram history count
to be around 0.8.

By tuning the exponent, we obtain a slight, but insignifi-
cant, reduction in both perplexity and WER. However, with
the addition of the left and right branch counts, GLI with
log C(h) achieves a significant WER improvement over count
merging, with p = 0.043. Including second-order features
logSq(C'(h)) further drops the perplexity by another 1.5%

Model Perplexity WER
Textbook 332.6 47.4%
Lectures 225.2 41.6%
Switchboard (Swbd) 287.5 45.8%
Textbook + Lectures
LI 165.4 37.5%
BF 170.6 (+3.1%) | 37.3%
CM 158.1 (-4.4%) | 36.8%
GLI: log c(h) 157.9 (-4.6%) | 36.8%
GLIL logC(h) 157.3 (-4.9%) | 36.7%
GLI: logC(h),logSq(C(h)) | 154.8 (-6.4%) | 36.6%
Textbook + Switchboard
LI 178.2 39.5%
CM 1752 (-1.7%) | 38.7%
GLI: logC(h),logSq(C(h)) | 170.1 (-4.5%) | 38.5%
Lectures + Switchboard
LI 224.6 41.2%
CM 227.1 (+1.1%) | 41.2%
GLIL logC(h),logSq(C(h)) | 224.6 (-0.1%) | 41.1%
Textbook + Lectures + Swbd
LI 161.1 37.3%
CM 155.0 (-3.8%) | 36.6%
GLI: logC(h),logSq(C(h)) | 150.7 (-6.5%) | 36.3%

Table 2. Interpolation model performance on the test set. Rel-
ative perplexity changes from the linear interpolation baseline
are included within parentheses. Statistically significant im-
provements in WER are in italics.

and improves the WER significance to p = 0.001. Over-
all, the generalized linear interpolation model achieves a sta-
tistically significant 0.2% and 0.9% absolute WER reduction
over count merging and the baseline linear interpolation tech-
niques, respectively.

Interpolating different combinations of training models
generally yields similar trends, with the generalized linear in-
terpolation using second-order features significantly outper-
forming count merging and standard linear interpolation, by
up to 1.0% absolute reduction in WER. When combining Lec-
tures and Switchboard, however, any improvement over linear
interpolation is generally minimal, with only the full-featured
GLI model able to obtain a statistically significant drop, with
p = 0.019. Given that linear interpolation only reduced WER
by 0.4% over the Lectures model, Switchboard’s mismatch in
both topic and style appears to leave little room for additional
improvement over linear interpolation.

To obtain a better sense of how the generalized linear
interpolation model performs under different training condi-
tions, we measure the sensitivity of the interpolated model
perplexity to the development set size. In Figure 1, we plot
the perplexity of the full-featured generalized linear interpo-
lation model for Textbook, Lectures, and Switchboard, with
respect to the size of the development set. As shown, with

139

16 T

xxxx GLI
-- + Optimal LI
=+ Optimal CM
1601~ — - Optimal GLI []
158 b
>
P
-
&
— 156]
o3
o
@ Frermimimimieieimimi e e e e e
A,
154 b
152~]
15 ! !
(o2 103 108 10

Development Set Size (words)

Fig. 1. Test set perplexity of the GLI model for Textbook
+ Lectures + Swbd optimized with varying development set
sizes. Optimal LI/CM/GLI denote the test set perplexities ob-
tained by tuning the respective models on the entire test set.

only 400 words, the perplexity of this 8-parameter model has
converged to within 1 point of the optimal value obtained by
directly training on the test set. Similar, if not better, behavior
is observed with all combinations of the training data. This
suggests that the performance gains from the generalized lin-
ear interpolation model can be obtained with relatively little
in-domain data.

3.3. Implementation

Similar to linear interpolation and count merging, we can rep-
resent a generalized linear interpolation model in the ARPA
LM format [20] consisting of only the observed n-grams
across the component models. By representing LMs as vec-
tors of probabilities and backoff weights, and pre-computing
their contributions towards the development set perplexity, we
can efficiently interpolate and evaluate each set of model in-
terpolation parameters via simple vector arithmetics (addi-
tional details are forthcoming). In the above experiments,
each evaluation step in the iterative optimization process takes
less than a second to complete. Depending on the number of
parameters, the entire parameter estimation procedure takes
from a few seconds to a few minutes to converge. Thus,
such a data-driven approach to language model interpolation
presents a practical solution to improving model performance.

