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ABSTRACT

In this research, an iterative and unsupervised Turbo-style al-
gorithm is presented and implemented for the task of auto-
matic lexical acquisition. The algorithm makes use of spoken
examples of both spellings and words and fuses information
from letter and subword recognizers to boost the overall lex-
ical learning performance. The algorithm is tested on a chal-
lenging lexicon of restaurant and street names and evaluated
in terms of spelling accuracy and letter error rate. Absolute
improvements of 7.2% and 3% (15.5% relative improvement)
are obtained in the spelling accuracy and the letter error rate
respectively following only 2 iterations of the algorithm.

Index Terms— Turbo-style, spelling, pronunciation, lex-
ical acquisition

1. INTRODUCTION

In speech recognition systems, automatic lexical update isthe
process of introducing new entries into the phonetic dictio-
nary as well as refining pre-existing ones. Such an update
process can be triggered by newly acquired information such
as a spoken example of an unknown word or its spelling. The
capability of automatically learning a reliable estimate of a
lexical entry (both spelling and phonetic baseform) of a word
from spoken examples, can prove quite beneficial. For ex-
ample, consider spoken dialogue systems, which have been
slowly emerging as a natural solution for information retrieval
applications [1]. Such systems often suffer from dialogue
breakdown at critical points that convey important informa-
tion such as named entities or geographical locations. One
successful approach proposed for error recovery in dialogue
systems lies in speak-and-spell models, that prompt the user
for the spelling of an unrecognized word [2, 3]. In such cases,
both the spoken spelling and word are available. The ques-
tion that this research attempts to answer is: Given both the
spoken spelling and spoken word how well can a valid lexical
entry in a dictionary be learnt?

This research introduces an unsupervised iterative tech-
nique denotedTurbo-style algorithm and applies it to the task
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of automatic lexical acquisition. In particular, spoken exam-
ples from two complementary domains, spelling and pronun-
ciation, are presented to a letter and subword recognizer re-
spectively. The output of each recognizer is then processedby
a bi-directional letter-to-sound (L2S) model and injectedback
into the other recognizer in the form ofsoft bias information.
Such a set-up is denoted Turbo-style learning algorithm since
it is inspired by the principles of Turbo Codes [4]. The term
Turbo Code is in turn a reference to turbo-charged engines
where part of the output power is fed back to the engine to
improve the performance of the whole system.

There has been significant research on automatic lexical
generation [5, 6, 7]. However, the novel contribution of this
work is two-fold: (1) Spoken examples of both the spelling
and the word are used as opposed to the word only, and (2) a
bi-directional L2S model is used to exchange bias information
between the spelling and pronunciation domain so as to boost
the overall performance of the tandem model. It is worth not-
ing that the set-up does not consult a lexicon when estimating
the spelling.

The basic principle of the proposed algorithm is the fusion
of several sources of information, and it can be generalizedto
different set-ups. For example, a recent approach to unsuper-
vised pattern discovery in speech produces reliable clusters of
similar speech patterns [8]. The generated clusters can be pro-
cessed by multiple subword recognizers whose outputs can be
fused to boost the pronunciation recognition performance.

In the rest of the paper, the Turbo-style algorithm is de-
scribed in Section 2, and the implementation components in
Section 3. The experimental set-up and parameter tuning are
depicted in Sections 4 and 5 respectively. Section 6 reports
the results, and Section 7 concludes with a summary.

2. THE TURBO-STYLE ALGORITHM

In this section, the Turbo-style iterative algorithm is presented.
The basic principle behind the proposed algorithm is to have
two complementary recognizers, spelling and pronunciation,
exchange bias information such that the performance of both
systems is improved. In this particular implementation, the
letter recognizer first generates anN-best list, which is pro-
jected into the complementary subword domain using a bi-



directional L2S model. The projectedN-best list is used to
bias the subword LM, by injecting into it the pronunciations
that best match the estimated spelling. A similar procedureis
repeated in the subword domain. The algorithm is illustrated
in Figure 1, and the steps for a pair of spoken spelling and
word are as follows:
(1) The spoken spelling is presented to the letter recognizer,

and a letterN1-best list is generated.
(2) The letterN1-best list is processed by the L2S model, and

a subwordM1-best list is produced.
(3) A bias subword language model (LM) is trained with the

subwordM1-best list, and interpolated with the base sub-
word LM by a factorw1. The interpolated LM becomes
the new base subword LM.

