
SPEECH RECOGNITIONWITH LOCALIZED
TIME-FREQUENCY PATTERN DETECTORS

Ken Schutte, James Glass

MIT Computer Science and Arti cial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA

{kschutte,glass}@mit.edu

ABSTRACT

A method for acoustic modeling of speech is pre-
sented which is based on learning and detecting the oc-
currence of localized time-frequency patterns in a spec-
trogram. A boosting algorithm is applied to both build
classi ers and perform feature selection from a large set
of features derived by ltering spectrograms. Initial ex-
periments are performed to discriminate digits in the Au-
rora database. The system succeeds in learning sequences
of localized time-frequency patterns which are highly in-
terpretable from an acoustic-phonetic viewpoint. While
the work and the results are preliminary, they suggest that
pursuing these techniques further could lead to new ap-
proaches to acoustic modeling for ASR which are more
noise robust and offer better encoding of temporal dy-
namics than typical features such as frame-based cepstra.

Index Terms— automatic speech recognition, acous-
tic modeling

1. INTRODUCTION

The goal of this work is to explore front-end architectures
for automatic speech recognition (ASR) which may of-
fer ways to effectively model the time-frequency patterns
crucial for speech perception. In particular, the work here
primarily addresses methods to bring two improvements
over current acoustic modeling: the use of localized fea-
tures, and more explicit modeling of temporal dynamics.
Traditional ASR systems rely on frame-based spec-

tral features, such as MFCCs or PLPs. There has been
much work proposing alternatives which do not suffer
from the non-localized nature of these features – i.e. each
feature value can be affected by energy at any frequency.
These ideas include sub-band recognizers, missing fea-
ture methods [2], TRAPs [5], and Gabor analysis [6].
Many of these systems have shown performance gains,
but there is more work needed to effectively combine lo-

calized features (or estimate binary masks in the case of
missing feature methods).
Another area in which traditional current modeling

techniques are lacking is the modeling of temporal dy-
namics. Dynamic events, such as formant transitions,
are very important in the determination of phonetic iden-
tity. However, the typical way to capture such informa-
tion is through the use of crude delta features and discrete
HMM states, which are not a natural t to smooth tempo-
ral changes. We would like to use a set of features which
are designed speci cally to capture such information.
For example, consider the spectrogram in Figure 1.

A particularly prominent acoustic-phonetic feature is the
rising energy of the second and third formants during
/r iy/ starting at t=0.6 seconds. Next to the spectrogram is
shown a localized time-frequency lter designed to locate
an event such as this. The response shown below is the
result of convolving this “patch” over the spectrogram.
Notice that when the features themselves are designed
to capture speci c spectro-temporal events, the response
can be very pronounced.
Our approach will be to utilize a large bank of time-

frequency lters to generate features, and learn models
of our phonetic units which capture the time-evolution of
these features. This approach is in uenced by past work
which utilized spectro-temporal lters [3, 6], and models
based on local spectrogram patterns [1].

2. FEATURES AND DATA

2.1. Time-Frequency Filters

While we ultimately might prefer to learn our set of lters
from data, our initial work is based on manually design-
ing a set of basic time-frequency patterns with which we
will lter our spectrograms. A subset of such lters are
shown in Figure 2. While we have explored other, more
complicated shapes and parameterizations, the set used

341978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

Fr
eq

 (k
Hz

)

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6
Fr

eq
 (k

Hz
)

Time (sec)
0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

Time (ms)
50 0 50

1.25

0

1.25

∗

Fig. 1. The spectrogram of a section of a TIMIT utter-
ance, and its response to a small time-frequency lter
designed to detect formant transitions at slope 15Hz/ms.
Notice the strong response for /r iy/ in “greasy” starting
at t=0.6 sec.

here is very simple, and are essentially basic edge de-
tectors taking only the values +1 and −1. The selection
includes vertical edges (of varying frequency span and
temporal duration) for onsets and offsets; wide horizontal
edges for frication cutoffs; and horizontal edges tilted at
various slopes to model formant transitions. The choices
for the ranges of the various parameters were made based
on acoustic phonetic knowledge, such as typical formant
bandwidths, average phone durations, typical rates of for-
mant movement, etc [10].

