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ABSTRACT Maximum Mutual Information (MMI) training of large vocabulary
speech recognition systems.

In many pattern recognition tasks, given some input data and a fam-  \we have explored using the EBW gradient steepness measure-
ily of models, the “best” model is defined as the one which maxi-ment in a few pattern recognition applications. In [5] the likelinood
mizes the likelihood of the data given the model. Extended Baumratio test, typically used for audio segmentation tasks, was redefined
Welch (EBW) transformations are most commonly used as a disyjth the EBW gradient steepness criteria, while in [6] we explored
criminative technique for estimating parameters of Gaussian miXUSing EBW for audio classification. In addition, in [7] the EBW
tures. In this paper, we use the EBW transforma_ltions to derive ghetric was used in Hidden Markov Models (HMMs) and showed
novel gradient steepness measurement to find which model best gxyprovements over the likelihood metric for phonetic recognition.
plains the data. We use this gradient measurement to derive a va- |, this work, we present the gradient steepness metric from a

riety of EBW metrics to explain model fit to the data. We apply yeneral pattern processing perspective. First, we continue to expand
these EBW metrics to audio segmentation via Hidden Markov Mod-on previous work [5], [6], [7]), now looking at a large vocabulary
els (HMMs) and show that our gradient steepness measurementsy, and use the gradient metrics to introduce a variety of novel
robust across different EBW metrics and model complexities. EBW methods which can describe model fitness to data. We show
Index Terms— Pattern recognition, gradient methods. that the EBW gradient measurement is robust across the different
EBW metrics and model complexities and appears to be a general
technique to explain the quality of a model used to represent the
1. INTRODUCTION data. While the EBW metrics presented can be used for general pat-
tern processing applications, our experiments focus on using these
Pattern recognition [1] is important in a variety of applications, in- metrics for speech/non-speech segmentation of broadcast news via
cluding speech recognition, audio classification, speaker verificatiolMMs, a state of the art method for segmentation [8]. Since HMMs
and audio information retrieval. In a general pattern recognition taskare so widely used in speech recognition, success of our gradient
given some input data and a family of models, the goal is to evaluatsteepness measure in HMMs will introduce a new decoding metric.
which model best explains the data. Typically, an objective function,  The following section provides background on the EBW trans-
for example a likelihood probability, is computed to measure howformations and general gradient measurement, followed by the EBW
well the model characterizes the data. Recently, a new approach f@fetrics in Section 3. Section 4 presents the experiments performed,
evaluating model fitness to data has been explored which is based @llowed by a discussion of these results in Section 5. Finally, Sec-

the principle of how much effort is required to change one model intjon 6 concludes the paper and discusses future work.
another given some evaluation data. For example, the Earth Mover’s
Distance (EMD) ([2]) evaluates model fitness to data by calculating
the minimal cost needed to transform one distribution to another. In 2. EXTENDED BAUM-WELCH TRANSFORMATIONS
addition, feature space Gaussianization [3] computes a distance be-
tween models in an original and transformed feature space. 2.1. Derivation of EBW Transformations

In this paper, we look to evaluate model fithess by using a gra-
dient steepness measurement. Given some data, a set of models dhe EBW procedure involves continuous transformations that can be
an objective function, we can update (train) each of the models bglescribed as follows. Assume that frameis drawn from Gaussian
finding the best step along the gradient of the objective functionmixture model (GMM)A*, with each component € k parameter-
During such an update, each of the models changes such that modied by the following mean and variance parameidrs= {1.%, o5},
that fit the data best change the least and have the flattest gradieahd Weightwf. Thus GMM X* includes all the parameters of the
Therefore the best fitting model has the flattest gradient slope. individual components, in other words® = {)\’12 . /\}fv} and

One of the popular training methods used to estimate updategteightsw” = {wf,...w%}. Let us define the probability of frame
models, which we explore in this work, is the Extended Baum-Welche; given mixture componentasp(z:|\f) = 25 = N (uf, (o})?)
(EBW) transformations. EBW transformations have been used eXnd similarly 2% = >N, wkzE. Let F(2F) be some objective
tensively in the speech recognition community as a discriminativg,, \ .o overs. andc"v]; b5
training technique to estimate model parameters of Gaussian mix- “ * W8zl
tures. For example, in [4] the EBW transformations were used foinitial model parameters;?, the EBW transformations provide for-

