
The WAMI Toolkit for Developing, Deploying, and
Evaluating Web-Accessible Multimodal Interfaces

Alexander Gruenstein
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139, USA
alexgru@csail.mit.edu

Ian McGraw
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139, USA
imcgraw@csail.mit.edu

Ibrahim Badr
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139, USA

iab02@csail.mit.edu

ABSTRACT
Many compelling multimodal prototypes have been devel-
oped which pair spoken input and output with a graphi-
cal user interface, yet it has often proved difficult to make
them available to a large audience. This unfortunate re-
ality limits the degree to which authentic user interactions
with such systems can be collected and subsequently ana-
lyzed. We present the WAMI toolkit, which alleviates this
difficulty by providing a framework for developing, deploy-
ing, and evaluating Web-Accessible Multimodal Interfaces
in which users interact using speech, mouse, pen, and/or
touch. The toolkit makes use of modern web-programming
techniques, enabling the development of browser-based ap-
plications which rival the quality of traditional native inter-
faces, yet are available on a wide array of Internet-connected
devices. We will showcase several sophisticated multimodal
applications developed and deployed using the toolkit, which
are available via desktop, laptop, and tablet PCs, as well as
via several mobile devices. In addition, we will discuss re-
sources provided by the toolkit for collecting, transcribing,
and annotating usage data from multimodal user interac-
tions.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—graphical user interfaces, natural language, voice
I/O ; I.2.7 [Artificial Intelligence]: Natural Language Pro-
cessing—language parsing and understanding, speech recog-
nition and synthesis

General Terms
Design, Experimentation

Keywords
multimodal interface, speech recognition, dialogue system,
World Wide Web, Voice over IP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’08, October 20–22, 2008, Chania, Crete, Greece.
Copyright 2008 ACM 978-1-60558-198-9/08/10 ...$5.00.

1. INTRODUCTION
A broad range of multimodal interfaces have been devel-

oped in which a spoken language understanding capability
complements a graphical user interface (GUI). Many such
interfaces provide for spoken natural language input in con-
junction with drawing, clicking and/or other rich GUI in-
teraction, for example: [6, 9, 12, 16]. Such interfaces offer
compelling alternatives to GUI-only applications, particu-
larly when used on devices such as tablet computers and
mobile phones which offer relatively high-resolution displays
and audio input/output capabilities, but limited keyboard
input. Indeed, the prevalence of such portable but powerful
devices offers an unparalleled opportunity to bring a variety
multimodal interfaces to the mainstream.

Unfortunately, while researchers may develop many in-
teresting multimodal applications, it is often challenging to
make them available to a large number of users outside of the
laboratory. The systems typically rely on a hodgepodge of
components: speech and gesture recognition engines, natu-
ral language processing components, and homegrown graph-
ical user interfaces. It can be challenging to package up these
components so that they can be easily installed by novice
users, particularly for an academic research lab with limited
engineering resources. As such, system deployment is usu-
ally limited to hardware within the laboratory, limiting data
collection to traditional in-lab user studies.

We believe, however, that breakthroughs in multimodal
interfaces will come when they can more cheaply and easily
be made available. Unimodal spoken language interfaces, for
example, have benefited enormously from their accessibility
via the telephone, which is a natural, easy, and cheap means
of making them available to a large number of users. Inter-
face quality benefits greatly from the iterative improvements
which become possible by analyzing usage data gleaned from
a large number of interactions with real users [14, 20].

In this paper, we present a toolkit which enables interface
developers to cheaply develop, deploy, and evaluate multi-
modal interfaces. The toolkit, called WAMI, provides a ba-
sis for developing Web-Accessible Multimodal Interfaces,
which are accessible to any user with a standard web browser
and a network connection. Applications are easily accessed
not only from desktop, laptop, and tablet computers, but
from a variety of mobile devices as well. Moreover, because
WAMI takes advantage of modern web-programming tech-
niques revolving around AJAX (Asynchronous Javascript
and XML), graphical user interfaces can be developed in
the framework which rival the quality of traditional native
interfaces.

Multimodal interfaces developed using web-standards have
a number of key advantages beyond their easy accessibility
to a large number of users. First, interfaces provided via the
network can run computationally demanding processes such
as speech recognition on fast servers, which is especially im-
portant for mobile devices. Second, web-based applications
can make use of a growing array of powerful services avail-
able via the web. Third, collecting usage data for research
is straightforward: users interact with the system via the
comfort of their own devices, yet those interactions can be
centrally logged.

