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Abstract

In this paper, we compare speech recognition performance
using broad phonetically- and acoustically-motivated units as a
pre-processor in designing a novel noise robust landmark detec-
tion and segmentation algorithm. We introduce a cluster eval-
uation method to measure acoustic unit cluster quality. On the
noisy TIMIT task, we find that the acoustic and phonetic seg-
mentation approaches offer significant improvements over two
baseline methods used in the SUMMIT segment-based speech
recognizer, a sinusoidal model method and a spectral change ap-
proach. In addition, we find that the acoustic method has much
faster computation time in stationary noises, while the phonetic
approach is faster in non-stationary noise conditions.

1. Introduction

Nearly all state-of-the-art speech recognition systems employ
a sub-word based representation for the mapping between the
acoustic signal and words in the lexicon. A sub-word based ap-
proach is more effective than a word-based one since the former
permits a more parsimonious modeling of context-dependency
and enables better sharing of training data. The most commonly
used sub-word units are motivated by phonology and phonetics
e.g., phonemes, syllables, etc [1]. Phonetic units have the ad-
vantage that they are well-defined linguistically, and training of
these models is straightforward given the phonetic transcription
of an utterance [2]. However, these units may not always be
acoustically distinct; consider for example the varying acoustic
characteristics throughout a diphthong such as /a’/. To address
this issue, researchers have explored the use of acoustically-
motivated units [2]. While both of these approaches have been
effectively demonstrated for clean speech, we suspect that their
performance may vary under conditions where the speech sig-
nal has been corrupted by noise. With the increased availability
of mobile information devices, we are interested in noise-robust
system performance, since speech-based interactions are more
likely to be conducted in a wide variety of noisy conditions.
This paper compares speech recognition performance us-
ing broad phonetically- and acoustically-motivated modeling
approaches. Our investigation is carried out using the SUMMIT
speech recognizer, which uses a segment-based framework for
acoustic modeling [3]. While a segment-based approach can
be formulated as a variable frame-rate Hidden Markov Model
(HMM) [4], we suspect the performance of a segment-based
system like SUMMIT may be more sensitive to certain types of
noise. This is because SUMMIT computes a temporal sequence
of frame-based feature vectors from the speech signal, and per-
forms landmark detection based on the spectral energy change
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of these feature vectors. These landmarks, representing possi-
ble transitions between phones, are then connected together to
form a graph of possible segmentations of the utterance. While
the spectral method works well in clean conditions ([3], [5]), the
system has difficulty locating landmarks in noise and often pro-
duces poor segmentation hypotheses [6]. In [6], we found that
noise robustness in SUMMIT could be improved with a sinu-
soidal model segmentation approach, which represents speech
as a collection of sinusoidal components and detects landmarks
from sinusoidal behavior. This method offered improvements
over the spectral approach at high signal-to-noise ratios (SNRs),
but landmark detection was not as robust at low SNRs.

The purpose of this work is to explore broad phonetically
vs. acoustically motivated units as a pre-processor to design a
noise robust landmark detection method. Specifically, we look
at broad classes that are spectrally distinct in noise, such that
their transitions occur at large acoustic changes and can aid in
landmark detection. Once landmarks are detected, the segment
graph is formed and scored similar to the spectral method [3].

First, we introduce a novel cluster evaluation method to
choose an appropriate number of acoustic clusters and evaluate
their quality. Secondly, on the noisy TIMIT task, we find that
our phonetic and acoustic segmentation methods have much
lower error rates than the spectral change and sinusoidal meth-
ods across all noise types. Finally, we find that the acoustic
method has much faster computation time in stationary noises,
while the phonetic approach is faster in non-stationary noises.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we describe our broad phonetically- and
acoustically- derived units, respectively. Section 4 describes
our landmark detection and segmentation algorithm using these
pre-processors. Section 5 presents the experiments performed,
followed by a discussion of the results in Section 6. Finally,
Section 7 concludes the paper and discusses future work.

2. Broad Phonetic Units

[1] argues that a phoneme is the smallest phonetic unit in a
language to distinguish meaning. Generally phonemes which
belong to the same manner class convey similar spectral and
temporal properties and can be categorized as belonging to the
same broad phonetic class (BPC), while phonemes in differ-
ent BPCs are acoustically distinct. One representation of these
BPCs is vowels, stops, weak fricatives, strong fricatives, nasals
and closures [5]. In phonetic classification experiments on the
TIMIT corpus [5], it was shown that almost 80% of misclassi-
fied phonemes occurred within the same BPC. These BPCs have
been shown to be relatively invariant in noise [7], motivating us
to define these as our broad phonetic units.