Fre
q (

Hz
)

800

0

800

50 0 50

800

0

800

time (ms)
50 0 50 50 0 50

Fig. 2. Several examples of the time-frequency lters
employed. The set used here had 291 such lters with
various parameters.

Taking one such lter, pi(t, ω), centering it at a par-
ticular frequency, ωi, and convolving1 with a spectro-
gram x(t, ω), results in a “feature”, which is a function
of time,

fi(x; t) =
∑

τ

∑

g

pi(τ, g)x(t − τ, ωi − g) (1)

The next section will describe how models are learned
from such features.

1Actually, it is the convolution with the ipped version of this lter,
p(−t,−ω), resulting in the dot-product of p(t, ω) centered at each
point in the spectrogram. We will use the term “convolution” without
making this distinction.

2.2. Biological Interpretation

While our goal is not to explicitly design a biologically-
plausible system, it is worth noting that the features (and
how they will be used, described later) have a natural
biological interpretation. Recent work [3] has character-
ized subsets of neurons in the primary auditory cortex
as having approximately a linear response to a particular
time-frequency pattern, referred to as a spectro-temporal
receptive eld (STRF).
Each of our features, fi(t) is analogous to the ring

rate for a single cortical neuron with STRFs shaped like
the patches in Figure 2 and located at a particular cen-
ter frequency. The overall classi cation system, as will
be described, consists of linear combinations of the “ r-
ing” of these neurons in a particular temporal pattern.
Therefore, the overall system output can be thought of
as another neural-network layer on top of such cortical
neurons.

2.3. Features

For each phonetic unit, we would like to learn a model
of the temporal sequence of the lter responses, fi(t).
For example, the model might encode pieces of infor-
mation of the form, “phonetic unit m is characterized,
in part, by a strong response from lter pi centered at
time-frequency point (ti,ωi)”. As will be explained, the
experiments described here use whole words as the fun-
damental units. To discretize the possible time-frequency
locations for particular events, we sample lter responses
over a 16x32 point grid over the T-F plane of each train-
ing token (each word). The 32 frequency points are taken
linearly between 0 and 4kHz. Choosing the 16 time points
needs to be treated more carefully. We use a conventional
speech recognizer (HMM/GMM/MFCC-based) with 16
states per word to create forced-path alignments over all
of our data. The centers of the 16 states in the state
alignment are used as the time samples for each word.
Therefore, in the discussion of feature selection below,
a single “feature” refers to both the lter shape, and the
time-frequency point (in this 16x32 point grid) at which
it is centered.

3. BOOSTING ALGORITHM AND FEATURE
SELECTION

Our goal is to take these lter outputs at particular times
and frequencies, and learn a pattern to discriminate pho-
netic units (in the task explored here, to discriminate iso-
lated words). Considering each lter at each point in

342

Input: (x1, y1), . . . , (xN , yN), spectrograms x,
binary labels yi ∈ {+1,−1}.

Output: Parameters {ft, θt, αt}, t = 1, . . . , T for
use in Equation 2.

begin

w0,i =

(
1/(2

P
Yi=+1

1), Yi = +1

1/(2
P

Yi=−1
1), Yi = −1

for t = 1, . . . , T do
ft, θt, εt ←− minf,θ ε
i.e. nd feature and threshold to minimize
weighted error (solved via Algorithm 2).

αt ←− log((1− εt)/εt)

wt+1,i =

(
Ztwt,i εt/(1− εt) xi correct
Ztwt,i, otherwise.

where Zt normalizes s.t.
P

wt+1 = 1.

end
Algorithm 1: AdaBoost for classi cation and fea-
ture selection, as in [11].

our “grid” results in a large number of possible features,
many of which are likely to be uninformative.
To address these problems, we use a boosting method

which was proposed by Viola and Jones [11] for face
detection in images. The algorithm is essentially Ada-
Boost [4], in which the “weak classi er” in each iteration
chooses the single best feature available – simultaneously
performing both classi cation and greedy feature selec-
tion. The details of the algorithm are given in the gures
above, and we discuss it below.

