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ABSTRACT

We study the phonetic information in the signal from an ultrasonic
“microphone”, a device that emits an ultrasonic wave toward a
speaker and receives the reflected, Doppler-shifted signal. This can
be used in addition to audio to improve automatic speech recog-
nition. This work is an effort to better understand the ultrasonic
signal, and potentially to determine a set of natural sub-word units.
We present classification and clustering experiments on CVC and
VCV sequences in speaker-dependent and multi-speaker settings.
Using a set of ultrasonic spectral features and diagonal Gaussian
models, it is possible to distinguish all consonants and most vowels.
When clustering the confusion data, the consonant clusters mostly
correspond to places and manners of articulation; the vowel data
roughly clusters into high, low, and rounded vowels.

Index Terms— Speech recognition, ultrasonic, multimodal

1. INTRODUCTION

A great deal of work has been devoted to the use of non-acoustic
signals, especially video [1], in addition to audio for improved
speech recognition. Here we consider the signal from an ultrasonic
“microphone”, a device that emits an ultrasonic sound wave toward
the speaker and receives the reflected, Doppler-shifted signal. This
is much cheaper than video, both in actual cost and in data rate,
and is less intrusive. In this work we investigate the linguistic in-
formation in the ultrasonic signal. This is of scientific interest, but
also a necessary step for extending the use of ultrasonic signals to
larger-vocabulary tasks where sub-word units are used. In this sense,
this work can be viewed as an initial attempt at defining ultrasonic
sub-word units, analogously to phonemes for audio and visemes for
video. Similarly to prior work on video [2, 3, 4], we perform clas-
sification and clustering experiments on nonsense consonant-vowel-
consonant (CVC) and vowel-consonant-vowel (VCV) sequences,
and study their dependence on speaker and phonetic context.
Ultrasonic microphones take advantage of the Doppler effect:
When a sinusoidal sound wave at frequency fo impinges on a sur-
face moving at velocity v, the frequency of the reflected sound is
f = fo(1+ %), where c is the speed of sound. The emitted ul-
trasonic signal in our setup consists of a beam that may impinge
on multiple surfaces moving at different velocities, so the reflected
signal in general has a complex spectrum. Figure 1 shows example
spectrograms of ultrasonic signals from our data collection.
Jennings and Ruck [5] showed early promising results with an
ultrasonic dynamic time warping-based “lip-reader” for isolated dig-
its. Zhu et al. [6] found that continuous digit recognition in noise
benefits significantly from the ultrasonic signal as well. Kalgaonkar
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Fig. 1. Ultrasonic spectrograms for /a M a/, /a N a/, /a NG a/. The vertical
lines correspond to boundaries of the nasal consonant.

et al. have studied the use of ultrasonic signals for voice activity de-
tection [7] and speaker recognition [8]. However, to our knowledge
no detailed studies have been done on the linguistic information in
the signal, analogous to phonetic confusion studies on video.

Our goal, therefore, is to understand the phonetic information
in the ultrasonic signal. Since the signal is generated by articula-
tory motions, it is plausible that we can discriminate among features
such as place of articulation. We may expect, as with video, that we
cannot distinguish between voiced and voiceless phonemes. Beyond
these general expectations, it is less clear what to expect. It is not
clear to what extent we should be able to discriminate among simi-
lar articulations in more forward or more back places, e.g. alveolar
vs. velar, since the ultrasonic signal is in principle affected only by
the velocity of reflecting surfaces. It is also not clear to what extent
the signal is affected by speaker and phonetic context.

We follow the rough outline of previous experiments on lip-
reading from video [2]. We train classifiers for nonsense utterances
containing a set of target vowels and consonants, and analyze their
confusions. In the following sections, we describe the ultrasonic
hardware, data collection effort, and classification experiments.

