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Abstract
We present PocketSUMMIT, a small-footprint version of our
SUMMIT continuous speech recognition system. With portable
devices becoming smaller and more powerful, speech is increas-
ingly becoming an important input modality on these devices.
PocketSUMMIT is implemented as a variable-rate continuous
density hidden Markov model with diphone context-dependent
models. We explore various Gaussian parameter quantization
schemes and find 8:1 compression or more is achievable with
little reduction in accuracy. We also show how the quantized
parameters can be used for rapid table lookup. We explore first-
pass language model pruning in a finite-state transducer (FST)
framework, as well as FST and n-gram weight quantization and
bit packing, to further reduce memory usage. PocketSUMMIT
is currently able to run a moderate vocabulary conversational
speech recognition system in real time in a few MB on current
PDAs and smart phones.
Index Terms: speech recognition, small footprint, parameter
quantization, finite-state transducer

1. Introduction
As technology improves, portable devices such as PDAs and
mobile phones are becoming smaller and more computation-
ally powerful. We wish to do more with these devices, yet the
smaller form factor generally makes them more difficult to use.
Speech interfaces may be able to harness the computational
power and provide a more intuitive interface despite minimal
screen and keyboard sizes.

Historically, our SUMMIT automatic speech recognition
system was developed to support research by providing a flex-
ible framework. As long as it could support real-time recogni-
tion within a conversational system running on a Unix worksta-
tion, memory use and additional speed was not a priority. When
confronted with portable devices with modest memory and pro-
cessing resources, it was clear we needed to simplify and rewrite
most of SUMMIT to create PocketSUMMIT.

We initially targeted PocketPC and smart phone devices
running Windows CE/Mobile, which typically use a 400–
600MHz ARM processor, no floating-point hardware, and 32–
64MB RAM. The lack of floating-point hardware meant that
all significant computation needed to use fixed-point (integer)
operations. With limited memory and typically slow mem-
ory access speed, we strove to push the footprint of Pocket-
SUMMIT down to a few MB. Aggressive scalar quantization
was used on acoustic model parameters, finite-state transducer
(FST) weights, and n-gram parameters to reduce memory foot-
print without hurting accuracy. Even though FST and rescor-
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ing n-gram data structures were aggressively bit packed down
to minimal size and accessed frequently in the main decoder
search, we were pleasantly surprised to find that not only did
this bit packing not hurt speed, it actually improved it.

Porting existing automatic speech recognition engines to
mobile devices is becoming increasingly popular. Examples in-
clude PocketSphinx [1] and systems from AT&T [2] and IBM
[3]. Our use of Gaussian parameter quantization was inspired
by work at Nokia [4] for use on mobile phones.

2. PocketSUMMIT
In this section we describe PocketSUMMIT, and in particular
how it differs from our baseline SUMMIT recognition system.
Throughout this section, we used a 2000-word weather infor-
mation domain (Jupiter) [5] to benchmark progress in terms of
memory use and recognition accuracy, using a test set of 1711
utterances collected over the telephone from real users.

2.1. Variable-rate HMM

The first simplification to our baseline system was to use only
landmark features, rather than the combination of more com-
plex segmental and landmark features [6]. 14 Mel-frequency
cepstral coefficients (MFCCs) are computed every 5 ms, and
a landmark detector hypothesizes likely phonetic boundaries,
averaging about 30 ms per landmark. A diphone context-
dependent hidden Markov model (HMM) is used to model
acoustic features centered at each landmark. The landmark rate
represents about a three-fold reduction compared to that typi-
cally used in other HMM systems.

Figure 1 shows the two-state HMM topology used for each
diphone. The transition from phone a to phone b is modelled
by t(a|b), and internal landmarks are modeled by i(b). The
internal landmarks are those that have been hypothesized be-
tween phone boundaries. In general, the internal model can be
context-dependent as well, but we used context-independent in-
ternal models in this work. The landmark feature vector con-
sists of averages over eight regions around a landmark, the fur-
thest out to ±75 ms. The resulting 112 dimensions are passed
through principal component analysis to reduce dimensionality
to 50, reduce statistical dependence, and to normalize variance.

t(a|b)

i(b)

Figure 1: Diphone HMM topology for diphone a|b.
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Later, in Section 2.2.1 we describe how to take advantage of
these properties by using the same scalar quantizer for all di-
mensions and a single Gaussian table.

2.2. Acoustic modeling

The distributions of models t(a|b) and i(b) are modeled using
Gaussian mixtures with diagonal covariance matrices, with a
maximum of 50 and average of 22 mixtures per model.