The ability to analyze usage data collected via the web is
critical for developers wishing to improve their multimodal
interfaces; as such, the WAMI toolkit provides a stream-
lined interface for replaying, transcribing, and annotating
usage data. System developers and annotators can replay
a user’s interaction, watching it unfold in a web browser as
they transcribe utterances and/or annotate actions. In addi-
tion, a user-study management framework provides system
designers with an easy way to gather data: users sign up
for a study via the web and then are led through a series of
tasks in their own browsers.

In the remainder of this paper, we will describe the de-
velopment framework and evaluation architecture provided
by WAMI in greater detail. We will then discuss several
applications built within the WAMI framework, showing off
its flexibility and power. Next, we’ll reflect on some of the
usage data collected with those applications, noting some of
the differences between web-based and in-lab user studies.
Finally, we will describe our nascent efforts to make WAMI
available to outside developers.

2. RELATED WORK
A notable early effort at making multimodal interfaces

accessible via the web was WebGALAXY [11], which takes
advantage of the easy accessibility of both the telephone
and the Web. Users view a web site while speaking over
the telephone to a spoken dialogue system which provides
weather information. The system’s responses to user queries
are spoken over the phone, with corresponding information
also displayed on the web page. The WAMI toolkit dif-
fers from WebGALAXY in two key respects. First, it does
not require the use of the telephone, which is awkward in
many situations. Second, while it does support interfaces
like WebGALAXY, in which the graphical modality is pri-
marily a means of displaying information also provided in
the speech output, the WAMI toolkit is mainly intended to
support much richer GUI interactivity.

More recently, efforts have been undertaken to develop
standards for deploying multimodal interfaces to web browsers,
typically entailing the use of VoIP or local speech recogni-
tion. The two major standards under development, Speech
Application Language Tags (SALT) [18] and XHTML+Voice
(X+V) [3] are both aimed at augmenting the existing HTML
standard. The intent of these specifications is that, just as
current web browsers render a GUI described via HTML,
browsers of the future would also provide a speech interface
based on this augmented HTML. As such, interfaces imple-
mented using either of these specifications require the use of
a special web browser supporting the standard.

SALT and X+V are designed mainly to enable the use of
speech to fill in the field values of traditional HTML forms.
X+V, for example, integrates the capabilities of VoiceXML

into the browser, so that interactions typically consist of
telephony-like mixed initiative dialogues to fill in field values.
Related multimodal markup languages, such as those in [10]
and [7], generally attempt to make designing these sorts of
interactions more straightforward.

Unlike SALT and X+V, applications produced with the
WAMI toolkit do not require the use of special web browsers;
instead, they can be accessed from today’s standard browsers.
Furthermore, the toolkit is not intended to provide form-
filling capabilities; though, it could potentially be used in
this way. Though the formal structure of SALT and X+V
provide the power to make authoring certain types of form-
filling interfaces easier, this structure makes it difficult to
design applications incorporating the rich and rapid multi-
modal interactivity in which we believe many researchers are
interested.

Finally, several commercial multimodal applications have
recently been released which are widely accessible via var-
ious mobile devices. These include Microsoft’s Live Search
For Mobile [1], TellMe’s mobile download [17], and Yahoo’s
voice enabled oneSearch [19]. In these applications, users
generally click on a text input box, speak a few query terms,
view and correct the results, and then submit the query to
a search engine. The WAMI toolkit could also be used to
support such an interaction model, however it also supports
much richer multimodal interactions. In addition, these
are native applications, and as their download pages attest,
they must be customized for each supported device—a time-
consuming task for a researcher interested in exploring a
novel multimodal interface.

3. SYSTEM DEVELOPMENT WITH WAMI
The WAMI toolkit supports two main threads of devel-

opment. First, it can be used to connect a graphical user
interface to“traditional”spoken dialogue systems built using
the GALAXY architecture [15]. In this architecture, speech
recognition using an n-gram language model typically serves
as a first step before parsing, contextual integration, dia-
logue management, natural language generation, and speech
synthesis. Interfaces built in this manner can be made to un-
derstand a wide range of natural language; yet they require
a good deal of expertise to develop.

WAMI also supports a second, more lightweight develop-
ment model meant to appeal to developers who don’t have
expertise in speech recognition, parsing, dialogue manage-
ment, and natural language generation. WAMI’s lightweight
platform provides a standard structure with which develop-
ers can build highly interactive multimodal applications with
modest natural language understanding capabilities. Ex-
perts also find the lightweight platform useful, as it provides
an easy means to quickly prototype new applications.