(4) A subword recognizer is built with the new interpolated
subword LM, the spoken word is presented to the sub-
word recognizer, and a subwordM2-best list is generated.

(5) The subwordM2-best list is processed by the S2L model,
and a letterN2-best list is produced.

(6) A bias letter LM is trained with the letterN2-best list,
and the bias letter LM is interpolated with the base letter
LM by a factorw2. The interpolated LM becomes the new
base letter LM.

(7) A letter recognizer is built with the new interpolated let-
ter LM.

(8) Go back to Step (1).
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Fig. 1. Illustration of the unsupervised Turbo-style algorithm
used to refine the estimates of the spelling and the pronuncia-
tion of a new word.

Figure 1 shows 7 parameters that need to be set,N1, M1,
w1, N2, M2, w2, andK, the number of iterations performed.
The tuning of these parameters is described in Section 5.

3. IMPLEMENTATION COMPONENTS

3.1. The Bi-Directional L2S/S2L Model

The bi-directional L2S model used in this research is based on
a context-free grammar (CFG) designed to encode positional
and phonological constraints in sub-syllabic structures.The
CFG-based subword model is described in detail in [9], and
evaluated successfully on the task of automatic pronunciation
generation in [10]. Briefly, the CFG describes all possible
ways sub-syllabic structures map to subword units as well as
all possible ways subword units map to spellings. The CFG
pre-terminals are the subword units, which encode only pro-
nunciation information, and the terminals are letter clusters
which encode spelling. The total number of pre-terminals
and terminals are 677 and 1573 respectively. A by-product of
the CFG is an automatically derived mapping between sub-
words and their spellings, which results in hybrid units, de-
noted spellnemes1. Generating a statistical L2S model is fa-
cilitated by the spellneme units. The L2S model,TL2U , is
modeled using finite state transducers (FSTs) as follows:

TL2U = TL2SP ◦ GSP ◦ TSP2U (1)

whereTL2SP andTSP2U are mappings from letters to spell-
nemes and from spellnemes to subwords respectively, and
GSP is a spellneme trigram. A search throughTL2U pro-
duces anN-best list of pronunciations corresponding to the
input spelling. An S2L model is generated similarly.

3.2. The Subword and Letter Recognizers

The subword recognizer is modeled as a weighted FST,RS :

RS = C ◦ P ◦ LS ◦ GS (2)

whereC denotes the mapping from context-dependent model
labels to context-independent phone labels,P the phonologi-
cal rules that map phone labels to phoneme sequences,LS the
subword lexicon, which is a mapping from phonemic units to
subwords obtained from the CFG, andGS the subword tri-
gram. A search throughRS produces anN-best list of pro-
nunciations corresponding to the spoken word.

The letter recognizer is similarly implemented as a weigh-
ted FST,RL. The letter lexicon,LL contains 27 entries, the
26 letters of the alphabet and the apostrophe.

4. EXPERIMENTAL SET-UP

The SUMMIT segment-based speech recognition system is
used [11] in all the experiments. Context-dependent diphone
acoustic models are used with an MFCC (Mel-Frequency Cep-
stral Coefficient) based feature representation. The diphones

1Other researchers have used the termgraphones for these types of units
(e.g. Bisani and Ney [7]).



are modeled with diagonal Gaussian mixture models with a
maximum of 75 Gaussians per model, and are trained on tele-
phone speech. The spellneme trigram,GSP used by the L2S
model is built with 55k parsed nouns extracted from the LDC
pronlex dictionary. The letter trigram,GL, is trained with
300k Google words, and the subword trigram,GS , with the
same set parsed with the L2S model.

For the purpose of this research, 603 Massachusetts restau-
rant and street names were recorded together with their spo-
ken spellings. This set is part of a larger data collection effort
described in more detail in [10]. The 603 spelling/word pairs
are split into a development (Dev) set of 300 pairs and a Test
set of 303.

5. PARAMETER TUNING

In this section, the process of setting the parameters of the
algorithm is presented. There are various ways of approach-
ing such a problem, and the choice here is to setN1 andM2

separately, whileM1 andw1 are tuned simultaneously, and
similarly for N2 andw2.

N1 and M2 correspond to the number of top candidate spell-
ings and pronunciations generated by the letter and subword
recognizers respectively.N1 is chosen to achieve an effec-
tive compromise between capturing the correct spelling and
weeding out incorrect ones. This is done by presenting the
Dev data to the letter recognizer and monitoring the depth of
the correct spelling in the top 100 candidates. By this process,
N1 is empirically set to 20.