2. HARDWARE AND DATA COLLECTION

The ultrasonic hardware is a next-generation version of the one used
in [6] and is described in detail in [9]. ' The ultrasonic transmitter
emits a 40 kHz square wave. The reflected signal is received by the
ultrasonic receiver, and is then amplified and passed through a 40
kHz bandpass filter and digitized. The audio is simultaneously cap-
tured by the on-board or external microphone and low-pass filtered
with a cutoff of approximately 8 kHz. Both channels are transferred
to a host computer over USB. The device is approximately 1.5 in.
high x 2.5 in. wide x 1 in. deep.

'We gratefully acknowledge the assistance of Carrick Detweiler and Tuliu
Vasilescu at MIT with the new ultrasonic hardware.
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Data collection was done in a quiet office environment. Eight
speakers, six male and two female, read a script consisting of iso-
lated words each containing a target vowel or consonant. Each
speaker was positioned with his/her mouth approximately centered
with the ultrasonic sensors and about 6-10 away from the hardware.
The audio and ultrasonic channels were simultaneously recorded;
here we report on experiments with the ultrasonic signal only. The
script consisted of 15 English vowels in the same consonantal envi-
ronment (/h V d/) and 24 English consonants in four VCV contexts
(/aCal/,/iCi/,/u Cu/,/ah C ah/), for a total of 111 distinct nonsense
words. Two speakers (the first two authors, referred to as Speaker
1 and Speaker 2) recorded twenty sessions of the 111-word script,
while the remaining speakers recorded two sessions each.

3. PHONETIC CLASSIFICATION EXPERIMENTS
3.1. Preprocessing and feature extraction

In addition to the reflected ultrasonic signal, the carrier signal is also
received directly from the transmitter, and can be strong enough to
overwhelm the reflected signal near the carrier frequency. To remove
the carrier signal, we first approximate its spectrum as the spectrum
of the first frame of each utterance, in which there should be no
speech or significant motion. For each remaining frame, we com-
pute a normalized spectrum in which the magnitude at the carrier
frequency is matched to the first frame. We subtract the normal-
ized spectrum from the received spectrum, and use the result as the
signal for further processing. In addition, each word is segmented
semi-automatically: The SUMMIT speech recognizer [10] is used
in forced alignment mode to generate two boundaries, one before
and one after the target phoneme, and the result is edited manually.

We extract three types of spectral features, the first two of which
were used in [6]: (1) Frequency-band energy averages: We parti-
tion the ultrasonic spectrum into 10 non-linearly spaced sub-bands
centered around the carrier frequency, and compute the average en-
ergy in each sub-band, in dB relative to the energy at the carrier
frequency; (2) energy-band frequency averages: We partition the
spectrum into 12 energy bands and compute the mean frequency in
each band; (3) peak locations: The ultrasonic spectrograms contain
peaks corresponding to forward or backward motions. We use as
features the peak times, in particular the times of the maximum and
minimum of the frequency average features in a given energy band
within a 40ms window of phonetic boundaries.

Next we generate a single vector at each phonetic boundary. We
define twelve windows spanning both sides of each boundary (0-
6ms, 6-18ms, 18-30ms, 30-60ms, 60-90ms, 90-180ms) and compute
the means of the energy and frequency features over each window.
Finally, we concatenate the averaged energy and frequency features
and the four peak location features (two per boundary) to give a per-
utterance feature vector of 532 dimensions. This vector is projected
to a smaller dimension using principal components analysis (PCA).
The dimensionality for vowel classification tasks was set to max-
imize the accuracy for each speaker condition; for the consonant
tasks, it was set to maximize the mean accuracy over the four con-
texts for each speaker condition. The PCA dimension ranged from
26 to 52, but did not make a large difference over a wide range.

3.2. Phonetic classification

We use a single diagonal Gaussian to model the distribution of fea-
ture vectors for each phonetic class, where a classisa /h V d/ or /V
C V/word. For each test utterance with feature vector O, we classify
it by finding the most probable model C* = arg maxc p(C|0O) =
arg maxc p(O|C), where C' ranges over vowels or consonants and
all classes are equally likely. For the single-speaker experiments, we
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[ Task [ Speaker 1 | Speaker 2 [ Multi-speaker |

[ Avd [ 407 | 503 [ 332 |
/aCal 59.4 69.2 47.9
hC1/ 34.8 47.9 30.0
/uCu/ 29.8 54.8 29.8
/ah C ah/ 55.0 58.3 41.0
all VCV 44.7 57.2 37.2

Table 1. Accuracies (in %), of vowel (15-way) and consonant (24-way)
classification. “All VCV is the mean accuracy over the four VCV tasks.

use 10-fold cross-validation. For each experiment, the data is split
into ten non-overlapping subsets, and ten train/test runs are done us-
ing a different 90%/10% split in each. We report the average statis-
tics over the ten train/test runs. For the multi-speaker experiments,
the same procedure is used with a 13-way split.