3. Broad Acoustic Units
3.1. Learning of Broad Acoustic Units

We learn broad acoustic classes (BACs) from acoustic corre-
lates in the audio signal. The process of learning acoustic units
involves a segmentation of the utterance into quasi-stationary
sections followed by clustering [2]. We define our segmenta-
tion from the underlying phonetic transcription, similar to [8].
Thus, instead of using the underlying phonemes to define BPCs,
we learn BACs from acoustic correlates of these phonemes.
First, we cluster the segments to form a set of BACs. To
reduce the amount of computation in agglomerative cluster-
ing, similar segments are first pre-clustered using an iterative
nearest-neighbor procedure to form a set of seed clusters. After
the pre-clustering, stepwise-optimal agglomerative clustering is
performed on the seed clusters, which merges the two closest
clusters at each iteration [8]. This method produces a hierarchi-
cal tree-like structure of acoustic clusters, where each level of
the tree indicates a different grouping of clusters. After develop-
ing a method to learn acoustic structure, it is necessary to eval-
uate a meaningful number of clusters from the tree-structure.

3.2. Cluster Evaluation with V-Measure

Evaluation measures for supervised clustering methods include
homogeneity (i.e., purity, entropy), which requires that the clus-
ters contain only data points which are members of a single
class, as well as completeness, which requires that all data
points that are members of a given class are elements of the
same cluster. One such recent measure, known as the V-
measure [9], derives a clustering metric which evaluates clus-
ter quality by observing the tradeoff between homogeneity and
completeness. Evaluation metrics for unsupervised clustering
are a bit more difficult, as labels for clusters are not known a
priori. To evaluate the unsupervised BACs, we slightly alter the
V-measure formulation, which we describe below.

Assume we have a set of classes C' and clusters K. If the
number of clusters K is known a priori, the conditional entropy
of the classes given the clusters, H(C|K), is defined as:

K
H(C|K) = Zp

Instead of looking at the raw conditional entropy H (C|K),
the entropy is normalized by the maximum reduction in entropy
the clustering algorithm could provide without any prior cluster
information, namely H (C), given by:

C
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Using Equations 1 and 2, homogenelty is defined as:
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Similarly, completeness is computed by looking at the con-
ditional entropy of the clusters given the classes H (K |C):

H(K|C) = Zp )>_p(kle)logp(kle)  (3)
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And the worst case value of H(K|C') is H(K), given by:
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Using these metrics, completeness is defined as follows:
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The quality of the clustering solution is defined by the V-
measure [9], which computes the harmonic mean between ho-
mogeneity and complexity as:
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Here (3 controls the weight for completeness vs. homogeneity.
The above V-measure assumes that each class C' is la-
beled. In our work the only labeled classes are the underlying
phonemes, and therefore for simplicity we choose these as our
classes. However, our goal is to find a set of broad spectrally
distinct classes, and using phonemes as classes does not account
for this. To address this issue, we assume that cluster k is made
up of some true classes ¢* which are hidden. Ideally we would
like cluster k£ to be composed of classes which are acoustically
similar. We cannot observe these true classes c*. However, we
estimate the distribution p(c*|k) by the classes our clustering
algorithm assigns to cluster k. We can observe the similarity
between each of the true classes ¢* and all other hypothesized
classes c as (i.e., p(c|c”, k)). In addition, we also assume that
given c*, ¢ and k are conditionally independent. Therefore, to
calculate p(c|k) we sum over all the hidden variables c¢*.

p(clk) = Zp cle*, k)p Zp clc)p(clk)  (6)

Intuitively, to calculate p(c|k), Equation 6 computes the
probability of each of the true classes assigned to cluster k (i.e.,
p(c”|k)) and weights them by the similarity of these true classes
c* toclass ¢ (i.e., p(c|c)). p(k|c) is computed in the same man-
ner by observing the similarity between ¢ and ¢* as:

Zp “le, k)p Zp p(klc) (D)

The confusion probabilities p(c|c*) and p(c*|c) are derived
from a phonetic classification confusion matrix. Equations 6
and 7 give more weight to classes which are spectrally similar,
and Equations 1 and 3 are modified to reflect this as well.

