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Abstract—Most speech recognizers do not differentiate be-
tween reliable and unreliable portions of the speech signal during
search. As a result, most of the search effort is concentrated
in unreliable areas. Island-driven search addresses this problem
by first identifying reliable islands and directing the search
out from these islands towards unreliable gaps. In this paper,
we develop a technique to detect islands from knowledge of
hypothesized broad phonetic classes (BPCs). Using this island/gap
knowledge, we explore a method to prune the search space to
limit computational effort in unreliable areas. In addition, we also
investigate scoring less detailed BPC models in gap regions and
more detailed phonetic models in islands. Experiments on both
small and large scale vocabulary tasks indicate that our island-
driven search strategy results in an improvement in recognition
accuracy and computation time.

I. INTRODUCTION

Many speech scientists believe that human speech process-
ing is done by first identifying regions of reliability in the
speech signal and then filling in unreliable regions using a
combination of contextual and stored phonological information
[1]. However, most speech decoding paradigms are typically
performed left-to-right without utilizing knowledge of reliable
regions. In addition, the search computational effort is mainly
concentrated in unreliable regions when in reality most of the
information in the signal can be extracted from the reliable
areas. In the case of noisy speech, if phrases are unintelligible,
this may even lead the search astray and make it impossible
to recover the correct answer. This is also a problem in large
vocabulary speech systems, where many pruning algorithms
do not utilize knowledge of reliable regions, and thus may
prune away too many hypotheses in unreliable regions and
keep too many hypotheses in reliable areas.

Island-driven search is an alternative method to better deal
with noisy and large vocabulary systems. This strategy works
by first hypothesizing islands from reliable regions in the sig-
nal, and then working outwards from these islands to recognize
unreliable areas. Island-driven search has been explored in
areas such as parsing and handwriting recognition, though
has been relatively unexplored in automatic speech recognition
(ASR) due to numerous challenges.

First, the choice of island regions is a very difficult and
unsolved problem [1]. For example, [2] explores an island-
driven search for ASR. In this paper, a first-pass recognition
is performed and islands are identified from stable words in
the N-best list of hypotheses. Words in the island regions are
held constant, while words in the gap regions are re-sorted
using the N-best list. However, we argue that, if a motivation

behind island-driven search is to identify reliable regions to
influence effective pruning, identifying these regions from an
N-best list generated from a pruned search space may not be
an appropriate choice. Thus, our first goal is to develop a
methodology to identify reliable island regions.

Second, the nature of speech recognition poses some con-
straints on the preferred strategy for island-driven search.
While island searches have been explored both unidirectionally
and bidirectionally, unidirectional search is more attractive
in ASR due to the computational benefits. Unidirectional
island-driven techniques typically make use of a heuristic
strategy to decrease the number of nodes expanded during
search. Therefore, our second goal is to explore the use of
island/gap regions in a unidirectional framework to decrease
the computational effort in unreliable areas.

Third, the potential computational complexities of island-
driven search have limited its use in large vocabulary tasks.
For example, the BBN HWIM system [1] utilizes island
information for parsing. While this type of approach has shown
promise for small grammars, computational complexities of
the island parser have limited its use in large scale tasks.
Thus, our third goal is to investigate an island-driven technique
which can be applied to small and large scale tasks.

In this paper, we look to develop a method of island-driven
search which can be incorporated into an ASR framework.
First, we explore utilizing broad phonetic classes (BPCs),
which have been shown to represent spectrally distinct portions
of the speech signal [3], to identify reliable island regions from
a speech utterance. Second, we utilize island/gap knowledge
in designing a pruning strategy to better guide the search.
Third, to limit unnecessary computational search effort in gap
regions, we look at scoring less detailed BPC models in gaps
and more detailed acoustic models in island regions.