Table 1 shows the overall accuracies. For each cell in the table,
a separate set of models was trained on the corresponding data.
The multi-speaker condition included all of the recorded data, while
the Speaker 1 and 2 conditions included only the corresponding
speaker’s data. All accuracies are much higher than chance (~ 7%
for vowels and ~ 4% for consonants), so there is significant infor-
mation in the ultrasonic features for these tasks. Second, for the
consonant tasks, performance is generally best for the /a/ context,
followed by /ah/, /i/, and then /u/. This is expected, since /a/ has
the widest lip opening, and therefore the best opportunity for the
ultrasonic beam to impinge on surfaces inside the mouth, while the
other vowels have progressively narrower lip opening. Third, the
highest accuracies are obtained for Speaker 2 and the lowest for
the multi-speaker condition. The ultrasonic signal, like the acoustic
signal, is therefore quite speaker-dependent.

3.3. Confusion matrices

For a better understanding of the misclassifications, we study con-
fusion matrices and clusterings for each task. Here we include a
representative subset. Figure 2 shows VCV confusion matrices for
Speaker 1 in the /a/ and /i/ contexts. Each matrix cell ¢;; represents
the number of times phone ¢ was classified as phone j, and is dis-
played numerically and via cell shading. In going from the /a/ to
/i/ context, there are more misclassifications, but they tend to cluster
around the diagonal, indicating that consonants with similar place
are confused (the labels are ordered roughly by place). For the /u/
context (not shown), the off-diagonal confusions are much more uni-
formly distributed, while the case of /ah/ is similar to that of /a/.

Figure 3 shows the overall VCV confusion matrices (summed
over the four contexts) for Speaker 2 and the multi-speaker case,
and the vowel confusion matrix for Speaker 1 (excluding “extreme”
diphthongs /ay/, /oy/, /aw/). Many of the consonant confusions are
expected, such as between voiced/voiceless pairs. However, this is
not always the case, e.g. /p/ and /b/ are rarely confused. This may
be because of the difference in voice onset time, and therefore peak
locations. For Speaker 2, the confusions are concentrated near the
diagonal, indicating within-place confusions. This also holds for
Speaker 1 (not shown), and less strongly in the multi-speaker case.
In Speaker 1’s vowel data, the confusions are more concentrated
among vowels with similar front/back position.

3.4. Clustering: The search for ultrasonic sub-word units

Finally, we attempt to better understand how the phonemes clus-
ter using hierarchical clustering. The main questions here are (1)
is there a need to cluster phonemes into ultrasonic sub-word units,
analogously to visemes for lipreading, i.e. are there some phonemes
that cannot be distinguished from the ultrasonic signal, and (2) if we
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/iCi/ confusion matrix, Speaker 1
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Fig. 2. VCV confusion matrices in two contexts for Speaker 1.

wish to cluster the phonemes, what are the natural clusterings in-
duced by the data? For this purpose, the confusion matrices provide
us with a natural notion of inter-phone dissimilarity. We represent
each phone 7 by its row vector of confusion frequencies, c;;V7j, and
use a measure of dissimilarity between distributions as the dissim-
ilarity between phones. As in previous work on video [3], we use
the ¢ measure, a symmetric and normalized relative of x*: ¢ =
V(x2(i, j) + x2(4,4)) /2N, where N is the number of tokens of
each phone and x(i, 5) is the x? statistic comparing the confusion
frequencies of phoneme ¢ to those of phoneme j. We then cluster
hierarchically using average linkage: At each iteration, the two clus-
ters with the smallest mean ¢ between their members are merged.
The results of clustering the overall VCV confusions for Speaker
2 and the multi-speaker set, and Speaker 1’s vowel confusions, are
shown in Figure 4. The y-axis corresponds to ¢.