4. CONCLUSION & FUTURE WORK

In this work, we presented a model-based approach to lan-
guage model combination. The resulting generalized linear
interpolation model defines a family of interpolation weight
functions that subsumes both linear interpolation and count

merging. Perplexity and WER evaluations on a lecture tran-
scription domain with various combinations of training data
demonstrated up to a 1.0% WER drop over the baseline lin-
ear interpolation model. In most cases, the performance also
significantly improved over count merging. Detailed analysis
showed that the interpolation model can be tuned to within 1
point of the optimal perplexity with only 400 words of devel-
opment set data.

Despite the promising results achieved so far, an oracle
experiment on the test set, where we allow an independent
interpolation weight for each n-gram history, yields a lower
bound perplexity of 132.2 on the combination of Textbook
and Lectures, another 14% below the best perplexity achieved
so far. Thus, in future work, we plan on studying the effective-
ness of additional features and different families of interpola-
tion weight functions, including non-parametric approaches
and multilayer feed-forward networks. We would also like
to apply the interpolation model to component LMs, such as
topic models, that are not based on counts.

As effective language modeling techniques for new do-
mains with limited data increasingly rely on model combina-
tion approaches, the traditional linear interpolation and count
merging techniques are no longer sufficient to capture and
combine the essence of the constituent models. This work
presents the generalized linear interpolation model as a step
towards a principled study of model combination techniques
and encourages future research to consider more expressive
approaches to model combination.

5. ACKNOWLEDGMENTS

We would like to thank Mike Phillips for the opportunity to
work on this project at vlingo over the summer, Jim Glass,
Igor Malioutov, and Chao Wang for the helpful discussions,
and the anonymous reviewers for their constructive feedback.

6. REFERENCES

[1] G.Maltese, P. Bravetti, H. Crépy, B.J. Grainger, M. Her-
zog, and F. Palou, “Combining word- and class-based
language models: A comparative study in several lan-
guages using automatic and manual word-clustering
techniques,” in Proc. Eurospeech, 2001.

[2] B. Hsu and J. Glass, “Style & topic language model
adaptation using HMM-LDA,” in Proc. EMNLP, 2006.

[3] I. Bulyko, M. Ostendorf, and A. Stolcke, “Getting more
mileage from web text sources for conversational speech
language modeling using class-dependent mixtures,” in
Proc. HLT, 2003.

[4] M. Bacchiani, M. Riley, B. Roark, and R. Sproat, “MAP
adaptation of stochastic grammars,” Computer Speech
& Language, vol. 20, no. 1, pp. 41-68, 2006.

140

[5] F. Jelinek and R.L. Mercer, “Interpolated estimation of
Markov source parameters from sparse data,” in Proc.
Workshop on Pattern Recognition in Practice, 1980.

[6] A.Stolcke, “SRILM — An extensible language modeling
toolkit,” in Proc. ICSLP, 2002.

[7] D. Klakow, “Log-linear interpolation of language mod-
els,” in Proc. ICSLP, 1998.

[8] R. Rosenfeld, “A maximum entropy approach to adap-
tive statistical language modeling,” Computer Speech &
Language, vol. 10, no. 3, pp. 187-228, 1996.

[9] L.H. Witten and T.C. Bell, “The zero-frequency prob-
lem: Estimating the probabilities of novel events in
adaptive text compression,” [EEE Transactions on In-
formation Theory, vol. 37, no. 4, pp. 1085-1094, 1991.

[10] Z.Y. Zhou, J.F. Gao, and E. Chang, “Improving lan-
guage modeling by combining heteogeneous corpora,”
in Proc. ISCSLP, 2002.

[11] C. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, November 1995.

[12] S. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” in Tech-
nical Report TR-10-98. Computer Science Group, Har-
vard University, 1998.

13] R. Kneser and H. Ney, “Improved backing-off for m-
Y p g
gram language modeling,” in Proc. ICASSP, 1995.

[14] 1. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh,
and R. Barzilay, “Recent progress in the MIT spoken
lecture processing project,” in Proc. Interspeech, 2007.

[15] J. Godfrey and E. Holliman, “Switchboard-1 tran-
scripts,” Linguistic Data Consortium, Philadelphia,
1993.

[16] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes, Cambridge University Press, 3rd
edition, September 2007.

[17] J. Glass, “A probabilistic framework for segment-based
speech recognition,” Computer Speech & Language,
vol. 17, no. 2-3, pp. 137-152, 2003.

[18] T.J. Hazen, “Automatic alignment and error correction
of human generated transcripts for long speech record-
ings,” in Proc. Interspeech, 2000.

[19] L. Gillick and S. Cox, “Some statistical issues in the
comparison of speech recognition algorithms,” in Proc.
ICASSP, 1989.

[20] A. Stolcke, “SRILM man pages: ngram-format,” 2004,
http://www.speech.sri.com/projects/
srilm/manpages/ngram-format.html.