We explore the proposed island-driven techniques on small
and large vocabulary noisy speech tasks. Our experiments
utilize the SUMMIT segment-based recognizer [4] developed
at MIT. On the small vocabulary task, we find that our island-
based pruning method offers improvements in both perfor-
mance and computation time, while further usage of island
information to score BPC models in gaps offers additional
improvements. Extending these proposed methods to a large
vocabulary task, we find that recognition performance does
not degrade using island-driven techniques and the methods
still provide faster computation time.

The rest of this paper is organized as follows. Our method
for detecting islands is described in Section II. Utilization of



islands/gaps for search space pruning and scoring BPC models
in gaps are presented in Sections III and IV respectively.
Section V outlines the experiments performed, while Sections
VI and VII discuss the results on the small and large scale
tasks. Finally, Section VIII summarizes the paper.

II. IDENTIFYING ISLANDS

We investigate a method to learn islands by using infor-
mation about BPCs which have been identified with high
confidence from the input speech signal. Our representation of
BPCs for island detection include vowels/semi-vowels, nasals,
weak fricatives, strong fricatives, stops, closures and silence,
as our past research with these BPCs have illustrated that they
are relatively acoustically distinct (i.e., [3], [5]). To determine
confidence scores for hypothesized BPCs, we explore a BPC-
level acoustic confidence scoring technique, presented in [6].

A. Confidence Features
First, we derive a series of features for each hypothesized

BPC based on frame-level acoustic scores generated from a
BPC recognizer described in [5]. At each frame, a maximum a
posteriori probability and normalized log-likelihood score are
computed for the hypothesized BPC. Using these frame-level
acoustic confidence scores, we can derive BPC-level features,
f , for each hypothesized BPC by taking various averages
across the frame-level scores ([6]).

After BPC-level features are extracted from each hypoth-
esized BPC, a Fisher Linear Discriminant Analysis (FLDA)
projection is applied to reduce the set of BPC-level features
f into a single dimension confidence score. The goal of the
FLDA is to learn a projection vector w to reduce dimen-
sionality of f while achieving maximal separation between
two classes. Typically, these two classes are correctly and
incorrectly hypothesized sub-word units (i.e., [6]). However,
the goal of our work is to identify reliable island regions,
not correctly hypothesized BPCs. More intuitively, a silence
or stop closure could be hypothesized correctly but generally
provides little reliability information on the actual word spoken
relative to a voiced sound, such as a vowel. Therefore, a 2-
class unsupervised k-means clustering algorithm is applied to
the feature vectors f to learn a set of two classes, denoted as
class0 and class1, which we have found in [7] to correspond
to “reliable” and “unreliable” classes.

The trends in class0 and class1 are illustrated in Figure
1, which analyzes the concentration of BPCs belonging to
the two classes. The figure shows that most of the reliable
BPCs, i.e., nasals, vowels and semi-vowels, belong to class0.
However, typical unreliable classes such as closures, silence,
and weak-fricatives, have a higher concentration in class1.
After a set of two classes is learned, the FLDA is then used
to learn a linear projection w. The projection vector is then
applied to a newly hypothesized BPC feature vector to produce
a single acoustic confidence score, namely Fscore = wT f .

B. Detecting Island Regions
After confidence scores are defined for each hypothesized

BPC, an appropriate confidence threshold to accept the BPC as
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Fig. 1. Distribution of BPCs belonging to class0 and class1

a reliable island region must be determined. Ideally, we would
like island regions to include reliable BPCs, that is vowels,
semivowels and nasals. Furthermore, we would like transitions
between islands and gaps to occur at true boundaries between
reliable/unreliable BPCs in the utterance, but would like to
minimize the transitions that occur in the middle of sequences
of reliable or unreliable BPCs. Thus, we define our goal of
detecting reliable BPCs as those hypothesized BPCs that pro-
vide a high probability of detecting the true reliable/unreliable
transitions with a low false alarm probability.

To find an appropriate confidence threshold, we calculate a
Receiver Operating Characteristic curve, a common tool used
to find a suitable tradeoff between a high detection and low
false alarm probability as the confidence threshold setting is
varied. After an appropriate setting is determined to define
island regions, we then use this information in our island-
driven search methods. In Section III we discuss a method
to prune the search space while in Section IV we explore a
technique to reduce computation time during model scoring.