2.2.1. Parameter quantization

The primary motivation for quantizing Gaussian parameters
was to reduce the memory footprint of the acoustic models as
done in [4]. As an example, our baseline SUMMIT recognizer
for the weather domain utilizes 1,365 diphone acoustic models
and a total of nearly 30,000 diagonal Gaussians of dimensional-
ity 50. Storing all mean μ and variance σ2 parameters as 32-bit
floating-point values requires about 12 MB. By quantizing each
of these parameters, we can greatly reduce the memory foot-
print. We quantized the parameters from trained floating-point
models and evaluated the effect on recognition accuracy.

We used scalar quantization, where each dimension of a
mean vector �μ, variance vector �σ2, and feature vector �x, is
quantized independently. We compared both linear and non-
linear quantization, the latter trained using the iterative Lloyd-
Max algorithm [7]. As we will see in Section 2.2.2, there are
computational reasons why we may prefer linear quantization
of the mean and feature values.

We trained our quantizers on the μ and σ2 parameters con-
tained within our models. We found that, due to the principal
component analysis and variance normalization performed on
our feature vectors, there was no disadvantage to using the same
quantizer across different dimensions. We achieve slightly bet-
ter quantization results training the variance quantizer on 1/σ as
opposed to σ, as that caused less distortion for more sensitive
low-variance Gaussians.

Table 1 summarizes our best non-linear mean μ and vari-
ance σ2 quantization results for various compression ratios,
with the same quantizers applied across all feature dimensions.
For each level of compression, we show the best-performing
breakdown in bits for μ and σ2. We were surprised to see that,
even at 8:1 compression (5 bits for μ and 3 bits for σ2), recogni-
tion accuracy was not significantly degraded with respect to the
baseline floating-point parameters. The 8:1 compression ratio
is particularly interesting because it means we can fit a single
dimension’s (μ, σ2) pair within one byte, which has computa-
tional advantages, as presented in Section 2.2.2.

We also examined linear quantization of the mean μ param-
eters. There are computational advantages to such quantization
with respect to Gaussian table lookup. A 5-bit linear quantizer
with its minimum and maximum values set to the 0.5% and
99.5% quantiles performed the best. Combining the linear 5-
bit mean quantizer and the 3-bit non-linear variance quantizer,
we were able to achieve a 9.4% word error rate.

We did not consider vector or sub-vector quantization of the
feature space or Gaussian parameters at this time. Such quan-
tization requires vector operations (e.g., dot product), and for
large codebooks, memory and computation may exceed that of
scalar quantization. We may explore such techniques in the fu-
ture, although due to our “whitened” feature space, there may
not be much covariance structure to exploit.

bits
compression WERμ σ

32 32 1:1 9.5%

8 8 4:1 9.6%
6 4 6:1 9.3%
5 3 8:1 9.6%
4 2 10:1 10.1%
2 2 16:1 13.7%

Table 1: Gaussian parameter scalar quantization.

2.2.2. Computation

We now examine how quantized Gaussian parameters can be
used to evaluate multivariate Gaussians using table lookup. The
well-known density for a mixture of diagonal Gaussians of di-
mensionality D is

P (x|c) =
X

m∈Mc

wm

DY
d=1

exp
`−(xd − μm,d)2/σ2

m,d

´
σm,d

√
2π

(1)

where Mc is the set of mixtures for class c, and wm is the mix-
ture weight for mixture component m. Switching to log proba-
bilities, this becomes

log P (x|c) = log
X

m∈Mc

exp [log wm + Gm(x)] (2)

where Gm(x) is the log density of mixture component m,
which can be computed as

Gm(x) =
DX

d=1

"
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σ2
m,d

− log
“
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√
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(3)

By quantizing x to x̃, μ to μ̃, and σ to σ̃, we can approximate
Gm(x) by a sum of table lookups

Gm(x) ≈
DX

d=1

T [x̃d, μ̃m,d, σ̃m,d] (4)

The total number of table entries is QxQμQσ , where Qi is the
number of discrete quantized values for parameter i.

However, considering the form of (3), if we use the same
linear quantizer for both x and μ we can further simplify this to

Gm(x) ≈
DX

d=1

T [|x̃d − μ̃m,d|, σ̃m,d] (5)

The total number of table entries in T is now only QμQσ . If μ
and σ are quantized so they together fit in a single byte (e.g., 5
bits for μ̃ and 3 bits for σ̃), we need only 256 total table entries
for all possible Gaussian density computations.

Another advantage to μ̃ and σ̃ fitting in a single byte is that
we can use 32-bit operations to load x̃ and (μ̃, σ̃), compute |x̃−
μ̃|, and compute indices into table T four dimensions at a time.
Even without using specialized MMX-style operations, which
may or may not be available on a given mobile processor, we
found we could evaluate acoustic model densities nearly twice
as fast by operating on four dimensions at a time vs. only one at
a time.