In a similar procedure on the pronunciation side,M2 is
empirically set to 50. However, it is worth noting that while
reference spellings are available for the letter set-up, noref-
erences are available for the subword set-up. To avoid having
to manually transcribe subword baseforms, the L2S model is
used to automatically generate them [10].

N2 and w2 denote the number of top candidate spellings pro-
duced by the S2L model and the weight of the letter bias LM
respectively. They are tuned to improve the performance of
the letter recognizer on the Dev set. Performance is evaluated
in terms ofspelling match rate. A match is when the correct
word occurs in theN1-best list generated by the letter recog-
nizer, whereN1 = 20. SinceM2 = 50, a subword 50-best
list is processed by the S2L, producing a spellingN2-best list,
whereN2 = 20, 100, 500, 1000, 5000, 10000. For each value
of N2, a bias LM is trained with the spellingN2-best list and
interpolated with a base LM. The interpolation weight,w2 is
varied between 0 and 1 in 0.2 steps. For each (N2,w2) pair,
a letter recognizer is built and the spelling 20-best list isgen-
erated. Figure 2 reports the performance as a function ofN2

andw2, and illustrates that mid-range values of bothN2 and
w2 are best. Based on this,N2 is set to 1000 andw2 to 0.4.
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Fig. 2. The spelling accuracy, in a 20-best spelling list, eval-
uated on the Dev set as a function ofN2 andw2.

M1 and w1 correspond to the number of top candidate sub-
word sequences generated by the S2L model and the weight
of the subword bias LM respectively. They are tuned simi-
larly to N2 andw2. For lack of space, we only report that
M1 is set to 1000 andw1 to 0.8. Compared tow2, the results
indicate that the subword recognizer is more confident about
the bias information obtained from the letter domain than vice
versa. This is expected since the spelling domain is more con-
strained and hence more reliable than the subword one.

K corresponds to the number of iterations of the Turbo-style
algorithm. To setK, the algorithm is run on the Dev set until
little change in performance is observed. The results are re-
ported in Table 1 in terms of spelling match rates. The first
column is the iteration number, where iteration 0 refers to the
initial results prior to receiving any bias information from the
complementary domain. The second to fifth columns give the
spelling match rates in the top 1, 10, 20, and 100 spelling can-
didates. The results in Table 1 show substantial improvement
in the spelling match rates following iteration 2. For example,
the top 1 spelling accuracy improves by an absolute 5.7%. It
is noted here that the results of the 0th iteration correspond to
the spelling recognizer alone without any feedback from the
pronunciation domain. Based on the observation that no sig-
nificant improvement occurs beyond iteration 3,K is set to 2.

Iteration # Top 1 Top 10 Top 20 Top 100

0 19.3% 50.6% 57.6% 77.6%
1 24.3% 53.6% 62.3% 78%
2 25% 56.3% 62.6% 76.6%
3 25% 56% 62.6% 76.6%

Table 1. Top 1, 10, 20, and 100 spelling match rates on the
Dev set as a function of iterations.



6. PRELIMINARY RESULTS AND DISCUSSION

The parameters are adjusted based on the Dev set as described
in Section 5, and preliminary results are obtained on the Test
set. Significant improvement is observed in the spelling match
rates in Table 2. For example, the top 1 spelling accuracy im-
proves by an absolute 7.2% following 2 iterations. The letter
error rate is also found to decrease from 19.3% in iteration 0
to 16.3% in iteration 2 (15.5% relative improvement).

The algorithm also substantially improves the almost-corr-
ect spelling rate. In this case, almost-correct spelling iswhen
the edit distance between the top 1 spelling and the correct
one is no more than 1 letter. The almost-correct rate increases
from 43.2% at iteration 0 to 52.8% at iteration 2. This sug-
gests that a spelling correction has a better chance of finding
the reference word in a lexicon retrieved, say from the Web.

No accuracy results are reported in the pronunciation do-
main due to the lack of a reference. However, Table 3 illus-
trates dramatic qualitative improvement in the pronunciation
of sample words from iteration 0 to iteration 2.

Iteration # Top 1 Top 10 Top 20 Top 100

0 20.5% 54.1% 66.3% 77.2%
1 26.4% 57.8% 66.9% 80.2%
2 27.7% 59.1% 66.9% 79.2%

Table 2. Top 1, 10, 20, and 100 spelling match rates on the
Test set as a function of iterations.

