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ABSTRACT accent classification, where the accents considered wa+re Ch

. . _ . _hese, Thai, Turkish, and American. The classification rates
This paper extends language identification (LID) techn&jue ,qined were 40.1% with GMMs, 41.3% with HMMs, and
to a large scale accent classification task: 23-way Cla8sifiC 47 go4 with STMs. To the authors’ knowledge, there has only
tion of foreign-accented English. We find that a purely a€ousy e one previous work [5] that evaluates accent classificat
tic approach based on a combination of heteroscedastarline, the same dataset used in this research. This previous work
discriminant analysis (HLDA) and maximum mutual infor- \nich has not been formally published, reports detectitesra
mation (MMI) training is very effective. In contrast 1o LID ot 7304 and 58.9% for German versus Spanish classification

tasks, methods based on parallel language models prove myghi g GMmMs and naive Bayes classification respectively: Fu

less effective. We focus on the Oregon Graduate Institut, o jetection rates of 36.2%, 17.7%, and 13.2% are reported
Foreign-Accented English dataset, and obtain a detectien r ¢, 4-, 13-, and 23-way naive Bayes accent classification.

o . X
of 32%, which to our knowledge is the best reported result for Whereas accent detection is relatively unresearched ther

23-way accent classification. has been a very significant amount of previous work in lan-
Index Terms— Accent classifier, GMM, MMI, Gaussian guage identification (LID) [6, 7, 8, 9, 10, 11], and the main
tokenization, language identification. contribution of this paper is the extension of these methods
to accent detection. Previous work on LID falls into one of
three categories. In the first, language classification is pe
formed using acoustic scores typically obtained using GMMs

S ) or phone recognizers [6, 7, 8, 9, 10]. In the second, the LID
Accent classification is the task of automatically detegthre classification score is derived from a language model (LM),

accent of a foreign speaker from a spoken utterance. In thighichy captures the statistics of either phones generated by
research, we target accent classification in foreign-geden , phone recognizer or gaussian tokens corresponding to the

English with the aim of embedding such a classifier withing, ;ssjans with the highest likelihood in each time frame [6,
\oice-Rate, an experimental dialogue system [1]. The \/0|ce7, 8, 10]. Finally, in the third category, languages are mod-

Rate system provides product ratings over cell-phonesie o g o4 ysing vectors of phone statistics and are detected usin

sumers via a toll-frge_ number, and accgnt class!flcatloddvou text classification techniques [11].

enhance it by prowdmg the necessary information to penfor In the rest of this paper, the corpus and the baseline are

consumer profile adaptation and eve_:ntually targeted advert described in Sections 2 and 3 respectively. MMI training is

ing based on consumer demographics. ) evaluated in Section 4, and Gaussian Tokenization in Sectio
Thgre .has been Iltﬂe past research in the area of acpeg_t Section 6 concludes with a summary.

classification. In particular, most of the previous work in

the field involves only two- to four-way classification. Desh

pande and colleagues used the second and third formants and 2. DATA

Gaussian Mixture Models (GMMs) to achieve a detection rate

of 86% on American versus Indian American accent classifiThe corpus used in this research is the CSLU Foreign-Acdente

cation [2]. Gray and Hansen used pitch and formant conEnglish (FAE) dataset [12]. The corpus consists of 4925 tele

tours and voice onset time and Stochastic Trajectory Modelghone-quality utterances spoken by native speakers of23 la

(STMs) to distinguish between American, Chinese, and Turkguages. In no event is English a speaker’s native language.

ish accents [3]. They achieved detection rates of 90.4% anldost of the utterances are 20 seconds in length, and none are

52.1% on read and spontaneous speech respectively. In [4honetically transcribed. The Train, Development, and Tes

STMs were evaluated against GMMs and HMMs on 4-waysets were created by randomly sampling and splitting ttee ori

1. INTRODUCTION
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Fig. 1. The accen't detection rate of the'baseling as a functiopig. 2. The detection rate (left) and the MMI objective func-
of GMM order, with HLDA. The detection rate is evaluated tjon (right) on the Train set as a function of MMI iterations

on the Development set. for GMM orders 128, 256, and 512.
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inal corpus into a (70%,15%,15%) configuration. The 23 ac-
cents recorded in the CSLU FAE corpus are Arabic, Brazilian
Portuguese, Cantonese, Czech, Farsi, French, German, Hind
Hungarian, Indonesian, Italian, Japanese, Korean, Mandar
Malay, Polish, Iberian Portuguese, Russian, Swedish, -Span
ish, Swahili, Tamil, and Vietnamese.
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3. THE BASELINE

.