Although the 8:1 compression of Gaussian parameters and
table lookup implementation was targeted at mobile devices
with limited memory and no floating-point hardware, we were
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pleasantly surprised to find these techniques can improve speed
on more powerful desktop hardware. Our baseline system uti-
lizes hand-crafted SSE code for x86 hardware to operate on four
floating-point dimensions at a time, but the new fixed-point im-
plementation yielded a significant 35–70% speed gain.

Note that, although our baseline system can make use of
mixture tying and Gaussian selection to speed model evaluation,
we have not yet implemented these within PocketSUMMIT. Ty-
ing is very straightforward, but Gaussian selection can involve a
significant memory cost to store overlapping lists of Gaussians
to evaluate for each feature space region. In the future, we plan
to investigate techniques similar to [3] to address this issue.

2.3. Finite-state transducer (FST) formulation

We have long utilized finite-state transducers (FSTs) within our
SUMMIT system for combining and optimizing various lin-
guistic constraints [5, 8]. We typically make use of two FSTs in
different recognition passes. The first-pass FST is

R = M ◦ C ◦ P ◦ L ◦ G1 (6)

where G1 is the first-pass language model, L is the lexicon
modeling words as sequences of phonemes, P applies a phono-
logical model from phoneme sequences to phone sequences, C
applies context-dependent phone model labels, and M repre-
sents the individual model topology for each context-dependent
model (e.g., Figure 1). These individual FSTs are typically
composed together and then optimized using ε-removal, deter-
minization, and minimization. The result is a single, flat FST
that can be rapidly traversed during the initial recognition pass.

The second FST G2 applies the final language model G to
the output of the first pass. The idea is that a much smaller
language model G1 can be used in the first stage of decoding
and the much larger full language model G can be used in a later
stage. If we define the incremental n-gram G2 = G−1

1 ◦G, then
G2 can be composed with the output of the first pass to rescore
with the language model G. Typically, G2 can be formed by
subtracting G1’s log probabilities from those in G.

2.3.1. FST size reduction by pruning

Typically, we use a pruned bigram for G1 and a full trigram for
G. By varying the amount of pruning applied to G1, we can
vary the size of the recognition FST R. As we reduce the size
of G1, we are using a weaker language model in the first pass,
and thus may introduce search errors if correct hypotheses fail
to survive beam pruning. In [9], we also found that FST deter-
minization of R performed a kind of tree-based language model
lookahead based on G1, which can be helpful with aggressive
beam pruning.

Table 2 shows how recognition accuracy degrades as we
increasingly prune G1, along with resulting bigram and FST
sizes. Here we prune the bigram G1 by applying a threshold
to bigram counts. An alternative technique that yields slightly
better results is Stolcke pruning [10]. With a threshold of 4, we
can reduce the FST size by more than a factor of two with only
a small degradation in accuracy. Note that the full language
model G is applied in all cases during N -best rescoring.

2.3.2. FST weight quantization

In PocketSUMMIT, to further reduce the size of the recognition
FST R and incremental n-gram G2, we applied separate non-
linear quantization to the weights of each. Table 3 summarizes
the effects on accuracy of various quantization on R and G2. It

threshold bigrams R transitions WER

1 23411 259164 9.5%
2 12964 171822 9.6%
4 7748 124998 9.9%
8 4794 98670 10.2%

16 2997 22404 10.7%

Table 2: Recognition accuracy vs. FST R size.

bits WER

32 9.5%

7 9.8%
6 9.6%
5 9.8%
4 9.8%
3 10.2%

(a) FST

bits WER

32 9.5%

6 9.9%
5 9.8%
4 9.8%
3 9.7%
2 10.1%

(b) n-gram

bits
WERFST n-gram

32 32 9.5%

6 3 9.7%
5 3 9.6%
4 3 9.8%
3 3 10.3%

(c) FST and n-gram

Table 3: FST R and incremental n-gram G2 weight quantiza-
tion.

is interesting to note that we can more aggressively quantize the
weights in G2 compared with those in R. We hypothesize that,
because G2’s weights represent n-gram log probability differ-
ences spanning a smaller range, they do not require as many
quantization levels. We settled on 5-bit quantization for FST R
weights and 3-bit quantization for n-gram G2.

2.3.3. FST bit packing

In the baseline SUMMIT system, the FST R is stored directly
with a transition consisting of five 32-bit values (previous state
index, next state index, input label index, output label index,
and weight) for a total of 160 bits per transition. In Pocket-
SUMMIT, we chose to bit pack transitions utilizing a variable
number of bits in order to exploit FST structure. For exam-
ple, self loops will only contain i(b) model input labels, not
have word output labels or weights, and the next state does not
need to be represented explicitly. The result is that transitions
can be encoded with 12–44 bits, with an average of about 28
bits/transition. With 125,000 transitions, this resulted in a size
reduction from 5.9 MB to only 544 kB. We apply similar bit-
packing to the n-gram G2, reducing its size for 96,000 trigrams
from 1.0 MB to 352 kB.