Similarly, Table 4 illustrates sample words and the corre-
sponding spelling improvement from iteration 0 to iteration
2. As shown in Table 4, the bias information obtained from
the pronunciation domain could drive the spelling recognizer
to a local optimum which does not match the reference, for
e.g. tartufo, and vice versa. In fact, this phenomenon could
explain why very little to no improvement is observed on the
Dev set following iteration 3.

Hence, the optimality of the proposed scheme remains to
be examined. For example, instead of keeping the parameters
N1, M2, N2, w2, M1, andw1 static, it might be more advan-
tageous to adaptively update them to reflect the confidence in
the bias information.

7. SUMMARY

In this research, an iterative and unsupervised Turbo-style al-
gorithm has been introduced and implemented for automatic
lexical learning. A spoken example of a word and its spelling
are presented to a subword and letter recognizer, which recur-
sively exchange bias information through a bi-directionalL2S
model. As a proof of concept, preliminary experiments were
performed using 603 pairs of spoken spellings and words, and
results on the 303-pair Test set showed significant absolute
improvements of 7.2% and 3% in the spelling accuracy and
LER with only 2 iterations of the algorithm.

Word Iteration 0 Iteration 2

botoloph -ao+ tf -ow+ l+ -aof b -owt -axl -aolf
quans -eyn +z kw+ -aan +z
olivio l+ -ey+ df -iy+ -ow+ -axl -iy+ v+ -iy+ -ow+

woodmans -ahn m+ -aen s+ -ihng w -uhd m+ -aen +s
churrascaria jh+ -ehs t -ehr -iy+ -ax+ ch+ -aoer+ -axs k -ehr -iy+ -ax+

Table 3. Sample pronunciations (in subword units) at itera-
tions 0 and 2.

Word Iteration 0 Iteration 2

mcmenamy mcnenanys mcmenamys
tartufo cruso cartufo

terranova trialve trianove
helmand heelmand helmand
scutra setra scutra

Table 4. Sample spellings at iterations 0 and 2.

Within the same Turbo framework, it remains important
to investigate (1) different schemes for parameter tuning,(2)
other methods for exchanging bias information between dif-
ferent domains, as well as (3) extensions of this algorithm to
more general set-ups. The algorithm is also expected to be
incorporated into a spoken dialogue system for automatically
acquiring new words.

8. REFERENCES

[1] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen, and L. Hether-
ington, “Jupiter: A tephone-based conversational interface for weather
information,” IEEE Trans. on Speech and Audio Proc., vol. 8, pp. 85–
96, 2000.

[2] H. Schramm, B. Rueber, and A. Kellner, “Strategies for name recog-
nition in automatic directory assistance systems,”Speech Communica-
tion, vol. 31, pp. 329–338, 2000.

[3] E. Filisko and S. Seneff, “Developing city name acquisition strategies
in spoken dialogue systems via user simulation,” inProc. SIGDIAL,
Lisbon, Portugal, 2005, pp. 144–155.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes,” inProc. ICC,
Geneva, Switzerland, 1993, pp. 1064–1070.

[5] L. R. Bahl et. al., “Automatic phonetic baseform determination,” in
Proc. ICASSP, Toronto, Canada, 1991, pp. 173–176.

[6] L. Galescu and J. Allen, “Name pronunciation with a jointn-gram
model for bi-directional grapheme-to-phoneme conversion,” in Proc.
of ICSLP, Denver, Colorado, 2002, pp. 109–112.

[7] M. Bisani and H. Ney, “Open vocabulary speech recognition with flat
hybrid models,” inProc. of Interspeech, Lisbon, Portugal, 2005, pp.
725–728.

[8] A. Park and J. R. Glass, “Unsupervised word acquisition from speech
using pattern discovery,” inProc. ICASSP, Toulouse, France, 2006, pp.
409–412.

[9] S. Seneff, “Reversible sound-to-letter/letter-to-sound modeling based
on syllable structure,” inProc. NAACL-HLT, Rochester, NY, 2007, pp.
153–156.

[10] G. F. Choueiter, S. Seneff, and J. R. Glass, “Automatic lexical pronun-
ciations generation and update,” inProc. of ASRU, Kyoto, Japan, 2007,
pp. 225–230.

[11] J. R. Glass, “A probabilistic framework for segment-based speech
recognition,” Computer Speech and Language, pp. 113–127, 2003.