3.1 Core Platform
At the center of both application development models is

the core platform depicted in figure 1, which provides the
basic infrastructure requisite for developing and deploying
web-based multimodal applications. The platform consists
of a small set of components split across a server and a
client device running a standard web browser. Core com-
ponents on the server provide speech recognition and (op-
tionally) speech synthesis capabilities, a JavaEE (Java En-
terprise Edition) web server, and a logger component which
records user interactions. Applications must provide a lan-

Application GUI

Browser

GUI Controller
(javascript)

Web
services

Web Server

Audio Controller
(Java applet)

Speech
Recognizer

Speech
Synthesizer

Application
Specific

Multimodal
Processing

and
Generation

Logger

Server

Language
Model

Core GUI
(html/javascript)

Figure 1: WAMI toolkit core platform. Shaded
boxes show standard core components. White
clouds indicate application-specific components.

guage model for the speech recognizer, and any application-
specific processing modules for handling spoken input and
generating appropriate verbal and graphical responses. On
the client, a web browser renders an application-specific
GUI, which exchanges messages with the server via an inter-
face provided by the AJAX-powered GUI Controller compo-
nent.

In addition, an Audio Controller component runs on the
client to capture a user’s speech and stream it to the speech
recognizer, as well as to play synthesized speech generated
on the server and streamed to the client. On devices which
support Java, the Audio Controller is a Java Applet which
is embedded directly in the web page, and which provides a
button users click when they want to provide speech input.
For other devices, native Audio Controllers must be devel-
oped, which are run externally from the web browser. For
example, on each of the mobile devices we will discuss in this
paper, the Audio Controller is a native application which is
controlled by physical button presses. Once started, these
native Audio Controllers then point the web browser on the
device to the appropriate URL to bring up the GUI. Though
native Audio Controllers are a break with our web-only phi-
losophy, they need only be written once for a particular de-
vice, as they can be shared by any WAMI-powered interface.
This means that GUI developers are freed from developing
native code for a particular platform, and that users need
only to install a single native application to gain access to
any WAMI application.

The main value proposition of the core WAMI platform is
that it provides developers with a standard mechanism for
linking the client GUI and audio input/output to the server,
insulating the developer from these chores. This is perhaps
best understood by looking at the typical sequence of events
involved in a user interaction. First, a user navigates to an
application’s web page, where the core WAMI components
test the browser’s compatibility and ensure sufficient capac-
ity on the server exists for a new client. Next, the GUI and
Audio Controllers connect to the server. Once both are con-
nected, the web server notifies the GUI Controller, which
passes the message along to the application-specific GUI so
that it can initiate the interaction.

The user then presses the click-to-talk button (or holds
a physical button on a mobile device) and begins speak-
ing, causing the Audio Controller to stream the input audio
to the speech recognizer. Concurrently, if the user inter-

acts with the application’s GUI—for example, by clicking or
drawing—events encoded as XML are transmitted via the
GUI Controller and Web Server to the application-specific
module on the server. When the user finishes speaking, the
recognizer’s hypothesis is routed to the application-specific
logic on the server, which formulates a response. It passes
messages encoded as XML via the Web Server and GUI Con-
troller to the GUI, which updates the display accordingly.
It can also provide a string of text to be spoken, which is
synthesized as speech and streamed to the Audio Controller.

3.2 Lightweight Platform
WAMI’s core platform provides developers with a min-

imally sufficient set of components to build a web-based
multimodal interface. A“lightweight”development platform
which provides structure on top of the core components is de-
signed to ease the development of multimodal interfaces with
modest natural language understanding needs. Developers
provide speech recognition language models for their appli-
cations in the form of grammars, written using the JSGF
(Java Speech Grammar Format) standard [8]. Moreover,
the grammars are constructed in a standard way, so that
associated with each recognition hypothesis is a set of slots
filled in with values. Figure 2 shows an example grammar
for a hypothetical lightweight WAMI interface, as well as
the slot/value pairs which are associated with an example
utterance.

Because the lightweight platform relies on small constrained
language models which output sequences of slot/value pairs,
speech recognition and natural language understanding pro-
cessing often occur rapidly, in near real time. We have taken
advantage of this low overhead to add a perhaps surpris-
ing feature to the lightweight platform: incremental speech
recognition and natural language understanding. The speech
recognizer has been augmented to emit incremental recog-
nition hypotheses as an utterance is processed. Because the
grammar-based language models used provide strong con-
straints, the incremental hypotheses tend to be accurate,
especially if the “bleeding edge” is ignored—so long as the
user’s utterance remains within the confines of the gram-
mar. This means that while a user is speaking, slots and
their values can be emitted as soon as the partial utterance
is unambiguous. The grammar in figure 2 is written in just
such a way: slots and values are assigned as soon as possible.
This means that the slot/value pairs shown with the exam-
ple utterance in that figure are emitted as soon as the user
finishes speaking the word shown above each pair. An In-
cremental Understanding Aggregator on the server collects
these slots and values as they are emitted.

