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Abstract

Audio classification has applications in a variety of con-
texts, such as automatic sound analysis, supervised audio seg-
mentation and in audio information search and retrieval. Ex-
tended Baum-Welch (EBW) transformations are most com-
monly used as a discriminative technique for estimating para-
meters of Gaussian mixtures, though recently they have been
applied in unsupervised audio segmentation. In this paper,
we extend the use of these transformations to derive an audio
classification algorithm. We find that our method outperforms
both the Support Vector Machine (SVM) and Gaussian Mixture
Model (GMM) likelihood classification methods.
Index Terms: audio classification, gradient methods

1. Introduction
Audio steams, such as broadcast news or meeting recordings,
contain audio from a wide variety of sources, including speech,
music, coughing, laughter, etc. Classification has become an
important tool to describe an audio scene characterized by nu-
merous acoustic events. In addition, it has also been used as
a preprocessing step in speech recognition to segment an au-
dio stream into homogeneous regions where each region can be
handled in a different manner.

Audio classification research has focused in two main ar-
eas, namely in developing numerous audio features and clas-
sification techniques. For example, while Mel-frequency cep-
stral coefficients (MFCCs) have become the dominant feature
representation in speech recognition, they do not capture pitch
and timbre information which is also important for representing
general audio sounds. In [1], time and frequency-based features
are extracted to represent perceptual features such as loudness,
pitch, brightness, bandwidth, and harmonicity, while in [2] a
combination of perceptual and cepstral features are used.

Various classification techniques have also been explored
in parallel. In [3], speech/music classification using a Gaussian
maximum a posteriori (MAP) estimator, a GMM, a spatial par-
titioning scheme based on k-d trees, and a nearest neighbor clas-
sifier are compared. In recent years, SVMs have been shown to
offer improved performance over these previous classification
techniques [2].

EBW transformations have been used extensively in the
speech recognition community [4], specifically as a discrim-
inative training technique to estimate model parameters of
Gaussian mixtures. Given an initial model and input data, [5]
derives an explicit formula to measure the gradient steepness
required to estimate a new model via the EBW transformations.

This gradient measurement is an alternative to likelihood to de-
scribe how well the initial model explains the data.

In [6] we redefined the likelihood ratio test, typically used
for unsupervised segmentation tasks, with this measure of
gradient steepness. We showed that our EBW segmentation
method offered improvements over two standard techniques.
In this paper, we further demonstrate that the EBW transfor-
mations appear to be a general technique to explain the qual-
ity of a model used to represent the data. Specifically, we use
these transformations to develop a novel audio classification al-
gorithm, which is able to outperform both the GMM likelihood
and SVM techniques.

The following section provides background on the EBW
transformations, followed by the EBW classification algorithms
in Section 3. Section 4 presents the experiments performed,
followed by a discussion of these results in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2. Extended Baum-Welch Transformations
2.1. Motivation of using EBW Transformations

Given some input data, there are many different approaches
used to calculate how well a model represents this data.
One common approach is to calculate the likelihood, that is
p(data|model). Another method is to calculate the gradient,
as shown in Figure 1. Given an initial model for our data and
an objective function, we can estimate a new model for our data
by finding the best step along the gradient of the objective func-
tion. We can think of the gradient slope as measuring how much
we have to adapt an initial model to fit the data. A steep slope
indicates the initial model does not fit the data well, while a flat
slope indicates the initial model is a good fit for the data. The
EBW transformations provide solutions to estimate this new
model, and also provide a measure of the gradient steepness
to explain the quality of the initial model to fit the data.
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Figure 1: EBW Model Update Graph



2.2. Derivation of EBW Transformations

The EBW procedure involves continuous transformations that
can be described as follows. Assume that data X =
(x1, ...xM ), from frames 1 to M , is drawn from a Gaussian
mixture model θk, with each component j parameterized by
the following mean and variance parameters λk

j = {µk
j , σk

j }.
Let us define the probability of frame xi ∈ X given mixture
component j as p(xi|λk

j ) = zk
ij = N (µk

j , (σk
j )2). Let F (zk

ij)

be some objective function over zk
ij and ck

ij = zk
ij

δ

δzk
ij

F (zk
ij).