III. ISLAND-DRIVEN SEGMENTATION

Segment-based recognizers [4] can often be computationally
expensive, as the size of the search space and number of
segmentations can grow as speech is subjected to noisier
environments [3]. Therefore, we explore a method known as
“segmentation by recognition” to prune the segment graph.
Segmentation by recognition has previously been explored
(i.e., [8]) without island/gap knowledge as a means of produc-
ing a smaller segment graph with more meaningful segments.
In this method, a set of acoustic landmarks, representing
potential transitions between phonemes, are first placed at
regions of spectral change in the speech signal. The landmarks
are then connected together to create a segment network.
Then, a forward phonetic Viterbi search is performed over
this segment graph to produce a phonetic lattice, after which
a backwards A∗ search is carried out on this lattice to produce
an N-best list of phonemes. This N-best list is then converted
into a new pruned N-best segment graph. A second-pass word
recognition is then performed over this new segment graph.

Segmentation by recognition offers a few attractions. First,
the pruned segment graph is produced from phonetic recogni-
tion and therefore the segments are much better aligned to the



phonemes hypothesized during word recognition. Second, the
segment graph is much smaller, thus reducing the chances of
throwing away potentially good paths. In this work, we explore
segmentation by recognition using island/gap knowledge.

More specifically, we first use the BPCs to define a set
of island/gap regions as presented in Section 2. Island/gap
knowledge is then used to chunk an utterance into smaller
sections at islands of reliability, allowing us to vary the number
of segments in island vs. gap regions. In each island region, a
forward phonetic Viterbi search is done to produce a phonetic
lattice. A backwards A∗ search over this lattice then generates
a smaller list of N-best segments, after which a new pruned
segment graph is created in the island regions. Here N , the
number of allowed paths, is chosen to optimize recognition
performance on a held out development set.

Next, the pruned segment graphs in the island regions
are used to influence segment pruning in the gap regions.
More specifically, another forward Viterbi/backward A∗ is
performed across each gap-island-gap region. Here the pruned
island segment graph from the island pruning is inserted in the
island regions. Again, N is chosen to optimize performance
on the development set. We chose N in the gap regions to
be smaller than the N chosen in the island regions to allow
for fewer segments in less confident gap regions and more
detailed segments in reliable island regions.

Finally, the N-best segments from the island and gap regions
are combined to form a pruned segment graph. Then, given
the new segmentation by recognition graph, a second-pass
full word recognition is done over this pruned search space.
We will refer to this segment-pruning technique described
above as an island-driven segmentation, as fewer segments
are permitted in areas of reliability and denser segmentation
is allowed during regions of less confidence.

IV. ISLAND INFORMATION FOR MODEL EVALUATION

In this section, we explore the utilization of island/gap
regions to further differentiate between the search effort in
islands vs. gaps, by scoring less detailed phonetic models in
gap regions and more detailed models in island regions. For
example, the Aurora-2 corpus [9] contains 28 phones, and
therefore effectively scores 157 diphone acoustic models (after
clustering) for each possible segment. If less detailed BPC
models are scored for each segment, this can reduce the num-
ber of acoustic models to approximately 49, roughly one-third.
In order to implement this joint BPC/phonetic recognizer, we
make changes to both the Finite State Transducer (FST) search
space and acoustic model scoring phase, discussed below.

A. Finite State Transducer Formulation

The SUMMIT recognizer utilizes an FST framework [10] to
represent the search space. In order to allow for BPC models
in the search space, we represent the FST network R as being
composed of the following components:

R = C ◦B ◦ P ◦ L ◦G (1)

C typically represents the mapping from context-dependent
(CD) phonetic labels to context-independent (CI) phonetic
labels. Our CD labels include both phonetic and BPC labels,
so C now represents the mapping from CD joint BPC/phonetic
labels to CI BPC/phonetic labels. We next compose C with
B, which represents a mapping from joint CI BPC/phonetic
labels to CI phonetic labels. The rest of the composition is
standard, with P representing the phonological rules, L the
word lexicon and G the grammar. Thus, the full composition R
maps input context-dependent BPC/phonetic labels directly to
word strings. Therefore each word in the lexicon is represented
as a combination of BPC and phoneme sub-word units.