F(zF). Given this function and



mulas to re-estimate model paramet&fge) = {15 (), 2% (e)} as:  denote a tangent to the curZé, at a point{0, Fx(\(0))}, as indi-
cated in Figure 1. Here\(0) represents the initial model ank{e,)
Ak akgy Zﬁ\il ijxie + u? 1 the updated model estimated from the EBW transformations defined
fij = iy (e) = ‘Zgl C?je-i—l (1) in (1) and (2).
Intuitively, the flatter the fitness curvgy, the better the initial
M kT - x model A\(0) fits the dataY”. The flatness of the fitness curvé
(4 = $5()” = 2 iz G i € + (“J’ pio + (Zj)) POW is represented by the tangent to the curve at pa{9. In other
J E;‘hil chet1 7o words, these tangenfsto the fitness curvé’y at\(0) characterize
(2) thefitness of modek(0) to dataY". The smaller these tangents, the
Heree is a small constant such that(z,) increases per itera- better the fitness. In [9], it was shown tiacould be represented as
tion, that isF (2% ) > F(25). [9] sum of some squared terms and therefore is always non-negative.
’ W= * Thus, the EBW transformations provide solutions to estimate
) an updated model, and also provide a measure of gradient steepness.
2.2. EBW Fitness Curve Having a graphical idea of the EBW gradient steepness measure-
As shown in Figure 1, given an initial model(0), for our data and mgnt, we can now derivg our gradient measurementfr;ore formally.
an objective functiorFy, we can estimate a new modale,), for ~ USing EBW transformations (1) and (2) such thgit— A} (¢) and
our data using the EBW tranformations by finding the best step along; — £, [9] derives a linearization formula betweét(2};) and
the gradient of the objective function. We can think of the gradientF(z£,) for smalle as:
slope as measuring how much we have to adapt an initial model to fit
the data. In what follows we introduce a general gradient steepness F(éfj) — F(zfj) = Ta(0)e + o(e) (6)
concept between data and model that generalizes the definition of
gradient steepness and its relation to the EBW transformations.

HereT measures the gradient required to adapt the initial model
/\g? to dataz;, or equivalently how well the data is explained by the
initial model)\f. The larger the value d@f indicates that the gradient
to adapt the initial model to the data is steeper &ifd;;) is much

A larger thanF(zfj). Thus the data is much better explained by the
T updated model” (¢) compared to the initial model¥. In the next
fopr data Moo) section, we derive our EBW gradient steepness metrics using both

sides of Equation 6.

objective function value

gradient updated
7,0/ model objective 3. EBW GRADIENT STEEPNESS METRICS
Aleo) function £a ] ]
initial model Given a family of model®9 = {6:,6,,...,0x}, the goal of a
for data A(0) R generic pattern recognition problem is to which model best describes
model parameter value A(€) dataz; € R?. Below we present the standard Gaussian Mixture

Model (GMM) likelihood method used in pattern recognition tasks.
Then we present our novel EBW metrics derived from our gradient
Fig. 1. EBW Model Update Graph steepness measurement discussed in Section 2.2.

3.1. GMM Likelihood

Definition 1 FITNESS CURVE Assume that frame; is drawn from a GMMg;, wherez}; is the

likelihood of framex; given componenj € k andwj-C thea priori
weight of componeng. We define the log-likelihood of; given
A , modeldy, by F(zF) as follows:

LetA = {A()} = {(a(e)),S(e) C R* "0 < e < oo} (3) N
denote a parametric curve imf + n)-dimensional vector space F(Zf) = p(xilOr) = 10{%2“’5% @)

R+ wheree changes betweehiand oo and points (e) on this =t
curve A are transformations of means and variance as defined in
(1) and (2). The parametercontrols the rate at which we estimate |oganted by each modéi and choose the modél which has the
our updated model. [ is very small then training is very slow o imum likelihood. In other word€* — arg max, F(z). Sec-

(but stable). However, i is too large model re-estimation may not jong 3.2-3.6 discuss different EBW metrics derived from our gradi-
increase the objective function on each iteration. [9] ent steepness measurement.

Given an input sample;, we compute how well the data is rep-

Letus call: F : [0,00] — R, e — F(A(¢)) (4)
an EBW fitness curve for a modeldataY and functionF'. Also:

3.2. EBW-T

Instead of calculating the likelihood of data belonging to model
Fa(Meo)) — Fa(A(0)) 0, we can measure this via tHE value in Equation 6, as ini-

TA(0) = limeg—o (5) tially demonstrated in [5]. In [9], Kanevsky derives a closed form

