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ABSTRACT

The Extended Baum-Welch (EBW) Transformations is one of a va-
riety of techniques to estimate parameters of Gaussian mixture mod-
els. In this paper, we provide a theoretical framework for general
parameter estimation and show the relationship between these dif-
ferent approaches. Namely, we introduce a general family of model
parameter updates that generalizes a Baum-Welch (BW) recursive
process to an arbitrary objective function of Gaussian Mixture Mod-
els, and show how other commonly used parameter estimation tech-
niques belong to this family of model update rules. We present a
linearlized formulation that allows for the construction of an even
more general family of update rules with any specified value for the
gradient that measures how much an initial model is moved to an
estimated updated model.

Index Terms— Pattern recognition, gradient methods.

1. INTRODUCTION

There has been extensive research in estimating parameters for
Gaussian Mixture Models, applied to a wide range of natural lan-
guage processing tasks, such as part-of-speech tagging, word seg-
mentation, optical character recognition, as well as acoustic model-
ing in speech recognition.

One of the most popular methods for parameter estimation is the
Extended Baum-Welch (EBW) Transformations [1]. However, many
other parameter estimation/adaptation techniques such as Maximum
Likelihood (ML), Maximum A-Posteriori (MAP), Maximum Likeli-
hood Linear Regression (MLLR), Constrained Line Search (CLS),
have been used to do parameter estimation. The purpose of this
paper is to provide a theoretical framework for general parameter
estimation and illustrate the relationship between these different ap-
proaches. Namely, we introduce a general family of model param-
eter updates that generalizes a Baum-Welch (BW) recursive process
to an arbitrary objective function of Gaussian Mixture Models. We
show that popular estimation/adaptation techniques as ML, MLLR,
MAP and CLS, belong to this family of model update rules.

In addition, we show that this family of model update rules has
a gradient steepness, measuring how much an initial model is moved
to an estimated updated model, similar to the gradient steepness de-
rived for the EBW model updates in [2]. Since this gradient steep-
ness is non-negative it guarantees that this family of update rules in-
creases the value of the objective function with each iteration. Using
linearization techniques, we formulate the construction of an even
more general family of update rules that has any real value as a gra-
dient steepness. Specifically, model update rules for Gaussian pa-
rameters are derived for the case where the gradient steepness is an
approximation of the Kullback-Leibler (KL) distance between up-
dated and initial models.

The rest of the paper is structured as the following. In Section
2 we introduce the generalized representation and establish the anal-
ogy between EBW and BW while providing a family of EBW update
rules. In Section 3 we show that various other estimation and adap-
tation techniques belong to the generalized family of update rules.
In Section 4 we show how to construct update rules that have any
specified in advance gradient steepness.

2. AN IN-DEPTH LOOK AT THE EBW
TRANSFORMATIONS

2.1. Background in Statistical Optimization

Given an initial model for our data and an objective function, there
are many statistical optimization techniques to estimate a new model
for our data. In the simplest case, maximizing the objective function
directly will lead to a new model estimate. However, in situations
where the objective function cannot be maximized directly, an aux-
iliary function is defined, where maximizing the auxiliary function
leads to an increase in the objective function. Standard techniques
to re-estimate model parameters by maximizing the auxiliary func-
tion include both the Expectation Maximization (EM) and BW algo-
rithms. The disadvantage of these methods is that the auxiliary func-
tion is only defined if the objective function is a likelihood function.

To address this issue, another optimization technique involves
finding the extremum (that is minimum or maximum) of an associ-
ated function. The benefit of the associated function is that it is de-
fined for any rational objective function. The EBW Transformations
[1] provide closed form solutions to re-estimate model parameters
such that the re-estimated model parameters increase (or decrease)
the associated and corresponding objective functions. In the next
section, we derive these EBW Transformations in more detail.

2.2. Extended Baum-Welch Transformations

Assume that data X = (x1, ...xM ), from frames 1 to M , is
drawn from a Gaussian λj parameterized by the following mean
and variance parameters λj = {µj , σj}. Let us define the prob-
ability of frame xi ∈ X given model λj as p(xi|λj) = zij =
N (µj , (σj)

2). Let F (zij) be some objective function over zij and
cij = zij

δ
δzij

F (zij).