B. Acoustic Model

The acoustic model calculates the probability of an ob-
servation ot given sub-word unit un as P (ot|un). In island
regions, the sub-word unit un is a context-dependent phonetic
model Phn and the acoustic model is scored as P (ot|Phn) for
each Phn. In the gap region, the sub-word unit is a context-
dependent BPC model, BPC. We calculate P (ot|BPC) by
taking the average of all the phonetic model scores which make
up the BPC. The expression for the BPC acoustic model score
is given more explicitly by Equation 2. Here M is the number
of Phn models which belong to a specific BPC. Details on
the justification of this approach for scoring BPC models can
be found in [7].

P (ot|BPC) =
1
M

( ∑

Phn∈BPC

P (ot|Phn)

)
(2)

V. EXPERIMENTS

Island-driven search experiments are first conducted on the
small vocabulary Aurora-2 corpus [9]. This task consists of
clean TI-digit utterances with artificially added noise at levels
of -5db to 20db. We utilize this corpus because of its simple
nature, which allows us to explore the behavior of the proposed
island-driven search techniques in noisy conditions. Results
are reported on Test Set A, which contains noise types similar
to those in the training data, namely subway, babble, car, and
exhibition hall noise. For word recognition experiments, global
multi-style diphone acoustic models are used. Acoustic models
are trained specific to each segmentation investigated, namely
the baseline spectral change segmentation in SUMMIT [4], a
BPC segmentation method presented in [3] which has been
shown to be robust in noisy conditions, and the proposed
island-driven segmentation techniques.

Experiments are then conducted on the CSAIL-info corpus,
which contains information about people, rooms, and events
in the Computer Science and Artificial Intelligence Laboratory
(CSAIL) at MIT. The large vocabulary nature of the task, cou-
pled with the various non-stationary noises which contaminate
the speech utterances, motivate us to explore island techniques
on this task. Results are reported on the development and
test sets. For word recognition experiments, diphone acoustic
models are trained using only the spectral change method on
data collected from the telephone-based weather system [10].



A variety of experiments are conducted on both corpora to
analyze the behavior of the proposed island-driven strategy.
First, we explore the robustness of the technique discussed in
Section 2 to identify islands and gaps. Second, we analyze the
word error rate (WER) of the island-based segment pruning
and joint BPC/phonetic model scoring methods. Third, the
computational benefits of the island methods are investigated.

VI. RESULTS ON AURORA

A. Island Quality Investigation

First, we investigate the robustness of the technique to
hypothesize islands and gaps proposed in Section II. Ideally,
a robust island will have a high concentration of vowels,
semi-vowels and nasals, which correspond to more reliable,
robust parts of the speech signal. Figure 2 illustrates for
each phoneme in the digit “zero”, the distribution of islands
and gaps within that phoneme. The distribution is normalized
across each phoneme, so, for example a distribution of 0.3
in the island region for /z/ in “zero” means that 30% of the
time /z/ is present in an island region and 70% of the time
it is contained in a gap region. The plot indicates that most
of the vowels and semi-vowels in the word, containing the
information-bearing parts of the signal, are concentrated in
the island regions. However, most of the non-harmonic classes
belong to the gap regions. This trend was observed for all
eleven digits in the Aurora-2 task.
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Fig. 2. Phoneme Concentration of Islands/Gaps in the digit “zero”

B. Performance of Island-Driven Techniques

1) Island-Based Segment Pruning: Second, to explore the
behavior of the island-based segment pruning method, Table I
compares the WER of this approach to the spectral change and
BPC segmentation methods. The results are averaged across
all noise conditions in Test Set A. Table I indicates that the
island segmentation method has the lowest error rate, and
a Matched Pairs Sentence Segment Word Error (MPSSWE)
significance test indicates that the island segmentation is
statistically significant from the other two approaches. These
results verify that recognition results can be improved by using
the island/gap regions to reduce the segmentation graph and
keeping the most promising segments.