€0



solution for T' given any rational objective functiod(z¥) and  This implies that the distancd” has a usual multiplicativity

iy = 2555 F(zl5). In this work, we consideF (=) as given  property for derivatives of products, that ©(p(X|0)) =
by Equation 7 and thus: > T p(a;16x) * T(p(;10x) * [T}, p(2;16x). Therefore, by

normalizingT (p(X |0x))/p(X|0x) we can represent this as a sum

o zk»iF(zk<) _ zEwk @® of Ioca: r(;or_maéizatitc_)ns ﬂ each framé&. T} /p(x:|0x), which is
¥ ¥} k ) N : .
52k, SN whak computed via Equation
From [9], it then follows that for small, T* is given as follows: 3.5. EBW-MMIE
N d Mk k2 k2112 Instead of using the objective function fér given by Equation 7,
TF = Z { iz cijl(wir — fri) — (o)1} } + we can consider for each frame and modeb,, the MMIE criteria:
=1 r—1 2(0'”) k p(ZL‘Z‘Gk)
F(z;) = log I(2:0x) = log —————— (12)
N d M k > m=1 P(TiOm)
34y Gl 2 i) © v
= L= ok wherep(z;|0x) = >_7_, w}z{; andL is the total number of models.

Using this objective function;®. coefficients for MMIE are:
Note thatT has a closed form solution and does not require d J i

model re-estimation, making it computationally cheap [5]. The best bk .k

modelf* is the one where the gradient to adapt this model is small- + _ & g Pk = %% _ Zij Wy 13
P Cij = Zij <k (Zw) (13)

est, and thus has the small&st Thus our decision rule for the best dz,

- . k . Zlel wlszl Zm,l:l wlmz;r?
model can be written asl” = argming, T;". Note that Equation Equation 8 gives the formula for the ML based representation
6 holds only for smalk. In the next section, we introduce another L . : o
. . - . for ¢f;. In this formula, we can see that the higher the likelihood
EBW metric using the left side of Equation 6. o N & .
given componeny, that isz;;wj, the larger;; and the more weight
is added tdl". However the best model is one which has the smallest

3.3. EBW-F T. The MMIE based representation fcﬁj will have a smoothing

In this metric, given an input sample, the best moded* is the  €ffect when some Gaussian componeiitz;;" grows signifilcantly.
one which has the smallest increase in likelihood given the updatefihis can be seen easily from the following example:- 15y =

modelF(:F) relative to the likelihood given the initial mod&l(zF). C(g‘id) ~ C%. In other words ifc grows by some factoh then
In other words the decision rule for the best model is: 1/c—1/(c+ d) decreases by the square fadtor- h)2. Therefore
. . N A with the MMIE criterion, we do not increase; by as much for a
§" = argmin (F (2) = F(zi )) /€ (10)  nigher likelihood, which adds less weightTo

We look at using a global value ef as well as an adaptive value )
of ¢, similar to [7]. The higher the likelihood of frame; given ~ 3:6- EBW Forward Algorithm

model6y, i.e. p(x:|0x), the better the initial mode.. Therefore, i the previous methods, models are re-estimated and the EBW is
we also explore setting/e = p(xi|0x) = >2;_, wjzj, which  scored on a per-frame basis. However, in this EBW metric we ex-
offers the property that the higher the likelihood the smalland  plore estimating models using history form previous frames. The

the slower the updated model is estimated. In [6] and [7], we havgBW Forward algorithm is described as follows:

only explored setting”(z;") = p(z:|0). Below we derive EBW-F For each HMM states;, we associate the following HMM pa-
gradient metrics for other objective functions. rameters\st = {M’;“ Eftvwft
Step 1 (t=1): Fort = 1, find the “best” EBW first state, = s;
3.4. Normalized EBW-T using T'(z;|s¢). We also associate withy = s; the parameters
. Cs, =, CL = ¢t w1;,C2 =t « 22, and we set:
In [7] we showed that normalizing the EBW-F scores at each frame R £
allowed for improved performance in HMMs, as scores for a state se- e cif xx ke + pik
quence are computed by summing up scores assigned to individual Hij = T Stket1l (14
frames. Here, we derive a similar normalization method for EBW-T. “
We can define the normallge_d EEECW distance as_soc_late_d with model e et 22 % et ((Uf}’)Q + (M?J)Q) .
0, and framezx; by normalizingZ;®, the change in likelihood be- Gif %Gy = = — (fi5}) (15)
tween an initial and updated model, with the likelihood given the Cij e+l
initial model,p(z:|0%), as: Step't : For each state; perform the following computations:
Tik/{p($i|9k)}a (11) [t = (ove * Cslta + Csp) ¥ Ti x € + ,ui;ii 6
whereqa is some positive number that controls the weight given to ’ (Coroy Fca) ¥ ee +1
the likelihoodp(z; |65 ) relative toT}.
This local normalization at each frame can be related to .., ..,  (0¢ % C%,_ it xai) v e+ ((077)° + (u3))?) .,
a “global” normalization for a sequence of observation frames’'7 7% ~ (Cspy +cif)xe+1 ()
X = {z1,...2s,...2m}. For example, we can think ok as a7
representing observations from the best HMM path. Assume the,, = a; * Cs, |, + cs,, CL, = ar % Cs, |, + ¢, * 24, C2, =
likelihood score function ap(X|0x) = TI7"p(z:|0x). Then, 4, « C? |+, *a?. Wherea, = 1if s, = s;-1, Or oy = 0 if