3.1. Algorithm

Boosting algorithms (and in particular, AdaBoost [4]) at-
tempt to combine multiple “weak classi ers” into a sin-
gle strong classi er. We choose our weak classi ers to
be “decision stumps” (a popular choice for AdaBoost),
meaning that each classi er simply chooses a single scalar
dimension and a threshold – each side of the threshold
is assigned to one of the two classes (performing binary
classi cation). The boosting procedure creates a weighted
vote of these simple decisions.
Mathematically, the algorithm results in a function to

compute a score, S(x), for an input spectrogram, x, of
the form,

S(x) =

T∑

t=1

αt sign(ft(x) − θt) (2)

=
∑

ft(x)≥θt

αt −
∑

ft(x)<θt

αt (3)

Input: Pre-computed, pre-sorted features fj(xi);
weights on each training point, wi; labels
yi ∈ {+1,−1}

Output: {θ∗, f∗, ε∗} = minθ,f ε

begin
W+1 ←−

∑
Yi=+1 wi

W−1 ←−
∑

Yi=−1 wi

ε∗ ←− ∞
foreach fj do

ε ←− W+1

ε ←− W−1

for i = 1, . . . , N (sorted order) do
ε ←− ε + Yiwi

ε ←− ε − Yiwi

if ε < ε∗ then ε∗, f∗, i∗ ←− ε, fj, i

if ε < ε∗ then ε∗, f∗, i∗ ←− ε,−fj, i

θ∗ = mean(f∗(xi∗), f∗(xi∗+1))
end
Algorithm 2: Ef cient method for optimal feature
selection and calculation of weighted error, ε, as
de ned in Equation 4.

The binary decision (hypothesized class +1 or −1), is
taken as the sign of S(x). This is a simple weighted vote
over T decision stumps (using T features). If a feature
value exceeds its threshold (i.e. that neuron “ res”), the
weight is added; otherwise, it is subtracted.
AdaBoost chooses parameters, αt, as shown in Algo-

rithm 1 (more details in [9]). The weight given to each
weak classi er is a function of its weighted error, εt, on
the training set,

εt =
1

2

N∑

i=1

wt,i [1 − Yi sign(ft(xi) − θt)] (4)

=
∑

ft,θt mis-
classifyxi

wt,i (5)

Each training point is given a weight,wi, which changes
on each iteration to re ect how well it has been classi ed
by previous iterations. Each iteration “concentrates on”
those examples which have been dif cult to classify in
previous iterations.
As was proposed in [11], we choose the weak learner

in each iteration by searching our features for the best
available decision stump classi er. We present an ef -
cient method to perform this search in Algorithm 2. If
the features are sorted, then the weighted error can be
tracked while stepping through each training point one

343

at a time, hypothetically placing the threshold between
each one. This algorithm simultaneously considers the
feature for a particular lter, pj(t, ω) and the feature cor-
responding to the lter with the opposite sign, −pj(t, ω),
which doubles the number of potential features with little
overhead. Comments on the computational time for this
search are discussed in Section 3.3.

3.2. Multi-class

The algorithm as described is for binary classi cation.
While there are a number of proposed approaches for
AdaBoost for multi-class problems [8], for now, we use
a simple one-vs-all (OVA) scheme to do 11-way classi -
cation. A model is trained for each word (with all others
as negative examples), and we choose the class with the
highest normalized score,

k∗ = argmax
k∈W

1
∑T

t=1 αt,k

T∑

t=1

αt,k sign(ft,k(x) − θt,k) (6)

An additional subscript, k, has been added to denote the
class, i.e. the word, W = {one, two...}. The weights
are normalized to facilitate comparisons across classes.
A bene t of the OVA approach is that the set of features
learned for a particular word can be viewed as word “pro-
totypes”, as will be shown.