Incremental speech recognition hypotheses can be used to
provide incremental language understanding and immediate
graphical feedback, which has been shown to improve the
user experience and the system accuracy [2]. For instance,
an application making use of the grammar in figure 2 could
highlight the set of appropriate shapes as each attribute is
spoken. Indeed, careful readers will note that the grammar
is constructed so as to support false starts and repetitions,
since visual feedback may prompt users to correct utter-
ances as they speak. For instance, an in-grammar utterance
with a false start would be: select the small . . . the large red
rectangle. Such an utterance might arise because as soon
as the user sees graphical confirmation of “small”, he might
realize he actually meant to say “large” and correct himself

<command> = <select> | <drop> | <make> ;
<select> = (select | choose) {[command=select]} <shape_desc>+ ;
<shape_desc> = [the] <shape_attr>+ ;
<shape_attr> = <size> | <color> | <shape_type> ;
<size> = <size_adj> [sized] ;
<size_adj> = (small | tiny) {[size=small]} | medium {[size=medium]} | (large | big) {[size=large]} ;
<color> = red {[color=red]} | green {[color=green]} | blue {[color=blue]} ;
<shape_type> = (rectangle | bar) {[shape_type=rectangle]} | square {[shape_type=square]}

| circle {[shape_type=circle]} | triangle {[shape_type=triangle]} ;
...

select the small red rectangle
[command=select] [size=small] [color=red] [shape=rectangle]

Figure 2: Sample JSGF grammar snippet for a lightweight application and an example utterance with asso-
ciated slot/value output.

mid-utterance. The vocabulary game applications described
below in section 4.1 explore the utility of such incremental
feedback.

3.3 Traditional Dialogue System Platform
The core WAMI toolkit also provides a platform for in-

tegrating web-based graphical user interfaces with “tradi-
tional” spoken dialogue systems built using the GALAXY
architecture. Such systems typically provide an n-gram lan-
guage model, which may be dynamically updated as a user
interacts with an application. Speech recognition hypothe-
ses are passed to the dialogue manager architecture for pro-
cessing. The dialogue system can update the graphical user
interface in one of two ways. First, as in the lightweight case,
messages encoded as XML can be sent to the application-
specific GUI, where calls to javascript then update the dis-
play. Alternatively, HTML may be output, in which case
the GUI is refreshed using this HTML. The first method
is usually preferred, as it can be used to create a dynamic,
native-like interface. However, generating HTML via the
dialogue system itself can be useful as well, as it can be
generated, for instance, using traditional language genera-
tion techniques. It is an easy way to develop an application
which is primarily a speech interface, but which benefits by
showing content to the user in response to spoken input.

In addition, the GUI can send messages to notify the di-
alogue system of events such as clicks and gestures. These
may be encoded directly in javascript in the native message
passing format of the dialogue system architecture. This al-
lows events from the GUI to be easily integrated into the
normal processing chain.

3.4 Supported Devices
The WAMI toolkit can be used to produce applications

which run on any network connected device with a micro-
phone for audio input and a modern web browser. On desk-
top, laptop, and tablet computers, it supports Windows,
GNU/Linux, and OS X running recent versions of Firefox,
Opera, Safari, or Internet Explorer. Audio input and output
on these platforms is handled via a Java applet embedded
directly in the browser.

The toolkit also supports mobile devices with standards-
compliant browsers; however, generally a native Audio Con-
troller must be written. Currently, the toolkit has been
tested on two mobile platforms:

• Several smartphone and PDA devices running Win-
dows Mobile 5, with the Opera Mobile browser,

Browser

GUI Controller
(javascript)

Web Server

Audio Controller
(Java applet)

Speech
Recognizer

Logger

Server

Incremental
Understanding
Aggregator

Yahoo! Image Search,
Chinese English Dictionary

JSGF Grammar

Core GUI
(html/javascript)

Card Database

Card Game GUI

Card Game Engine

Figure 3: Chinese Cards Architecture; WAMI
toolkit modules shaded.

• The Nokia N810 internet tablet, using a native audio
controller and the pre-installed Mozilla-derived browser.

We are exploring an Audio Controller for the iPhone.

4. EXAMPLE APPLICATIONS
In this section, we will briefly showcase several applica-

tions which highlight the utility and flexibility of the WAMI
toolkit. We focus on applications in which both the speech
and graphical modalities play important roles.