2) Joint BPC/Phonetic Model Scoring: Third, we explore
the benefit of scoring BPC models in less reliable gap regions.
The first question explored is how many BPC models should
be scored in gap areas? Figure 3 shows the WER on the

TABLE I
WER FOR SEGMENTATION METHODS ON AURORA-2 TEST SET A

Segmentation Method WER
Baseline Spectral Change Segmentation 31.9

BPC Segmentation Baseline 22.8
Island-Based Segmentation 22.3

development set for the joint BPC/phonetic method as the
number of BPC models is varied. Here, the additional BPC
chosen at each point on the graph is picked to give the
maximum decrease in WER. We also analyze the WER when
phonetic models are scored in both regions, as indicated by
the flat line in the figure.

Point A in the figure corresponds to the location where the
WER of the joint BPC/phonetic approach equals that of the
phonetic approach. This point corresponds to the following 8
BPCs: silence, vowel, semi-vowel, nasal, closure, stop, weak
fricative, strong fricative. If the number of BPCs is increased,
and in particular both strong and weak fricatives are split into
voiced and unvoiced classes, the WER continues to decrease.
This best set of BPC models is depicted by Point B in Figure
3. There is no extra benefit to increasing the number of BPCs
past 10, as illustrated by the increase in WER.
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Fig. 3. WER vs. Number of BPC Models when joint BPC/phonetic models
are scored vs. scoring only phonetic models

Using these 10 BPC models to score the gap regions, Table
II compares the WER when only phonetic models are scored
vs. scoring BPC/phonetic models. Notice that there is an
improvement when BPC models are scored in gap regions,
showing that performing a less detailed evaluation in unreli-
able regions does not lead to a degradation in performance.

TABLE II
WER FOR ISLAND-BASED METHODS ON AURORA-2 TEST SET A

Scoring Method WER
Island-Based Seg, Phonetic Models 22.3

Island-Based Seg, BPC/Phonetic Models 22.1

3) Error Analysis: To better understand the improvement
in error rate offered by the island-driven techniques, Table
III breaks down the WER for the BPC segmentation, island
segmentation method scoring phonetic models and the island
segmentation method scoring joint BPC/phonetic models, and
lists the corresponding substitution, deletion and insertion
rates. Notice that the main advantage to the island based
approach is the large decrease in insertion rate.



TABLE III
BREAKDOWN OF ERROR RATES ON AURORA-2 TEST SET A

Method WER Subs Del Ins
BPC Segmentation 22.8 9.9 6.8 6.1

Island Seg, Phn Models 22.3 10.8 7.6 3.9
Island Seg, BPC/Phn Models 22.1 11.1 8.0 3.0

A closer investigation of these insertion errors is illustrated
in the top panel of Figure 4, which displays the number
of insertion errors for the three methods, when errors occur
purely in islands, gaps, or span over a combined island&gap
region. In addition, the bottom panel of Figure 4 illustrates
the relative reduction in insertion errors over the BPC seg-
mentation method. Notice that most of the insertions occur
in gap only and island&gap regions where the signal is less
reliable compared to pure island areas. In addition, the biggest
reduction in insertions occur in gap only regions, showing
one of the strengths of island-driven search. Having a detailed
segmentation and phonetic model scoring in unreliable regions
can throw the search astray without taking into account future
reliable areas, resulting in large insertion errors.
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Fig. 4. Insertion Errors in Various Regions

C. Computational Efficiencies

In this section, we explore the computational efficiencies
of the island-based approach. First, we compare the Viterbi
path extensions for the BPC segmentation and island seg-
mentation approaches, calculated by counting the number of
paths extended by the Viterbi search through the length of the
utterance. Figure 5 shows a histogram of the Viterbi extensions
on all utterances in Test Set A for the two approaches. Notice
that the island segmentation extends fewer paths and has an
average path extension of about 9.5 (in ln scale), compared to
the BPC segmentation which extends roughly 10.4 paths.