Given this function and initial model parameters λj , the model
parameters λ̂j are re-estimated by finding solutions which increase
the associated function Q, given as follows:

Q(λj , λ̂j) =
∑

i

zij
δF ({zij})

δzij
log ẑij (1)



Optimizing Equation 1 will lead to closed-form update rules,
known as the EBW transformations, that are generally not obtainable
by optimizing F directly1 . The EBW solutions to re-estimate model
parameters λj(D) = {µj(D), σj(D)} are given as follows:

µ̂j = µ̂j(D) =

∑M
i=1 cijxi + Dµj∑M

i=1 cij + D
(2)

(σ̂j)
2 = σ̂j(D)2 =

∑M
i=1 cijx

2
i + D

(
(µj)

2 + (σj)
2
)

∑M
i=1 cij + D

− (µ̂j)
2

(3)
Here D is a large constant chosen such that the associated func-

tion, and corresponding objective function increases with each itera-
tion, that is F (ẑij) ≥ F (zij).

2.3. Linearization of EBW Transformations

Let us take a deeper look at the meaning of these transformations, by
linearizing the means and variance parameters. First, let us re-write
Equation 2 as follows:

µ̂j =

∑M
i=1 cijxi

D
+ µj

∑M
i=1 cij

D
+ 1

(4)

Furthermore, we assume the following Taylor series expansion
for the denominator where terms with 1/D2 are combined together.

1
∑M

i=1 cij

D
+ 1

= 1−
∑M

i=1 cij

D
+ o

(
1

D2

)
(5)

Substituting Equation 5 into 4, we get the following

µ̂j =

(∑M
i=1 cij

D

)
µj +

(
1−

∑M
i=1 cijxi

D

)
µj + o

(
1

D2

)
(6)

Assuming α =
∑M

i=1 cij

D
, Equation 6 can be re-written

µ̂j = α

(∑M
i=1 cijxi∑M

i=1 cij

)
+ (1− α)µj + o

(
1

D2

)
(7)

Intuitively, we see that the EBW update for µ̂j is a weighted
combination of the initial mean µj and the extremum of the associ-
ated function.

Let us derive a similar linearization for the EBW variance given
in Equation 3. Assuming the same Taylor series expansion given in
Equation 5, we can rewrite Equation 3 as follows:

σ̂2
j = α

(∑M
i=1 cijx

2
i∑M

i=1 cij

)
+(1−α)(µ2

j +σ2
j )− µ̂j +o

(
1

D2

)
(8)

Now, rewriting the linearization for the updated mean µ̂2
j as

µ̂2
j = µ2

j + α2µj

∑M
i=1 cij(xi − µj)∑M

i=1 cij

(9)

1Note that when the objective F is the log-likelihood function (e.g., stan-
dard MLE estimation in HMM, i.e. the Baum-Welch method), then Q coin-
cides with the auxiliary function
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Fig. 1. Illustration of Family of EBW Update Rules

and substituting this into Equation 8 gives the following equation for
the updated variance after simplification:

σ̂2 = α(

∑M
i=1 cijx

2
i − 2µj

∑M
i=1 cij(xi − µj)−

∑M
i=1 cijµ

2
j∑M

i=1 cij

)

+(1− α)σ2
j + o(

1

D2
) (10)

Given Equation 10, we can also rewrite the EBW update for
σ̂2

j as a weighted combination of the initial variance σ2
j and the ex-

tremum of the associated function, as similarly done for µ̂j .

σ̂2
j = α

(∑M
i=1 cij(xi − µj)

2

∑M
i=1 cij

)
+ (1− α)σ2

j + o

(
1

D2

)
(11)

In the next section, we look at more general parameter re-
estimation techniques which can be written as a weighted combi-
nation of the initial model and extremum of the associated function.

2.4. Family of EBW Update Rules

In section 2.3, we showed that the EBW mean and variance re-
estimation formulas could be written as a weighted combination of
the initial model and extremum of the associated function, plus some
higher order taylor series term. More formally, we can describe
model updates of this form by the following equation:

λ̂j = g(α)λextremum
j + (1− g(α))λinit

j + f(α). (12)

Here λextremum
j is an extremum of an associated function (1) and

g(α) is just a function over the weight α. We require that g(α) be
differentiable and g(0) = 0. In Section 2.3 when the mean and
variances were linearly derived, we assumed that g(α) = α.

A more graphical representation of these model updates can be
shown in Figure 1(in which θ = λ). When α > 0, the updated
model λ̂j is a weighted combination of the initial model and maxi-
mum of extremum function, with the weighting controlled by g(α).
Similarly, when α < 0, λ̂j is a weighted combination of the initial
model and minimum of extremum function. We will refer to model
updates given in Equation 12 as belonging to the family of EBW
update rules.



3. MODEL ADAPTATION TECHNIQUES IN THE FAMILY
OF EBW UPDATE RULES

In this section, we show how other commonly used model adaptation
techniques are all members of the family of EBW update rules.