We were a bit concerned that using a bit-packed representa-
tion of FST R, in which the transitions are variable-sized, would
adversely affect recognition speed when comparing against
fixed-size data structures using properly aligned 32-bit values.
After all, this FST is heavily accessed during the first pass to
look up partial path extensions. However, it has been our experi-
ence that even though bit-level operations are needed to unpack
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the variable-sized FST structure, overall speed is approximately
5–10% faster with the smaller, bit-packed and weight-quantized
representation. Presumably, the smaller FST representation fits
better within processor caches, more than making up for the op-
erations needed to unpack it on demand.

2.4. Decoder search

In our baseline SUMMIT system, recognition is spread over
several passes. Two passes are used to generate a state/word
graph using FST R, and two more passes are used to rescore
it with G2 and compute the final N -best list (or word graph)
result.

For PocketSUMMIT, we simplified the decoder to produce
a state/word graph in the first pass. The beam pruning param-
eters directly control the size of this graph. When the pool of
pre-allocated graph states or transitions is exhausted, the graph
is incrementally pruned using a backwards A* search to keep
the most likely transitions. At the end of the utterance, a deep
N -best list is computed with an A* search, and finally this N -
best list is rescored with the incremental n-gram G2. The new
decoder search uses considerably less memory and runs much
faster, with typical latency under 10 ms on desktop hardware.

2.5. Putting it all together

We already had a fixed-point front-end to compute MFCCs from
earlier distributed speech recognition work [11]. All other com-
ponents of PocketSUMMIT were rewritten using only fixed-
point arithmetic. The external models (Gaussian mixture mod-
els, recognition FST R, and rescoring n-gram G2) are all im-
plemented using memory-mapped files so they can be loaded
on demand by the operating system. The PocketSUMMIT con-
tinuous speech recognition engine compiles to a small 130 kB
Windows DLL or Linux shared library.

For the Jupiter weather information domain, the memory-
mapped model components total 2.5 MB. Using more recent
acoustic models trained using the minimum classification error
(MCE) criterion [12], we have since halved the number of Gaus-
sian mixtures, reducing this total to 1.7 MB with no degradation
in accuracy. The total run-time memory footprint, including
memory-mapped components, DLL, and dynamic memory is
3.2 MB in Windows CE/Mobile. The recognizer currently runs
on a 408 MHz ARM-based Windows Mobile smart phone at
approximately real time speed.1 The word error rate is only
slightly degraded with resepect to the baseline system at 9.9%.

PocketSUMMIT can also run from a context-free or finite-
state grammar. We have put together a system one might use
to access music on a personal music device. Loading the music
content from such a device containing 2600 song titles, 350 al-
bums, 330 artists, and a total vocabulary of about 3000 words,
PocketSUMMIT runs in under 2.5 MB and nearly real-time
speed on a 204 MHz ARM. In this case, PocketSUMMIT’s foot-
print is smaller than a typical song’s MP3 file.

3. Conclusion and future work
We have completed an initial implementation of PocketSUM-
MIT by simplifying our baseline SUMMIT system, aggres-
sively quantizing Gaussian, FST, and n-gram parameters, and
generally rewriting the complete decoder for fixed-point op-

1PocketSUMMIT runs Jupiter at approximately 20 times faster than
real time on a 3.2 GHz Pentium 4 Linux system, in the same 3.2 MB.
This speed is about 5 times faster than the baseline SUMMIT.

erations with an eye toward minimizing memory footprint at
every opportunity. Particular care was given to efficient com-
putation of the Gaussian mixture models. Initial indications
are that PocketSUMMIT can easily run moderate-vocabulary
conversational speech recognition at real-time speed on typical
PDA and smart phone processors with a memory footprint of a
few MB. Properties of PocketSUMMIT that we believe are par-
ticularly helpful in reducing computation include the variable-
rate landmark detection, simple diphone HMM topology, effi-
cient acoustic model compression and evaluation, and the use
of FSTs to flexibly optimize constraints used in the first pass.

Future work will include implementing some of the ca-
pabilities of SUMMIT left out of the initial implementation
of PocketSUMMIT including dialogue state-dependent gram-
mar/vocabulary and multi-pass dynamic vocabulary recognition
[13], mixture tying, and Gaussian selection. It appears that our
MCE-trained Gaussian mixture models are more sensitive to
parameter quantization when compared to ML-trained models,
and we intend to examine and address the interaction of MCE
training with parameter quantization.
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