In addition, to evaluate the benefit in computational effort
with the joint BPC/phonetic approach, we explore the number
of models requested by the search during recognition. Every
time paths are extended, the search requests a set of models
to extend these paths. The number of models evaluated per
utterance is computed by calculating the total number of
models requested through the length of an utterance. Figure 6
illustrates a histogram of the number of models evaluated (in ln
scale) for all utterances in Test Set A, in both the island and
gap regions. The joint BPC/phonetic method is much more
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Fig. 5. Histogram of Number of Viterbi Extensions (ln scale)

efficient, particularly in the gap region, and evaluates fewer
models compared to the phonetic method.
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Fig. 6. Histogram of No. of Models Evaluated in Islands and Gaps

VII. RESULTS ON CSAIL-INFO

A. Island Quality Analysis

First, we explore the quality of the island detection tech-
nique. It has been suggested that stressed syllables in English
carry more acoustically discriminatory information than their
unstressed counterparts and therefore provide islands of re-
liability [1]. To analyze the behavior of stressed syllables,
the vocabulary in the CSAIL-info corpus was labeled with
stress markings, obtained from the IPA stress markings in
the Merriam-Webster dictionary. It has also been shown that
identifying stressed syllables from nucleus vowels offers more
reliability than also using stress information for non-vowel
segments. Thus, we explore using the BPC island-detection
technique discussed in Section III such that islands are iden-
tified to maximize the detection of true stressed vowels.

First, we analyze the distribution of just stressed vowels in
islands and gaps. Figure 7 shows the distribution of stressed
vowels per utterance in the island and gap regions. Specifically,
the figure indicates for a given % of stressed vowels per
utterance (x-axis), the % of these stressed vowels found
solely in island regions (y-axis). The graph illustrates that
a significantly higher number of stressed vowels, in fact
84% on average, appear in island regions compared to gaps.
Furthermore, because stressed vowels should ideally represent
stable portions of the signal, they should also be recognized



with high probability. In [7], we observed that approximately
84% of the stressed vowels found in island regions are correct.
Thus, we can conclude that most of the information-bearing
parts of the signal are found in the island regions, and also
that most of these stressed vowels are correctly hypothesized.
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Fig. 7. Distribution of Stressed Vowels in Islands and Gaps

B. Performance of Island-Driven Techniques

1) Island-Based Segment Pruning: Table V shows the
results for the three segmentation techniques. The island-
based technique has slightly worse performance than the BPC
segmentation method, though a MPSSWE significance test in-
dicates that these two methods are not statistically significant.
However, the island method still offers similar computational
benefits, as discussed in Section VI-C, over the BPC approach.

TABLE IV
WER FOR SEGMENTATION TECHNIQUES ON CSAIL-INFO TASK

Method WER (dev) WER (test)
Spectral Change Seg 26.5 28.6

BPC Seg 24.3 27.6
Island-Based Seg - Broad Classes 24.8 28.2

One hypothesis for the slight deterioration in performance
in the island-driven technique is that acoustic models are
trained on a weather domain system [10] using the spectral
segmentation method, which behaves more similarly to the
BPC segmentation technique compared to the island-based ap-
proach. We have observed in the Aurora-2 task that retraining
acoustic models specific to each segmentation method offered
improvements in recognition accuracy. However, due to the
limited data in the CSAIL-info training set, better performance
was found using Jupiter acoustic models, rather than training
acoustic models specific to each segmentation.