Given this function and initial model parameters λk
j , the EBW

transformations provide formulas to re-estimate model parame-
ters λk

j (D) = {µk
j (D), σk

j (D)} as:

µ̂k
j = µ̂k

j (D) =
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ijxi + Dµk
jPM
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2
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ijx
2
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�
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�

PM
i=1 ck

ij + D
−(µ̂k

j )2

(2)
Here D is a large constant chosen such that the objective func-
tion increases with each iteration, that is F (ẑk

ij) ≥ F (zk
ij).

Using EBW transformations (1) and (2) such that
λk

j → λ̂k
j (D) and zk

ij → ẑk
ij , [5] derives a linearization

formula between F (ẑk
ij) and F (zk

ij) for large D as:

F (ẑk
ij)− F (zk

ij) = T k
ij/D + o(1/D) (3)

Here T measures the gradient required to adapt initial
model λj to data xi, or equivalently how well the data is ex-
plained by the initial model λj . A large value in T means the
gradient to adapt the initial model to the data is steep and F (ẑij)
is much larger than F (zij). Thus the data is much better ex-
plained by the updated model λ̂j(D) compared to the initial
model λj . However a small value in T indicates that the gradi-
ent is relatively flat and F (ẑij) is close to F (zij). Therefore,
the initial model λj is a good fit for the data. In the next section,
we derive our EBW classification technique using both sides of
Equation 3.

3. Classification
Given a set of class models Θ = {θ1, θ2, . . . , θK}, the goal
of classification is to categorize an ensemble of input frames
X = {x1, . . . , xM}, where xi ∈ Rd, as belonging to one of
these models. Below we present the standard GMM likelihood
classification method and then discuss three different classifiers
derived from the EBW transformations.

3.1. GMM Likelihood

GMM likelihood classifiers are commonly used for various au-
dio classification tasks [3]. Assume that each frame, xi, is
drawn from a mixture of N gaussians where zk

ij is the likeli-
hood of frame xi given component j from GMM k and wk

j the
a priori weight of component j. Positing that each of the xi

vectors are independent and identically distributed, we define
the log-likelihood of X given model θk by F (zk

1:M ) as follows:

F (zk
1:M ) = p(X|θk) =

MX
i=1

log

NX
j=1

wk
j zk

ij (4)

Given an input sample X , we compute how well the data is
modeled by each class θk and choose the class θ∗ which has the
maximum likelihood. In other words:

θ∗ = arg max
θk

F (zk
1:M ) (5)

In the next section we will redefine the likelihood criterion
with our measure of EBW gradient steepness.

3.2. EBW-T

Instead of calculating the likelihood of data X belonging to
model θk, we can measure this via the T value in Equation 3,
similar to [6]. Let us define ck

ij as:

ck
ij = zk

ij
δ

δzk
ij

F (zk
ij) =

zk
ijw

k
jPN

l=1 wk
l zk

il

. (6)

Using Equation 3 and the objective function for F (zk
1:M )

given in Equation 4, [5] derives a closed-form expression for
T k

1:M for large D as follows:

T k
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(7)

The best model θ∗ is the one where the gradient to adapt
this model is smallest, and thus has the smallest T . Thus our
decision rule for the best class can be written as:

θ∗ = arg min
θk

T k
1:M (8)

Note that Equation 3 holds only for large D. In the next
section, we analyze a classification performance as we vary D.

3.3. EBW-F

We can also use the formula given in the right side of Equation
3 for classification. Here D is a constant chosen in the EBW
model re-estimation formulas, given by Equations 1 and 2. If
D is very large then training is very slow (but stable) but if D
is too small model re-estimation may not increase the objective
function on each iteration.