4.1 Chinese Cards
The lightweight platform has served as the basis for a

novel group of multimodal games designed to help non-native
speakers practice Mandarin Chinese. The games share a
common Chinese Cards architecture depicted in figure 3.
Students and teachers first login to a web application and
build a personalized deck of image-based flash cards, a task
which is made easier because Yahoo Image Search and an
online Chinese-English dictionary1 are integrated directly
into the application. The personalized cards are stored in a
back-end database, where they can then be used in any of
the card games. JSGF grammars, personalized to include
the vocabulary from each user’s deck of flash cards, are used
as language models for each card game.

One of the card games which can be played with the per-
sonalized deck of flash cards is Word War, a picture match-
ing race [13]. A single player can race against the clock,
or two players can race against each other from their re-
spective web browsers, each using his or her own deck of

1http://www.xuezhongwen.net

Figure 4: The Word War flash card game for language learners.

cards. Figure 4 shows a snapshot of two players compet-
ing on a five-column game grid. The goal of Word War is
to use spoken commands to move images from the bottom
two rows of the grid into a set of numbered slots in the
second row, so that they match the images along the top.
While a simple task in a person’s native language, it can be a
challenging and fun way to practice vocabulary in a foreign
language. Each player uses his or her own flash cards—
so the two players may be practicing different vocabulary
words, or even be speaking in different languages—but they
compete over shared access to the numbered slots. When
an image is matched, the slot is captured and the matching
image appears on both players’ game grids. Notice that in
figure 4, Player 1 has captured the third and fourth slots,
while Player 2 has only captured the first slot. The winner
is the first player to fill in a majority of the slots.

The language model used for the game is conceptually
similar to the example snippet shown in figure 2. For exam-
ple, Player 1 in figure 4 can utter the Mandarin equivalent
of Take the hand and put it in slot number five causing this
action to be carried out on the GUI. Since the grammars are
tailored to each player’s vocabulary, they remain relatively
small, aiding robust recognition of non-native speech.

Word War demonstrates well some of the advantages of-
fered by the incremental speech recognition and the Incre-
mental Understanding Aggregator. Most importantly, the
incremental understanding is used to provide visual feed-
back while the student is speaking. For instance, as soon as
Player 1 has said Take the, all of the available items which
can be selected have been highlighted. Likewise, once Player
2 has uttered Select the sheep and drop it the sheep has al-
ready been highlighted, as have the available slots in which
it can be dropped.

In a more conventional multimodal interface, the user
would have to finish speaking a complete command before
receiving visual confirmation of the system’s understanding.
In this case, incremental feedback provides immediate feed-
back to users as they speak. This means that students of
a foreign language can become aware of errors immediately
and correct them mid-utterance. They can also string to-
gether a sequence of commands in a single utterance, allow-
ing them to rapidly practice speaking fluently.

4.2 Multimodal Dialogue Systems
The WAMI toolkit has also served as a platform for de-

veloping several multimodal interfaces which make use of
more traditional spoken dialogue system components. We

Browser

GUI Controller
(javascript)

Web Server

Audio Controller
(Java applet)

Speech
Recognizer

Speech
Synthesizer

Logger

Server

Core GUI
(html/javascript)

Context Sensitive
Language Model

NL Parser
Google Maps

API Context & Gesture
Resolver

NL Generator

Dialogue Manager

Suggestions
Generator

POIs Geography

Map Based GUI

Confidence
Annotator

Multimodal
Corrections Driver

Figure 5: City Browser architecture. WAMI mod-
ules shaded.

will briefly describe two of the applications here with the
intent of emphasizing that their interfaces behave with a
responsiveness and sophistication typically associated with
native multimodal interfaces, rather than traditional web
interfaces.

City Browser is a map-based WAMI application which
provides users access to urban information via an interface
which leverages the Google Maps API [5]. Users can speak
addresses to locate them on the map, obtain driving direc-
tions, get public transportation information, and search for
Points of Interest (POIs) such as restaurants, museums, ho-
tels, and landmarks. Search results are shown on the screen,
and users can use a mouse, pen, stylus, or finger—depending
on the device being used—to select a result, circle a set of
results, outline a region of interest, or indicate a path along
which to search.

Figure 5 depicts City Browser ’s architecture, which is typ-
ical of a multimodal dialogue system built on top of the
WAMI core. The map-based GUI, shown on a mobile de-
vice in figure 6(a), is built around the WAMI skeleton. The
GUI passes messages to the natural language understand-
ing components on the server via the GUI Controller and
Web Server. The natural language parser, context and ges-
ture resolution component, dialogue manager, and natural
language generator are previously developed generic compo-
nents which have been used in the service of many dialogue
systems. Application-specific logic for City Browser is en-
coded by the grammars, dialogue control scripts, generation
templates, and so forth used by these components.