For the baseline, a GMM is built for each of the 23 accents. Number of MM erations
A 52-dimensional acoustic observation is obtained from-a 13
dimensional plp-based vector concatenated with its fiest; s

ond, and third derivatives. Mean and variance normalinatio

is performed on the acoustic feature vector prior to tranin

the GMMs. The GMMs are initialized using k-means andmation (MMI) criterion [14, 15], which, when the language
trained with the EM algorithm. Accent classification is per-model is fixed, optimizes the log-posterior of the correet la
formed by selecting the model with the highest log-posterio pe|s in the training data. Our implementation follows thét o
Uniform priors over the accents were used. In an initial sef16] where the global constafit is used in the computation

of experiements, we observed that uniform and non-uniformaf 1, the parameter that controls the speed and stability of the
accent priors yielded identical detection rates. MMI training algorithm.

Dimensionality reduction is investigated with the feature
dimension decreased from 52 to 39 using heteroscedastic lin
ear discriminant analysis (HLDA) [13]. Figure 1 plots the 4-1. MMI Results
detection rate of the baseline accent classifier, before@&nd |, this section, we report results for MMI training, and, in
ter applying HLDA, as a function of the GMM order which particular, we look at the effects of the number of MMI iter-
varies from 64 to 2048. We remark that (1) the baseline sysations, the GMM order, as well as the valuef The MMI
tem benefits from HLDA for GMM orders larger than 256, t/aining is performed following HLDA.
(2) the classifier detection rate improves initially as tHéi\&
order is increased, peaks at 1024, and then deterioratée due| jterations and GMM order: The MMI training algo-
overtraining, and (3) our best detection rate for the basati
25.3% after applying HLDA (22.4% before HLDA).

Fig. 3. Detection rate on the Development set as a function of
MMI iterations for GMM orders 128, 256, and 512.

rithm is initialized with an ML-trained accent classifier-de
scribed in Section 3, and ten MMI update iterations are per-
formed. GMMs of orders 128, 256, and 512 are investigated.
4. MMI TRAINING First, we depict the performance of the GMM-based accent
classifiers on the Train set as a function of MMI iterations.
In the previous section, we described the baseline trairidd w Results are reported in Figure 2 for all three GMM orders and
the Maximum Likelihood (ML) criterion, which optimizesthe for £ = 5, and performance is evaluated both in terms of
log-likelihood of the training data. In this section, we@sti-  overall detection rate as well as MMI objective functioneTh
gate discriminative training with the Maximum Mutual Infor results on the Train set exhibit the expected behavior where



" X 10 oo iterations is illustrated in Figure 6. Finally, the perfante

of the MMI-trained accent classifier is evaluated on the Test
set itself, and a detection rate of 32% is obtained with GMM
order 256 andv = 1.
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Fig. 4. Detection rate (left) and the MMI objective function
(right) on the Train set as a function of MMI iterations for
GMM of order 256 andE = 1, 5. 1
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Fig. 6. Accent detection rate evaluated on the Development
set, as a function of GMM order for the baseline GMM model,
improved with HLDA, and MMI cummulatively.
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5. GAUSSIAN TOKENIZATION
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In this section, we briefly describe the Gaussian Tokeniza-
18 - : : : 1 tion (GT) approach that has been previously proposed for
umber of M erations LID, and refer the reader to [6, 7] for more detail. In this
) ) ) research, a gaussian tokenizer is a GMM that generates a se-
Fig. 5. Detection rate on the Development set as a function ofence of indices for an utterance, where each index corre-
MMI iterations for GMM of order 256 andv = 1, 5. sponds to the mixture component with the highest likelihood
in a time frame. The index sequences are then used to train
index language models (LM) for each accent. In accent in-
dependent (Al) tokenization, a single set of gaussiansad us
across all accents, while in accent dependent (AD) tokeniza
Next, the overall detection rate of the accent classifier i%ion, an accent specific GMM is used instead. The motivation
reported on the Development set with = 5 in Figure 3. penhind this approach is that a tokenizer would generate se-
The detection rates for orders 128 and 256 increase Steadu]\ﬂences that exhibit different patterns for each accerd, an
with MMl iterations, however those for 512 indicate that thep 5t the statistics of these patterns could then be captged
models are overtrained. For this reason MMI training is NOfng an LM. Figure 7 illustrates the training setup using an