3.1. Maximum A-Posteriori Estimation

Maximum A-Posteriori (MAP) adaptation [3] is another popular
model adaptation technique to move models from a source to tar-
get domain. In this section, we show that MAP mean estimate is in
the family of EBW update rules and can be written as Equation 12.

The MAP mean re-estimation formula is given by Equation 13,
which is exactly the same as the EBW formula for mean, and there-
fore by definition in the family of EBW update rules.

µ̂j = µ̂j(D) =

∑M
i=1 cijxi + Dµj∑M

i=1 cij + D
(13)

Similarly, using equations for variance updates in ([3]) it is eas-
ily to show they are proportional to updates rules for variances in
thus also in the EBW family (12).

3.2. Constrained Line Search

The Constrained Line Search (CLS) [4], is another popular model
adaptation technique used in discriminative training. CLS uses the
same mean parameters as EBW but the variance update is based on a
summation of the log variance, which translates into a multiplicative
form of model updates for variance rather than an additive form. To
show that this multiplicative form of EBW update rules is also in the
family of EBW update rules, first, let us write the model update for
CLS as follows:

λ̂(α
′
) = λ̃(α

′
)λ(1−α

′
) (14)

Here λ̃ is an extremum of an associated function (1). Next, let us
chose g(α) to be

g(α) =
λ̂(α

′
)− λ

λ̃− λ
(15)

We can then rewrite Equation 14 as

λ̂(α
′
) = λ̃(α

′
)λ(1−α

′
) = g(α)λ̃ + (1− g(α))λ (16)

Therefore the updated CLS variance can also be represented as a
weighted combination of initial and extremum of associated function
models, and is therefore in the family of EBW update rules.

The difference between CLS and EBW as it is used in [5] lies in
the fact that in CLS a controlling parameter α is chosen which is in-
versely proportional to the KL distance between initial and updated
models, which prevents significant changes between model updates.
However, in [5] α is chosen inversely proportional to state occu-
pancy counts.

3.3. MLLR

MLLR [6] is another common model adaptation technique. Update
model µ̂j is defined by taking a linear transformation of initial model
µj , as defined by Equation 17

µ̂j = Aµj + b (17)

Here η = {A, b} is chosen to maximize the following

{A∗, b∗} = arg max
η

p(µj |η)

Before going on to show that MLLR is in the family of EBW, we
must first consider the following Generalized Family of Parameter
estimation Techniques given in Equation 12 in matrix form.

Λj

(∑M
i=1 cijxi∑M

i=1 cij

)
+ (I − Λj)µj + o(|Λ|1) (18)

Here xi, µj ∈ Rn are vectors, I ∈ Rn×n is the identity matrix and
Λ ∈ Rn×n is an n×n matrix. The 1-norm |Λ|1 =

∑
ij |λij | where

sumis taken for all entries λj .
In order to see how the model update rules given in Equation 17

relate to the family of Matrix EBW Update rules given in 18, we first
rewrite 18 such that the µj term is independent as follows:

µ̂j = µj + Λj

M∑
i=1

cij∑M
i=1 cij

(xi − µj)

= µj + Λj(µ̃j − µj) = µj(1− Λj) + Λj µ̃j (19)

Intuitively, Equation 19 is another representation for the family
of EBW update rules in matrix form. Using Equations 17 and 19 we
see that µ̂j can be written as:

µ̂j = A∗µj + b∗ = µj + Λj(µ̃j − µj) (20)

In general, if µ̃j 6= µj , it is easily to see that Equation 20 is solvable
for Λj (and in fact has infinite number of solutions). A ”degenerate”
case µ̃j = µj means that µj is already an ML estimate of p(µj |η).
If µ̃j = µj for all j then one can take A∗ = 1 and b∗ = 0. Similarly,
one deduct a variance representation in MLLR as a matrix form of
EBW for variance. Thus, MLLR model update rules are, in general
(i.e. exept of degenerated cases), also in the family of EBW.

4. DISTANCE TECHNIQUES IN THE FAMILY OF EBW
GRADIENT STEEPNESS METRICS

4.1. EBW Gradient Steepness Metric

The purpose of this section is to demonstrate that our linearization
technique allows us to introduce update rules when gradient steep-
ness metrics are given in advance. We specifically apply this to the
KL gradient metric. We use notation of the section 2.2 and for sim-
plicity assume that there only one set of parameter models µ, σ, i.e.
we drop a subscript j for model parameters. Also let Φ, Ψ ∈ R be
some real numbers and zi = zi(µ, σ2) = N (µ, σ2). First we de-
rive our linearized EBW gradient steepness metric and then go on to
show the relation between this gradient metric and the KL distance.