We have also leveraged a similar set of dialogue system
components in conjunction with the WAMI toolkit to de-

(a) City Browser on a Nokia N810 in its Mozilla-based
browser

(b) Home entertainment multimodal interface on a Win-
dows Mobile smartphone running the Opera browser and
displayed on a television via Firefox on OS X

Figure 6: Web-based multimodal interfaces built us-
ing the WAMI toolkit, running on various devices.

velop and deploy a multimodal interface to a living-room
multimedia server containing a music library and digital
video recorder [4]. The interface, shown in figure 6(b), is
split across a mobile device and a television screen. The
microphone and speakers on the mobile device are used for
speech input and synthesized speech output, and its GUI
provides access to the music and video libraries, television
listings, and recording settings. Users can speak and use a
stylus or the arrow keys to browse television listings and
schedule recordings on the mobile device from anywhere
with a network connection. Then, while at home, a tele-
vision display enables the playback of music and recordings.

We conclude this section by emphasizing that the screen-
shots in figures 4 and 6 show WAMI-based interfaces run-
ning on a variety of devices, using various web browsers:
two mobile devices, a windows laptop, and a Mac attached
to a television screen. As these applications demonstrate,
high quality web-based multimodal interfaces can cheaply
and easily be deployed to users in various environments.

5. DATA COLLECTION AND EVALUATION
ARCHITECTURE

A fundamental step in the development process for any
multimodal interface involves evaluating prototypes based
on authentic user interactions. Because applications built
using the WAMI toolkit are web-based, it’s easy to make
them available to any user with a web browser. However, be-
cause these users are remote, their interactions can’t simply
be observed and/or videotaped. In this section, we describe
resources provided by the WAMI toolkit which enable devel-
opers to run studies to collect such interactions, as well tools
for transcribing and annotating the collected usage data.

Figure 7: Web-based user study management.

5.1 User Study Management
One method of data collection for a web-based applica-

tion is to simply deploy the application, publicize its URL,
and analyze whatever user interactions occur. However, it is
often useful for researchers to have a greater amount of con-
trol over the types of users recruited and tasks performed.
The WAMI toolkit provides a web-based user study manage-
ment interface that gives researchers tools to manage studies
involving remote users. Several user studies have been con-
ducted with increasingly sophisticated versions of the tools.

To begin a new user study, a set of tasks must first be de-
fined using the management interface, as shown in figure 7.
Typical tasks might include: reading instructions, complet-
ing a warmup exercise, solving a problem, and filling out a
survey. Defining common tasks, such as surveys, is partic-
ularly easy, as all WAMI applications inherit the ability to
display user-defined web forms and record the results in a
database. Application-specific tasks can also be defined, in
which case the application must display appropriate content
and monitor a user’s progress.

Once the tasks are defined, one or more user groups are
created, and each group is assigned a sequence of tasks which
must be completed. User accounts can be created by the
study administrator, or users can sign up online via an ad-
vertised URL. When a user logs into a WAMI application
in user-study mode, he or she is presented with a sequence
of tasks to complete. For example, in a recent City Browser
study, which usually required 30-60 minutes, subjects were
first presented with instructions on how to use the interface
and then given a simple warmup task. Next, they were led
through ten scenarios in which they were asked to, for exam-
ple, get directions between two locations or find a restaurant
with certain attributes. Then, they were given “free play”
time to interact as they wished. Finally, they completed a
survey. A less complex study performed with Word War
simply required each user to complete as many games as
possible in 10 minutes.

5.2 Transcription, Annotation, and Playback
When designing any application which makes use of a

speech recognizer, it is critical to transcribe user utterances:
transcripts are necessary to measure error rates, and improve
the language and acoustic models used by the speech recog-

Figure 8: Web-based Session Playback.

nizer. Beyond transcripts, interface designers are typically
interested in understanding how users interacted with an
application. Such knowledge allows them to identify system
malfunctions and identify the strengths and weaknesses of an
interface. For speech-only interfaces, this sort of knowledge
can generally be gleaned from transcripts, speech recogni-
tion hypotheses, and system responses. In developing mul-
timodal interfaces, however, transcripts do not suffice: it is
immensely helpful to also understand what the GUI looked
like at the time of interaction, and what sort of non-speech
interaction occurred (clicking, circling, etc).