First, we address the question of whether it is necessary to clus-
ter the phonemes at all. Are there any phoneme pairs that cannot
be distinguished at better than chance level? If each phoneme i is
characterized by its confusion frequencies, c¢;;Vj, then we can use
a x> goodness of fit test to test the null hypothesis that phoneme
+’s confusions are drawn from the same distribution as phoneme j’s.
By this measure, at a significance level of 0.05, all consonant pairs
in the multi-speaker data are distinguishable, and the only indistin-
guishable vowel pair is {aa, ao}.

Second, we look for natural clusterings: What clusterings would
give highly discriminable classes? It is arguable what “highly dis-
criminable” means; here we look at the result of clustering the con-
sonants into 10 classes and the vowels into 5 classes. In Figure 4,
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[ Task [[ Clusters |

Sp. 1 VCV {bm} {p} {w} {fthssh} {vdhzzh} {dnchj}
{1} {tk} {yrgng} {h}

Sp. 2 VCV {bm} {p} {w} {fvdhlgng} {thszshzhchj}
fdn} {t} {k} {yr} {h}

Multi-sp. VCV {bm} {p} {w} {fvthdhszshzh} {dnl}
fchj} {tk} {gng} {yr} {h}

{iy ih ey eh ah} {ac aaao} {er} {uh} {uw ow}
{iy ih eh ah} {ey ac aa ao} {er ow} {uh} {uw}

{iy ey} {ih ech ah} {ac aaao} {er uw ow} {uh}

Sp. 1 vowels
Sp. 2 vowels
Multi-sp. vowels

Table 2. Clusters derived from the dendrograms in Figure 4.

the corresponding level is marked in each dendrogram with a dotted
red line. Table 2 shows the resulting clusters. The consonant clus-
ters often correspond to places of articulation (e.g., {b m}, {g ng}),
but sometimes to manners (e.g., {t k}, {y r}). The vowel clusters
correspond roughly to high, low, and rounded.

4. CONCLUSIONS

We have studied phonetic discrimination in ultrasonic microphone
signals, in the setting of nonsense /h V d/ and /V C V/ classification,
and can draw some initial conclusions. First, we can discriminate at
above chance level among all consonant pairs in the combined VCV
data, and among most vowel classes. It may therefore not be nec-
essary to group consonants into equivalence classes, as is done for
video. The experimental setup is idealized, however; this analysis
should be extended to continuous speech. The phonetic confusions
differ between speakers and phonetic contexts. For example, con-
sonants in an /i/ or /u/ context are more difficult to distinguish than
those in an /a/ or /ah/ context. It remains to be seen whether different
features or more complex models (e.g. Gaussian mixtures), trained
on more data, would be more robust to such variation.

From confusion matrices and hierarchical clustering, we have
found that the most salient groupings of consonants include both
place and manner of articulation classes, and do not necessarily in-
clude voiced/voiceless pairs. This differs from video, where the most
salient divisions are along place of articulation. This may be because
the ultrasonic microphone is sensitive mainly to the velocity, and not
position, of reflecting surfaces. When clustering the multi-speaker
consonant data into ten classes, the resulting clusters are {{b m} {p}
{w} {fvthdhszshzh} {dnl} {chj} {tk} {gng} {yr} {h}}.
When clustering the multi-speaker vowel data into five classes, the
result is {{iy ey} {ih eh ah} {ae aa ao} {er uw ow} {uh}}.

This study is an initial step toward understanding the phonetic
information in ultrasonic signals, and toward the question of what
a good set of ultrasonic sub-word units (if any) may be. This will
help us to expand the use of ultrasonic signals beyond the limited
domains in which they have been used so far. Future work includes
investigation of additional ultrasonic features and direct comparisons
of phonetic discrimination using ultrasonic and video signals.
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