3.3. Computational Issues

Choosing the best decision stump classi er on each it-
eration performs a brute-force search over features and
thresholds; however, as shown in Algorithm 2, this can
be accomplished very ef ciently. For one set of param-
eters we used, there were essentially 297,984 potential
features,2 from which a single one is chosen as ft in each
iteration. While each iteration of AdaBoost must be run
in sequence, the search over features in each iteration can
be parallelized. Using a cluster of roughly 50 standard
desktop machines, this technique can nd the best fea-
ture for all 11 binary classi ers in about 5 minutes. Note
that 11 times 297,984 results in over 3.2 million features,
and for each one it is checking every potential unique
threshold value on the training set of 27,727 words.

2297, 984 = 291 “prototype” lter shapes × 2 signs (+1/-1) × 32
frequency points × 16 time points.

4. EXPERIMENTS AND ANALYSIS

4.1. Data

We explore these techniques on the task of isolated digit
recognition on the Aurora database [7]. While this is a
simple task, it is well suited to our goals. Using more
complex units (such as whole words or syllables) offers
more temporal structure to bemodeled, compared to other
reducedASR tasks such as phonetic classi cation or recog-
nition. Our preliminary goals are to show the feasibility
for new approaches, rather than requiring cutting-edge
performance on dif cult tasks. All results presented use
the clean training set and test set A-N1 (train noise).

4.2. Selected Features

Figure 3 shows a sample of the output from running the
learning algorithm on the clean Aurora training set. No-
tice that the features selected have very recognizable pho-
netic identities, as described in the gure’s caption. Hav-
ing such interpretable features is a very desirable prop-
erty for analyzing the weaknesses of a system, which is
typically not easy with traditional frame-based features
and classi ers.

4.3. Classi cation Performance

To perform classi cation, we use the times of the 16
states taken from the original HMM alignments corre-
sponding to the test word. While this is an unrealistic test
condition, it presents data in the way done in training, so
it can effectively test the performance of the learning al-
gorithm. The digit classi cation results for this case are
shown in the Table 1. In general, it is very accurate. It is
interesting to note how well a single feature can perform
– e.g. the best feature for the word “six” has a 0.15% test
error (5/3257 in test set).3 This feature happens to detect
the low frequency offset of voicing at the /k/ closure.
Testing was also done on various noise conditions in

Aurora. The rst row in Table 2 shows these results using
T = 100 localized features. The table also shows results
using a baseline HMM-based recognizer using MFCCs
and GMMs. Note, however, that for the results of our
system, additional information is known – namely the
16 time points at which to measure the feature values.
Therefore, the HMM results should be taken as a refer-
ence for typical performance, rather than a direct com-
parison to the described system. Future work must ad-

3The method used tries to minimizes the equal-error-rate for each
classi er. Minimizing the total-error-rate for the “six” actually results
in 3/3257 = 0.09% error for the single best feature.

344

"one"

"two"

"three"

1

2

1

2

1
2

Fig. 3. Example of learned features. The left three columns show three example spectrograms of the words “one”,
“two”, and “three”.The column on the right shows the rst two features that the algorithm chooses to distinguish the
respective words (white=−1, black=+1). Note the recognizable phonetic interpretations: for “one”, the upper and
lower edges of a rising F2 for /w ah/; for “two”, the onset of high-frequency aspiration for /t/, followed by low-
frequency voicing onset (note the implicit encoding of voice-onset-time); for “three”, high-frequency offset for the
end of /θ/, followed by the lower edge of a rising F2/F3 for /r iy/.