the distancel'(p(X|6)) is defined adim, o210kl =P(X|0k) s¢ # s¢—1. Increase by 1 and continue.

€



4, EXPERIMENTS Finally, when we decrease the number of mixture components
from 240 to 100 to 50, we see that the performance of the likelihood
We perform speech/non-speech segmentation on the English Broaghetric degrades much more relative to the EBW metrics. Please
cast News component of the IBM Global Autonomous Languageote that the performance of EBW-FB gets slightly worse because
Exploitation (GALE) system [10]. In our system, speech and nonthe model estimates at each point in time are computed based on
speech segments are both modeled by a five-state, left-to-right HMMrevious model estimates, which will be poorer for smaller mixture
[10]. The output distributions in each HMM are tied across all stategomponents. As shown by Equation 10, the EBW metrics capture
and are modeled with mixture of diagonal-covariance Gaussians. lihe difference between the likelihood of the data given the initial
the HMM segmentation, we first score individual frames using themodel and the likelihood with a model estimated from the current
distance metrics discussed in Section 3. A Viterbi search then findgata frame being classified, while the likelihood just calculates the
the most likely sequence of states based on these scores. former. If the model estimate is poor, the likelihood is not able to

We use 16 Gaussian mixtures for non-speech and run three ewake into account this model error [1] which can be present. There-
periments, comparing the performance using 50, 100 and 240 Gaugre model re-estimation via EBW using the current data is able to
sian mixtures for speech. Models are trained using approximatelgorrect for this initial model error, and explains why the EBW met-
140 hours of hand-transcribed data from Hub4. For testing, we forics outperforms the likelihood for 50 and 100 components.
cus on the RT-04 test set, which contains 12 shows of roughly 25
minutes (totaling about 300 minutes of Broadcast News).

After speech/non-speech segmentation is performed, we then

decode the resulting speech segments using a speaker-independgihis paper, we introduced a novel gradient steepness meastremen
system similar to [10]. Since the overall goal of our GALE systemy 4t can be used for general pattern recognition tasks to explain how
is to try to find an appropriate segmentation to minimize word eryyg|| the data fits the model. We derived a variety of EBW metrics
ror rate (WER), we evaluate the performance of the different EBW this gradient measurement an applied these metrics for HMM
distance metrics via this criterion. speech/non-speech segmentation. We found that our gradient mea-
sure was robust across different EBW metrics and model complexi-
ties. In the future, we would like to explore using the EBW gradient
metrics in HMMs for other large scale vocabulary tasks.

Table 1 shows the final decoding WER and number of errors using
the different EBW metrics and speech mixture components. Please
note that results which are statistically insignificant from the best
performing method in each column are noted~by First, we see [1] R.Duda, P. Hart, and D. StorkPattern Classification Wiley
that the performance of each of the EBW metrics is relatively the Interscience, 2nd edition, 2001.

same for 240 mixture components, and also similar to the likelihood . . W ,
and oracle where the true speech/non-speech segments aredmown[z] Y‘. Rabner, C. Tomz_asL and L. J. Gu!bas, The Earth Mover's
priori. This demonstrates that our new gradient steepness measure- Distance as a Metric for Image Retrievaliiternational Jour-
ment is robust across different EBW metrics. In addition, note that nal of Computer Visiopvol. 40, pp. 99-121, 2000.

the 4 new EBW metrics introduced in this work, namely the EBW- [3] M. Padmanabhan and S. Dharanipragada,  “Maximum-
F Adaptivee, EBW-Norm, EBW-MMIE, and EBW-Forward algo- likelihood Nonlinear Transformation for Acoustic Adapta-
rithms, offer slightly improved performance over the EBW-T and tion,” IEEE Transactions on Speech and Audio Processing
EBW-F metrics, previously explored in [5] and [6], [7] respectively. vol. 12, pp. 572 — 578, November 2004.
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