4. Segmentation with Broad Classes

In this section, we discuss how broad classes (i.e., BPCs,
BACs), are used to design a robust landmark detection and
segmentation algorithm for speech recognition. The spectral
change segmentation algorithm [3] hypothesizes landmarks at
regions of large spectral change within frame-level feature vec-
tors. More specifically, major landmarks are hypothesized
where the spectral change exceeds a specified global threshold.
A fixed density of minor landmarks are detected between major
landmarks where the spectral change exceeds a specified local
threshold. In noisy speech, the system has difficulty locating
landmarks due to the static thresholds, resulting in poor segmen-
tation hypotheses. Transitions between spectrally distinct broad
classes, generally represent places of largest acoustic change,
and thus we explore this as a pre-processer to define landmarks.

Given an input utterance, we first detect the broad classes in
the signal. Next, these transitions are used as anchor points for
major landmark placement. More specifically, for each broad



class transition, we look at the major landmark setting which
best detects the transition while minimizing false alarms. In ad-
dition, since each broad class conveys a distinct acoustic char-
acteristic, we look at setting a fixed density of minor landmarks
specific to each broad class. For example, stops are more acous-
tically varying than vowels, and therefore we expect stops to
have a greater density of minor landmarks. Finally, major and
minor landmarks are connected together to form a segment-
based search graph [3]. Full phonetic recognition of the utter-
ance then involves a Viterbi search through the graph.

5. Experiments

Our phonetic recognition experiments are performed on the
TIMIT corpus, which offers the benefit of a phonetically-rich
context and hand-labeled transcription. We simulate noise on
TIMIT by artificially adding pink, speech babble or factory
noise, from the Noisex-92 database [10] at SNRs in the range
of 30dB to -5dB. We choose these noises because they differ in
their stationarity and harmonic properties, allowing us to com-
pare BAC and BPC behavior across different types of noise.
Our experiments explore BPC/BAC units specific to each
SNR and noise type. While the number of BPCs is fixed for
each condition, the number of BACs vary based on the envi-
ronment. Each broad class is modeled as a three-state, left to-
right context-independent HMM, described in [7]. For a given
utterance, broad classes are detected with an HMM, and their
transitions are used to aid in landmark detection, as described
in Section 4. Phonetic recognition is then done in SUMMIT
using triphone acoustic models to score and search the segment
graph for the best recognition hypothesis. All broad class and
triphone models are trained for each SNR and noise type using
the training set. Recognition results are reported on the test set.
First, we analyze the behavior of broad classes in different
noises. Secondly, we explore the V-measure for cluster evalu-
ation with and without phonetic similarity. Also, we compare
the phonetic error rate (PER) of the BAC and BPC segmenta-
tion methods to the baseline sinusoidal and spectral change ap-
proaches. Finally, we investigate the recognition computation
time, defined as the total time, in seconds, spent during recogni-
tion for all test set utterances, for the BAC and BPC approaches.

6. Results
6.1. BPCs vs BACs in Noise

To understand the behavior of broad classes in noise, we analyze
the confusion of vowels and fricatives with other phonemes.
Figure 1(a) shows the confusions for vowels in each noise type
and SNR, normalized by the maximum vowel confusions over
all noises. Notice that vowels have the least amount of confu-
sions in stationary, non-harmonic pink noise, implying that har-
monics are well-preserved in pink compared to non-stationary,
non-harmonic babble, which has the most number of confu-
sions. Non-stationary, non-harmonic factory noise retains har-
monics better than babble but not as well as pink. Figure 1(b)
plots the normalized confusions for fricatives, and indicates that
fricatives have a common amount of confusions and thus be-
have similarly in all noises. This same trend is true for other
non-harmonic broad classes such as stops and closures.

6.2. V-Measure For Choosing Clusters

In this section, we discuss how the V-measure allows us to
choose an optimal number of clusters, and to identify the ben-
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Figure 1: Normalized Confusions in Noise

efits of our novel phonetic similarity measure for better cluster
selection at lower SNRs. Figure 2 shows the V-measure with
and without the phonetic similarity measure for (a) 30dB and
(b) 10dB of babble noise as the number of clusters is varied.
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Figure 2: V-measure Metrics vs. Number of Clusters

First, both measures show a broad peak, which represents
the best tradeoff between completeness and homogeneity. This
peak defines the range for the optimal cluster number. In plot
(a), both metrics peak at 11 clusters. In plot (b), the phonetic
similarity V-measure peaks at 6, while the other condition peaks
at 13. As the SNR decreases and the number of confusions be-
tween broad classes increases, as illustrated in Figure 1, intu-
itively the number of broad classes should decrease. While the
V-measure without phonetic similarity seems to find a reason-
able number of clusters at 30dB, the increase in clusters at 10dB
indicates the clusters are not acoustically distinct. However, us-
ing similarity information results in clusters chosen based on
spectral closeness, as reflected by a decrease in the number of
clusters with decreasing SNR. While only babble is shown here,
similar V-measure trends were observed for other noise types.