performed for orders beyond 512. Following ten MMI itera- accent-dependent GT. During decoding, illustrated in fégu
tions for order 256, a detection rate of 27% has been achieved an utterance is presented to each AD GT, and each index

sequence is fed to the corresponding AD LM. The LM which
MMI iterations and E: While Figure 2 shows steady im- gives the lowest perplexity is selected.
provement across iterations, we have found that for this par ~ Qur experiments investigate both accent-dependent (AD)
ticular task, the algorithm is quite sensitive to hdwis set.  andindependent (Al) GTs, where in the former case, 23 GMMs
Figure 4 illustrates the detection rate and objective fionct are trained with accent-specific data, and in the latterglein
evaluated on the Train set for GMM order 256 did= 1,5.  GMM is trained with all the data. We implement index LMs
The results are consistent with the findings in [16], wheee th asn-grams of orders 2 to 5. The same data (Train set) is used
larger I, the largerD tends to be, and the more stable yetto train the Gaussians and generate the index sequences. The
slower the MMI training becomes. The effect bfis eval-  results shown in Table 1 indicate that the AD approach some-
uated on the Development set in Figure 5. Interestingly, theyhat outperforms the Al approach, but that overall, Gamssia
results forE' = 1, though exhibiting a less steady ascent thamTokenization does not have the same success with accent clas
E =5, give a higher detection rate of 28.2% (27%1or= 5)  sification as with LID. We note, however, that this is with ML
after ten MMl iterations. trained LMs, and the results might improve significantlytwit

The performance of the accent classifier following ten MMdliscriminative LM training.

both detection rate and objective function improve stgadil
and then level off as more MMI iterations are performed.



Detection GT Type Detection

m AR LM Training Data GT Type Rate Rate
‘i> 180444 63 70.. 128 2.gram(AD) | 9.76% || 256 MMI 3-gram(AD) | 15.13%
/)(N BP LM Training Data 128 3-gram(AD) 12.37% 512 2-gram(AD) 13.60%
iEED 351777120 128 4-gram(AD) | 12.51% 512 3-gram(AD) | 13.40%
: 128 5-gram(AD) 12.37% 1024 2-gram(AD) | 13.20%
DQ\ ‘::D VILM Training Data 256 2-gram(AD) 13.75% 1024 3-gram(AD) | 12.92%
3223333354.. 256 3-gram(AD) 16.2% 1024 2-gram(Al) 11.14%
256 MMI 2-gram(AD) | 12.65% 1024 3-gram(Al) | 10.17%

Fig. 7. lllustration of the training setup using an accent-Table 1. Performance of different types of GTs on the De-
dependent Gaussian Tokenizer. velopment set. The description of the GT type includes the

GMM order, the LM order, and whether the GT is accent de-
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pendent or independent.

| Method || Development Sef| Test Set|
ML+HLDA 25.3% 23.1%
MMI+HLDA 28.2% 32.0%
GT+MMI+HLDA 28.8% 32. %%

Table 2. Summary of improvement in detection rates over the

GMM baseline after cumulative application of HLDA, MMI,

Fig. 8.
dependent Gaussian Tokenizer.

[5]
LM scores obtained with the MMI-trained GT are inter-
polated with our best acoustic scores, improving the dietect  [©]
rate from 28.2% (c.f. Section 4.1) to 28.8% on the Develop-
ment set, and from 32% to 32.7% on the Test set.

(7]
6. SUMMARY AND DISCUSSION

In this research, several approaches to accent clasgificati (8]
have been presented and evaluated on the 23 accents in the
CSLU FAE corpus. The results for the various methods are
summarized in Table 2 for the Development and Test sets.  [9]

We find that acoustic-only methods are more effective than
LM-based methods for accent classification, and that in con-
trast to typical LID systems, we see little improvement from![10]
incorporating LM scores based on subword symbol sequences.
It remains to investigate how best to modify the LMs in order,
to capture accent specific information and obtain bettexaet
tion rates.

(11]

(12]
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