2) Joint BPC/Phonetic Model Scoring: Next, we explore
the performance of the joint BPC/phonetic approach on the
CSAIL-info task, which is shown in Table V for various BPC
splits. First, notice that using noise and nasal BPCs leads to
a slight improvement in performance on the development set
but not the test set. However, as the number of clusters is
increased past the nasal class, the error rate increases. Because
of the large scale nature of the CSAIL-info task, scoring less
detailed BPC models increases the confusability among words.
For example, consider the words “bat” and “pat”, which have
the same BPC transcription. To address this issue, in the future,

we would like to consider exploring a lexical access technique,
where a first pass recognition is performed to determine an
N-best list of BPC/phonetic hypotheses, after which a second-
pass word recognition is done over this cohort of words.

TABLE V
WER FOR DIFFERENT BPCS IN GAP REGIONS ON CSAIL-INFO

BPCs WER (dev) WER (test)
No BPCs - Phonetic Models 24.8 28.2

Noise (Laughter, Cough, Babble) 24.7 28.9
+Nasal 24.8

+Alveolar+Labial+Dental Closures 25.1
+Voiced+Unvoiced Stops 25.2

+Voiced+Unvoiced Weak Frics 25.5

VIII. CONCLUSIONS

In this paper, we explored an island-driven search method
which we incorporated into an ASR framework. More specif-
ically, we utilized BPC information to identify a set of island
and gap regions. We illustrated that this proposed method to
identify islands was able to identify information-bearing parts
of the signal with high probability. On the Aurora-2 noisy dig-
its task, we demonstrated that utilizing island/gap information
to prune the segmentation graph and to score fewer models
in gaps resulted in improvements in both performance and
computation time. Furthermore, on the CSAIL-info task, we
showed that utilizing island information for segment pruning
offered comparable performance to the BPC segmentation
approach, though further utilization of BPC knowledge in gap
regions during final search resulted in a slight degradation
in performance. In the future, we would like to explore a
bidirectional island-driven search strategy, as well as other
techniques to detect islands from the input signal.

IX. ACKNOWLEDGEMENTS

Thank you to Victor Zue for helpful discussion in shaping
this work. This work was sponsored by the Office of Secretary
of Defense under Air Force Contract FA8721-05-C-0002.

REFERENCES

[1] W. A. Lea, Trends in Speech Recognition. Englewood Cliffs, NJ:
Prentice Hall, 1980.

[2] R. Kumaran, J. Bilmes, and K. Kirchhoff, “Attention Shift Decoding for
Conversational Speech Recognition,” in Proc. Interspeech, 2007.

[3] T. N. Sainath and V. W. Zue, “A Comparison of Broad Phonetic and
Acoustic Units for Noise Robust Segment-Based Phonetic Recognition,”
in Proc. Interspeech, 2008.

[4] J. Glass, “A Probabilistic Framework for Segment-Based Speech Recog-
nition,” Computer Speech and Language, vol. 17, no. 2-3, 2003.

[5] T. N. Sainath, D. Kanevsky, and B. Ramabhadran, “Broad Phonetic Class
Recognition in a Hidden Markov Model Framework using Extended
Baum-Welch Transformations,” in Proc. ASRU, 2007.

[6] S. Kamppari and T. Hazen, “Word and Phone Level Acoustic Confidence
Scoring,” in Proc. ICASSP, 2000.

[7] T. N. Sainath, “Applications of Broad Class Knowledge for Noise Robust
Speech Recognition,” Ph.D. dissertation, MIT, 2009.

[8] S. C. Lee and J. Glass, “Real Time Probabilistic Segmentation for
Segment-Based Speech Recognition,” in Proc. ICSLP, 1998.

[9] H. G. Hirsch and D. Pearce, “The AURORA Experimental Framework
for the Performance Evaluations of Speech Recognition Systems under
Noisy Condidions,” in ISCA ITRW ASR2000 “Automatic Speech Recog-
nition: Challenges for the Next Millennium”, 2000.

[10] J. Glass, T. Hazen, and I. Hetherington, “Real-time Telephone-Based
Speech Recognition in the JUPITER Domain,” in Proc. ICASSP, 1999.