When performing studies in the laboratory, experimenters
can observe and/or videotape a user’s interaction; however,
this is simply not possible for web-based systems accessed
remotely. Thus, another key capability of the WAMI toolkit
is the ability to log user interactions and then “replay” the
interactions later. We have found that this is often the only
feasible manner in which an annotator can, for example, ac-
curately judge whether or not an application’s response to a
user’s utterance was appropriate. Playback and annotation
tools can also be useful in evaluating human performance.
For example, teachers are able to judge a student’s speaking
ability by replaying student interactions with an application
like Word War.

The WAMI toolkit includes a logging component as part
of the core architecture, as shown in figure 1. The logger
records the user utterance waveform, recognition hypothe-
ses, and the system’s natural language responses. In addi-
tion, any events sent from the client GUI to the application
specific logic are logged, so that notifications of clicks, ges-
tures, the scrolling of windows, and so forth are recorded.
On the flip side, any messages sent from the application-
specific logic residing on the server to the client GUI are
also logged.

To play back these logs, the toolkit provides a web-based
Transcription and Annotation tool as part of the manage-
ment interface. Using this interface, depicted in figure 8, de-
velopers or annotators can control a server-based Log Player,
which loads a log of one user’s interaction and replays the
time-stamped events at the appropriate pace. The web-
based tool loads the application’s GUI, which plays the events
as it receives them from the Log Player. For instance, recorded
user utterances are played back, while any GUI interac-

tions such as gestures are shown on the GUI. As the log
is replayed, the annotator can watch the interaction unfold,
while simultaneously transcribing the user utterances and
making any appropriate annotations.

5.3 Usage Data Analysis
We have used the tools described in this section to col-

lect, transcribe, and annotate usage data for the Word War
and City Browser applications described above. For very
early prototypes, we have relied on traditional laboratory
studies, in which users come to the lab and are assigned a
set of tasks to perform. As prototypes advance, we move
to remote studies, in which subjects are recruited via public
announcements and login from their own computers. In our
experience, this allows us to collect data much more rapidly
with much less time invested on our part.

Moreover, our impressions after transcribing and annotat-
ing thousands of utterances is that users act more naturally
when they are in the comfort of their home or office. In par-
ticular, they experiment more with the capabilities of the
system and push the bounds of what’s possible. For the re-
searcher, watching these interactions in playback mode can
be a simultaneously thrilling and sobering experience. While
replaying a Word War interaction captured in single player
practice mode, for example, it became apparent that a fa-
ther and daughter were practicing Chinese together, at times
sounding out words simultaneously! Similarly, we have ob-
served interactions in which City Browser is used by two or
more people at once in a social setting. A more subtle dif-
ference is that our impression has been that in-lab users of
both applications tend to stick more to the provided sample
sentence structures, while remote users are willing to exper-
iment more.

Since individual users rely on their own hardware resources
to perform the tasks in a remote user study, the audio quality
also varies greatly. Though clear instructions and tutorial
tasks can prevent many problems, users with poor micro-
phones or mis-configured audio settings are difficult to avoid
entirely. While in some ways this is a disadvantage, by de-
ploying a WAMI application to the web and performing an
error analysis on recognition results, the researcher can gain
insight into the bottlenecks with regards to robust recogni-
tion in a realistic environment. In [13], Word War recogni-
tion performance was analyzed along four dimensions, one
of which was audio quality. While its effects were significant,
it turned out that the “non-nativeness” of a student’s speech
was a larger impediment to accurate recognition.

Finally, another clear advantage of deploying web-based
interfaces is that users can be recruited from all over the
world, and can use the interface whenever is most conve-
nient. Figure 9 shows the geographical distribution of users
who have interacted with Word War and City Browser and
a histogram of the user’s local time of day during which these
interactions took place. Subjects logged in from all over the
world, and there was heavy usage outside of normal business
hours, when user studies are typically conducted.

6. CONCLUSIONS AND FUTURE WORK
We have presented the WAMI toolkit which allows the de-

velopment, deployment, and evaluation of highly interactive
web-based multimodal interfaces on a wide range of network-
connected devices. We have demonstrated the feasibility of
this approach by describing several rich interfaces using the

(a) Geographical distribution of study subjects.

0 5 10 15 20
0

20

40

60

Local Hour of Day

S
es

si
on

s

(b) Local time of day of interactions.

Figure 9: City Browser and Word War usage.

toolkit, and by showing how the provided web-based study
management system makes it straightforward to gather and
annotate user interactions with such systems. Our hope is
that research in the field will benefit by making it relatively
cheap and easy to deploy multimodal interfaces to a large
number of users.