Thus, given an input sample X , the best class model θk

is the one which has the smallest increase in likelihood given
the updated model F (ẑk

1:M ) relative to the likelihood given the
initial model F (zk

1:M ). In other words the decision rule for the
best model is:

θ∗ = arg min
θk

�
F (ẑk

1:M )− F (zk
1:M )

�
×D (9)

3.4. EBW-SVM

In [4], Valtchev et. al shows that using a phone-specific D in-
stead of a global value allows for better updated phoneme mod-
els. Similarly, we investigate the accuracy within each class us-
ing a class-specific value of D. Let us imagine taking 4 EBW-F
classifiers with different D values, D1 to D4. If we apply D1
to input sample X we will get a score each of the K differ-
ent classes, same for D2, D3, etc. We can construct a feature
vector of these scores as:

fv = [D1,1(X), D1,2(X), . . . D2,1(X), . . . D4,K(X)] (10)



Here D1,1(X) is the EBW-F score from Equation 9 that classi-
fier D1 gives to assigning X to class 1, and D1,2(X) the score
of assigning X to class 2. Given the output scores of different
EBW-F D classifiers, we want to learn which optimal D classi-
fier scores to weight more heavily in predicting a class.

Given a training set {(fv1, c1), . . . (fvn, cn)} which con-
sists of a set of feature vectors fvi and corresponding class la-
bels, an SVM learns the hyperplane w · fv − b = 0 which
best divides the data. For each class, we can think of the SVM
as learning the appropriate weights for each score in order to
maximize the separation margin. Or more intuitively the SVM
learns which optimal D classifiers to weight more in classifying
an input sound.

4. Experiments
4.1. Corpus

We perform classification experiments on the Computers in the
Human Interaction Loop (CHIL) Isolated Acoustic Event data
set. This database has been collected by the University Poly-
technic of Catalonia (UPC) for their Acoustic Event Detection
and Classification tasks [7]. The set is divided into 3 sessions,
with 10 participants per session. Sounds are recorded in a
closed room using 16 different microphone types. At each ses-
sion, each participant takes a different place in the room and
records isolated acoustic events from 14 different classes as in-
dicated in Table 1. To match the classification experiments done
in [8], we only use 12 classes, excluding the unknown and door
opening classes.

Acoustic Event Label Acoustic Event Label
Knock kn Door open do

Door close dc Steps st
Chair moving cm Spoon (cup jingle) cl
Paper work pw Key jingle kj

Keyboard typing kt Phone ringing/music pr
Applause ap Cough co

Laugh la Unknown un

Table 1: CHIL Acoustic Events and Corresponding Labels

In our experiments, the data is sampled at 16kHz, and then
windowed to 20ms frames with a 10ms overlap. We compare
classifier performance using two different types of features. Our
first feature set consists of 19 dimensional MFCCs. Our second
feature set uses a combination of perceptual features similar to
[8], namely short-time energy, zero crossing rate, subband en-
ergy spectral flux, in combination with the MFCCs.

We use Session 1 and Session 2 of the CHIL corpus for
training. We train the GMM and EBW classifiers to find the
optimal number of mixture components, as well as the optimal
global and class-specific D values. For the SVM, 5-fold cross
validation is performed to find the best kernel parameters, as
well as the best C which represents a tradeoff between mini-
mizing training error and maximizing classifier generalization.
We found that a polynomial kernel was best for the EBW-SVM
while an exponential RBF [2] was used for the baseline SVM.

5. Results
Table 1 shows the classification results for the baseline and
EBW classifiers under both feature sets, with the best classifier

under each feature set highlighted in bold.

Classifier MFCCs MFCCs+Perc
GMM Baseline 88.91 91.88
SVM Baseline 92.43 93.04

EBW-T 89.82 91.19
EBW-F 90.27 93.04

EBW-SVM 92.64 94.78

Table 2: Accuracies for EBW and Baseline Classifiers

The EBW-T classifier outperforms the GMM for MFCC
features but the opposite is true when perceptual features are
also used. However, with an optimal global D value, the EBW-
F classifier outperforms both EBW-T and GMM for both feature
sets. To explain these results further, let us observe the tradeoff
between between EBW-F accuracy and choice of D in Figure
2. Notice that for very large D the EBW-F classifier accuracy
approaches that of the EBW-T. As we make D smaller and train
the updated model quicker, we are able to still get an appropriate
estimate for the updated model while still allowing the objective
function to increase. It is particularly beneficial to quickly up-
date the initial model if the slope of the objective function is
relatively flat.