4.2. Linearization of EBW Gradient Steepness

The EBW gradient metric can be derived by the following theorem:

Theorem 1 Let F ({zi}) be a differentiable function of zi. Let ci =
ziδF ({zi)}

δzi
. Let T ∈ R be any real number and Ψ, Φ ∈ R be such

that the following equality holds:

Ψ
∑

i

ci

[
−1/2 +

(yi − µ)2

2σ2

]
+ Φ

∑
i

ci(yi − µ) = σ2T (21)



Then for the following mean and variance transformations

µ(C) = µ + Φ/C, and σ(C)2 = σ2 + Ψ/C (22)

we get the following gradient steepness:

F ({zi(λ(C))})− F ({zi(θ)}) = T/C + o(1/C2) (23)

where λ(C) = {µ(C), σ(C)} Specifically, if T > 0 then for suffi-
ciently large C F (λ(C)) > F (λ).

Here T measures the gradient required to adapt initial model λ to
data yi. The larger the value in T indicates that the gradient to adapt
the initial model to the data is steeper and the data is much better
explained by the updated model λ̂j(C). These gradient steepness
metrics were succesfully used in various speech recognition clas-
sification, segmentation and decoding tasks (see [7], [8], [?], [?]).
Below is a brief outline of the proof of the above theorem (that uses
the same linearization technique as a proof of a theorem in [2])

Proof Substituting (22) into zi(λ(C)) and using the first order
Taylor series expansion we get the following equalities.

ẑi = zi(λ(C)) ∼ zi+
zi

σ2C

{
Ψ

[
−1/2 +

(xi − µ)2

2σ2

]
+ Φ(xi − µ)

}

(24)
Next we have (assuming ai = δF ({zi}

δzi
and aizi = ci)

l({ẑi}) =
∑

i

aiẑi =
∑

i

aizi+

1

σ2C

{
Ψ

∑
i

aizi

[
−1/2 +

(xi − µ)2

2σ2

]
+ Φ

∑
i

aizi(xi − µ)

}
=

l({zi})+ 1

σ2C

{
Ψ

∑
i

ci

[
−1/2 +

(xi − µ)2

2σ2

]
+ Φ

∑
i

ci(xi − µ)

}

This implies (see [2]):

F ({ẑi})− F ({zi}) ∼ l({ẑi})− l({zi}) =
1

σ2C
Ψ

∑
i

ci

[
−1/2 +

(xi − µ)2

2σ2

]
+

1

σ2C
Φ

∑
i

ci(xi−µ) = T (Φ, Ψ)/C

Specifically for EBW transformations we get:

Φ =
∑

i

ci(xi − µ), and Ψ =
∑

i

ci[(xi − µ)2 − σ2] (25)

and an EBW distance metric

T (Φ, Ψ) =
1

σ2

{∑
i ci

[
(xi − µ)2 − σ2

]}2

2σ2
+

1

σ2
[
∑

i

ci(xi−µ)]2

4.3. Update rules with KL gradient steepness

This theorem can be applied to a situation when T = KL(λ(C), λ)
Specifically, one can consider the following approximation to KL:

KL(N(µ̃, σ̃)||N(µ, σ)) = 1/2

[
log

σ2

σ̃2
− 1 +

σ̃2

σ2
+

(µ̃− µ)2

σ2

]

(26)
Let

µ̃ =

∑
i cixi∑

i ci
, and σ̃2 =

∑
i ci(xi − µ)2∑

i ci
(27)

with these notations we can represent (21) as the following:
∑

i ci

2σ2
Ψ

[
−1 +

σ̃2

σ2

]
+

∑
i

ciΦ
(µ̃− µ)

σ2
= T (28)

We can derive the following solutions of (28) for T =
KL(N(µ̃, σ̃)||N(µ, σ)).

ΦKL =
1

2
∑

i ci
(µ̃− µ), and ΨKL =

σ2

∑
ci

[
1 +

log σ2

σ̃2

σ̃2

σ2 − 1

]
(29)

This gives the following update rules with KL gradient steepness:

µ̂KL = µ + ΦKL/C, and σ̂2
KL = σ2 + ΨKL/C (30)

Thus model updates can be constructed given the KL metric.

5. CONCLUSION

In this work, we extended a BW concept to an arbitrary objective
function by introducing a concept of an associated functions and a
family of EBW update rules. We showed that some popular estima-
tion and adaptation techniques as MAP, CLS and MLLR belong to
an EBW family. We also demonstrated that our linearization tech-
nique allows to introduce update rules that have any gradient steep-
ness metrics given in advance. Specifically we applied it to a gradi-
ent steepness metrics that approximate KL distances.
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