Training Set Test Set
% Error min T w/ % Error

T=1 T=10 zero error T=1 T=10 T=100
one 2.27 0.13 18 2.03 0.18 0.03
two 1.37 0.01 14 1.60 0.12 0.03
three 4.98 0.16 20 5.43 0.37 0.00
four 1.78 0.21 25 1.87 0.25 0.03
ve 4.02 0.32 32 3.65 0.55 0.06
six 0.16 0.00 3 0.15 0.03 0.00
seven 12.14 0.80 34 11.82 1.14 0.00
eight 1.60 0.04 14 1.78 0.09 0.00
nine 14.12 0.70 30 14.83 0.95 0.09
zero 5.68 0.13 15 6.08 0.40 0.06
oh 7.13 1.87 53 7.34 2.21 0.06
M.C. 12.42 0.18 23 13.85 0.46 0.06

Table 1. Table of classi cation error rates with T itera-
tions of boosting, i.e. using T features. The third column
shows how many iterations it takes for the training error
to reach zero. The bottom row gives multi-class error.
The test set has 3257 words, so 0.03% is a single error.

dress hypothesizing these time points, as discussed in the
next section.

5. DISCUSSION

We have presented initial work on modeling speech with
a collection of localized time-frequency pattern detec-
tors. While the results are only at the level of proof-of-
concept, we consider them encouraging signs for future

SNR (dB)
clean 20 15 10 5 0 -5

Local
features

0.06 0.43 1.57 5.00 14.6 35.2 58.9

HMM 0.40 0.86 2.18 7.55 21.7 48.3 71.9

Table 2. Classi cation error rates at a range of signal-
to-noise (SNR) ratios. Note that these two systems use
different information – see section 4.3.

work. For each model, the system learns a sequence of
localized events which are easily interpretable as known
acoustic-phonetic phenomena, and have strong discrim-
inative ability. Other potential bene ts not discussed here
include the fast decoding times and the potential for learn-
ing from few training examples.

There are many directions for future work. The re-
sults presented here do not deal with locating the time
points at which to sample the features during decoding.
Ongoing work is attempting to use a dynamic program-
ming algorithm to choose the time points such that the
score in Equation 2 is maximized. Another future di-
rection is to move to more complex tasks, and explore
ways to use these techniques in a full, continuous speech
recognition system. Doing so will likely require choos-
ing basic modeling units other than whole words, such as
syllables, triphones, or diphones.

345

6. REFERENCES

[1] Y. Amit, A. Koloydenko, and P. Niyogi. Robust acous-
tic object detection. Journal of the Acoustical Society of
America, 118:2634–2648, 2005.

[2] J. Barker, M. Cooke, and D. Ellis. Decoding speech in
the presence of other sources. Speech Communication,
45:5–25, 2005.

[3] T. Chi, P. Ru, and S. Shamma. Multiresolution spec-
trotemporal analysis of complex sounds. Journal of the
Acoustical Society of America, 118:887–906, 2005.

[4] Y. Freund and R. E. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. In European Conference on Computational Learning
Theory, pages 23–37, 1995.

[5] H. Hermansky and S. Sharma. Temporal patterns
(TRAPs) in ASR of noisy speech. In International Con-
ference on Acoustics, Speech, and Signal Processing,
1997.

[6] M. Kleinschmidt and D. Gelbart. Improving word accu-
racy with gabor feature extraction. In International Con-
ference on Spoken Language Processing, 2002.

[7] D. Pearce and H.-G. Hirsch. The Aurora experimen-
tal framework for the performance evaluation of speech
recognition systems under noisy conditions. 2000.

[8] R. E. Schapire. Using output codes to boost multiclass
learning problems. In Proc. 14th International Con-
ference on Machine Learning, pages 313–321. Morgan
Kaufmann, 1997.

[9] R. E. Schapire. The Boosting Approach to Machine
Learning – An Overview. Springer, 2003.

[10] K. N. Stevens. Acoustic Phonetics. The MIT Press, Cam-
bridge, MA, 1998.

[11] P. Viola and M. Jones. Robust real-time object detection.
In Workshop on Statistical and Computational Theories
of Vision, Vancouver, Canada, July 2001.

346