6.3. Segmentation Error Rates

Table 1 shows the PER for each SNR, averaged across the three
noises, for the BPC, BAC, sinusoidal and spectral change meth-
ods, while Figure 3 shows the average duration difference be-
tween true phoneme boundaries and hypothesized landmarks
for each methods. First, decreasing the SNR results in rapid
degradation in performance for the spectral change method, as
well as a large time deviation from the true phonetic boundaries.
While the sinusoidal model approach is more robust at lower
SNRs than the spectral change method, it does not perform as
well at high SNRs, as landmarks are not as robust. The BAC
and BPC methods provide the best performance of all methods,
and have the most robust landmarks, as shown in Figure 3. The
only exception to this is -5dB of babble noise, where harmonics
are very poorly preserved, leading to poor BACs. While the per-
formance of these two methods are fairly similar across noises,
Section 6.4 will show that their computation times are different.

6.4. Segmentation Computation Time

In this section, we use the V-measure to investigate the qual-
ity of the hypothesized BPC and BAC units, and show the di-
rect correlation to computation time. To assign a set of labeled



TIMIT Average Phonetic Error Rates
db bpc bac sine | spec
Clean 27.7 | 27.3 | 30.6 | 28.7
30dB 28.4 | 283 | 31.3 | 29.2
20dB 315 | 31.7 | 343 | 325
10dB 41.1 | 409 | 434 | 42.1
0dB 57.9 | 58.0 | 59.4 | 70.7
-5dB 67.3 | 69.6 | 68.5 | 91.8
Average || 42.3 | 42.6 | 455 | 49.2

Table 1: PERs for Segmentation Methods on TIMIT
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Figure 3: Ave. Time Diff. for True Phonemes and Hyp. Lmks.

classes to the broad units to compute the V-measure, we look
at the true underlying phonemes which make up the different
BPCs or BACs generated from recognition hypotheses. Figure
4 shows the total V-measure, average V-measure for vowels, and
computation time (CPU Time) as a percentage of real time, for
the BAC/BPC units in the three noise conditions.
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Figure 4: V-measures and CPU Times for Different Noises

In pink noise, the total V-measure is higher for the BAC
method across all SNRs, and gains are made particularly in
the vowel class. As discussed in Section 6.1, pink noise tends
to preserve harmonics well, resulting in a higher V-measure
and better quality clusters for the BAC relative to BPC, which
groups all vowels into one class. This leads to a faster CPU
time for the BAC method. The segment graph in Figure 5(a)
also shows that the BAC method has more finer level hypothe-
sized acoustic clusters compared to the BPC method in Figure
5(b), resulting in a smaller segment graph and faster CPU time.

In babble noise, harmonics are not well preserved at lower
SNRs. This leads to greater confusions between broad classes,
resulting in fewer BACs. Thus, in babble the BPC method has
a higher V-measure and faster CPU time at lower SNRs.

Finally, for factory noise, at high SNRs, harmonics are
well-preserved and the BAC method has a higher V-measure
and faster CPU time. As the SNR decreases, harmonics are not
as well preserved in factory compared to pink and the number
of BACs decreases. Thus, the BPC method has finer level BPCs
and is faster at lower SNRs, as confirmed by the smaller seg-
ment graph for BPC in Figure 5(c) compared to BAC in 5(d).
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Figure 5: Graphical displays of BAC and BPC methods in
SUMMIT. The top display contains speech spectrograms. Be-
low that, (a) shows a segment-network for the BAC method in
pink noise, and bac indicates the hypothesized BACs. Similarly,
(b) shows the network for the BPC method in pink, and bpc are
the hypothesized BPCs. The darker colored segments indicate
the highest scoring segmentation achieved during search. (c)
and (d) show the BAC and BPC methods in factory noise.

7. Conclusions

In this paper, we explored BPCs and BACs under different
noise conditions in designing a robust segment-based algorithm.
We showed our novel segmentation algorithm outperformed the
baseline spectral change and sinusoidal methods. Also, we in-
troduced a phonetic similarity metric into the V-measure, which
allowed us to choose an appropriate number of distinct acoustic
clusters and analyze under what noises the BAC or BPC method
is preferred. We found that the BPC method has faster CPU
time in non-stationary noises, while BAC is faster in stationary
conditions. Finally, preliminary results on the Aurora-2 noisy
digit task using the BAC and BPC segmentation approaches in-
dicate the best results on a segment-based recognizer to date and
suggest the generalizability of these methods to other tasks.
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