To that end, we are currently in the process of making the
toolkit publicly available. In particular, we are developing a
portal at http://web.sls.csail.mit.edu/wami/ which will
provide speech recognition services to developers. Any de-
veloper will be able to create a multimodal application using
the lightweight model described in section 3.2 without hav-
ing to configure a speech recognizer; instead, the developer
will upload a JSGF grammar and connect to a recognizer
maintained on our servers. We hope that by significantly
lowering the barrier to entry, we will enable developers with
fresh ideas to create novel, compelling multimodal interfaces.

7. ACKNOWLEDGMENTS
Thanks to Stephanie Seneff for feedback on drafts of this

paper. This research is sponsored by the T-Party Project, a
joint research program between MIT and Quanta Computer,
Inc., and by the Industrial Technology Research Institute.

8. REFERENCES
[1] A. Acero, N. Bernstein, R. Chambers, Y. C. Jui,

X. Li, J. Odell, P. Nguyen, O. Scholz, and G. Zweig.
Live search for mobile: Web services by voice on the
cellphone. In Proc. of ICASSP, 2008.

[2] G. Aist, J. Allen, E. Campana, C. G. Gallo, S. Stoness,
M. Swift, and M. K. Tanenhaus. Incremental
understanding in human-computer dialogue and
experimental evidence for advantages over
nonincremental methods. In R. Artstein and L. Vieu,
editors, Proc. of the 11th Workshop on the Semantics
and Pragmatics of Dialogue, pages 149–154, 2007.

[3] J. Axelsson, C. Cross, J. Ferrans, G. McCobb, T. V.
Raman,
and L. Wilson. Mobile X+V 1.2. Technical report, 2005.
http://www.voicexml.org/specs/multimodal/x+v/mobile/12/.

[4] A. Gruenstein, B.-J. P. Hsu, J. Glass, S. Seneff,
L. Hetherington, S. Cyphers, I. Badr, C. Wang, and
S. Liu. A multimodal home entertainment interface
via a mobile device. In Proc. of the ACL Workshop on
Mobile Language Processing, 2008.

[5] A. Gruenstein, S. Seneff, and C. Wang. Scalable and
portable web-based multimodal dialogue interaction
with geographical databases. In Proc. of
INTERSPEECH, 2006.

[6] A. Hjalmarsson. Evaluating AdApt, a multi-modal
conversational dialogue system using PARADISE.
Master’s thesis, KTH, Stockhom, Sweden, 2002.

[7] M. Honkala and M. Pohja. Multimodal interaction
with XForms. In Proc. of the 6th International
Conference on Web Engineering, pages 201–208, 2006.

[8] Java speech grammar format.
http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF/.

[9] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent,
P. Ehlen, M. Walker, S. Whittaker, and P. Maloor.
MATCH: An architecture for multimodal dialogue
systems. In Proc. of ACL, 2002.

[10] K. Katsurada, Y. Nakamura, H. Yamada, and
T. Nitta. XISL: a language for describing multimodal
interaction scenarios. In Proc. of the 5th International
Conference on Multimodal Interfaces, 2003.

[11] R. Lau, G. Flammia, C. Pao, and V. Zue.
WebGALAXY: beyond point and click – a
conversational interface to a browser. Computer
Networks and ISDN Systems, 29:1385–1393, 1997.

[12] O. Lemon and A. Gruenstein. Multithreaded context
for robust conversational interfaces: context-sensitive
speech recognition and interpretation of corrective
fragments. ACM Transactions on Computer-Human
Interaction, 11(3):241–267, 2004.

[13] I. McGraw and S. Seneff. Speech-enabled card games
for language learners. In Proc. 23rd AAAI Conference
on Artificial Intelligence, 2008.

[14] A. Raux, D. Bohus, B. Langner, A. Black, and
M. Eskenazi. Doing research on a deployed spoken
dialogue system: One year of Let’s Go! experience. In
Proc. of INTERSPEECH-ICSLP, 2006.

[15] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and
V. Zue. Galaxy-II: A reference architecture for
conversational system development. In Proc. ICSLP,
1998.

[16] A. Stent, J. Dowding, J. M. Gawron, E. O. Bratt, and
R. Moore. The CommandTalk spoken dialogue
system. In Proc. of ACL, 1999.

[17] Tellme mobile. http://m.tellme.com.

[18] K. Wang. SALT: A spoken language interface for
web-based multimodal dialog systems. In Proc. of the
7th International Conference on Spoken Language
Processing, 2002.

[19] Yahoo onesearch. http://mobile.yahoo.com.

[20] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J.
Hazen, and L. Hetherington. JUPITER: A
telephone-based conversational interface for weather
information. IEEE Transactions on Speech and Audio
Processing, 8(1), January 2000.