At the optimal D, the EBW-F outperforms the EBW-T and
GMM. As shown by Equation 9, EBW-F captures the differ-
ence between the likelihood of a data given the initial model
and the likelihood with a model estimated from the current data
sequence being classified, while the GMM just calculates the
former. Since the GMM does not take into account model er-
ror which can be present, model re-estimation via EBW using
the current data is able to correct for this initial model error,
and explains why EBW-F outperforms the GMM. We find that
with the MFCCs, a higher value of D is preferred but with the
MFCCs+Perc, a slightly lower value of D is preferred. Since
EBW-T is defined for large D, this explains the performance
difference between the EBW-T and GMM for the two features.
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Figure 2: Accuracy vs. D for EBW-F Classifier

If we take D too small then we train our models too quickly
and do not increase the value of the objective function on each
iteration. Therefore we would expect that the EBW-F accuracy
should continue to decrease for smaller D. However, Figure 2
shows that accuracy decreases for small D but then increases for
very small D. To explain this factor, if we take D very small,



then we can re-write Equations 1 and 2 as independent of D:

µ̂k
j = µ̂k

j (D) =

PM
i=1 ck

ijxiPM
i=1 ck

ij

(11)

(σ̂k
j )2 = σ̂k

j (D)
2
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PM
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ijx
2
iPM

i=1 ck
ij

− (µ̂k
j )2 (12)

As D becomes smaller, the re-estimated model λ̂k
j (D) is

less influenced by original model λk
j . However, the updated

means and variances are weighted by ck
ij from Equation 6, and

those ck
ij which have higher likelihood zk

ij are weighted more.
Thus, for very small D the classifier accuracy increases as we
put less weight on the poor model re-estimation and more em-
phasis on the initial likelihood zk

ij . Thus the EBW-F score
moves closer to the the GMM likelihood classifier, which in
influenced entirely by zk

ij . As we will see below, we can obtain
better accuracy within some classes with a small D, where the
initial likelihood is emphasized more.

Instead of using a global D, we also looked to combine
EBW-F classifiers with different class-specific D values. Fig-
ure 3 shows that the highest accuracy for 5 different classes is
achieved by a different D. This means that the slope of the
objective function differs for various classes. Therefore each
class prefers a different rate, captured by D, to estimate the up-
dated model. For example, if the slope is relatively flat when
re-estimating the initial model, a larger value of D is preferred
to train models quicker and better estimate the updated model.
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Figure 3: Class Accuracy vs. D

As shown by Table 2, when we take the EBW-F scores for
different D values as features to an SVM, we find that the EBM-
SVM outperforms not only the baseline SVM but also outper-
forms classifiers used in [8] on the same data set.

Finally, we analyze in more detail the classification perfor-
mance of the EBW-SVM classifier. Figure 4 shows a bubble
plot confusion matrix for this classifier. The classes are grouped
according to general acoustic properties. The radii are linearly
proportional to the error rate, with the largest circle representing
12.97% error. The figure shows that the classes are most easily
confused with other classes that have similar acoustic proper-
ties. Generally, sounds which have loud period bursts knocking
are very distinct and have high accuracies. However, harmonic
sounds and soft period bursts have more varied acoustic proper-
ties and have much lower accuracies.
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6. Conclusions
In this paper, we expanded on our work from [6], showing that
the EBW Transformations are a general technique to explain the
quality of a model used to represent the data. Specifically, we
found that our EBW-F classifier outperformed the GMM while
the EBW-SVM technique offered improvements over both the
SVM and GMM methods. In the future, we would like to ap-
ply the EBW methods to speaker verification, where GMM is
currently the dominant approach. In addition, we would like to
explore other approaches to measuring gradient steepness.
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