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ABSTRACT

In this paper, we present a novel speech-rhythm-guided syllable-
nuclei location detection algorithm. As a departure from conven-
tional methods, we introduce an instantaneous speech rhythm esti-
mator to predict possible regions where syllable nuclei can appear.
Within a possible region, a simple slope based peak counting algo-
rithm is used to get the exact location of each syllable nucleus. We
verify the correctness of our method by investigating the syllable
nuclei interval distribution in TIMIT dataset, and evaluate the per-
formance by comparing with a state-of-the-art syllable nuclei based
speech rate detection approach.

Index Terms— speech rhythm, syllable nuclei detection

1. INTRODUCTION

Human speech has been observed by linguists as having a tempo-
ral rhythm that can be characterized by placing a perceptual “beat”
around successive syllables [1]. This periodic “speech rhythm” pro-
vides a syllable-level characterization of the speech signal that ap-
proximates the number of segmental elements in the utterance [2, 3].
Most speech processing methods ignore this source of information
however, and almost exclusively use short-time spectral analysis of
the speech signal. Since relying on a single source of information
can lead to brittle behavior in conditions of uncertainty, our objec-
tive was to find a way to measure speech rhythm, and to incorporate
it into a speech processing task.

Our initial investigations have focused on the problem of syl-
lable nuclei detection. Although most speech recognition strate-
gies employ frame-based analysis, a parallel syllable-level analysis
stream can provide an additional source of constraint [4]. Syllabic
nuclei are arguably one of the more reliable cues to be found in noisy
speech, and as such can provide reliable anchor points for subse-
quent analysis [5, 6]. By counting the number of syllable nuclei
in an utterance, we can get a measure of the speaking rate, which
can be useful for characterizing speaking style, selecting appropriate
acoustic models, or speaker adaptation.

Most existing methods for detecting syllable nuclei measure
short-time acoustic features of the speech signal; produce a contin-
uous curve of extracted features; and perform peak and/or valley
detection to determine the numbers of possible vowels or syllable
onsets [7]. Due to phonological effects or environmental noise,
finding syllabic peaks in any feature representation is inherently
error-prone. For example, spurious peaks can be caused either by
background noise or by non-vocalic sounds; neighboring syllabic
peaks can fuse because they are too close or the windowing parame-
ter is incorrectly set. Although solutions to some of these problems
have been proposed [4, 8], the resulting algorithms can be very

sensitive to parameter settings, and correspondingly less robust on
new data.

In this work we attempt to estimate the instantaneous speech
rhythm and incorporate this information into a syllabic nuclei detec-
tion algorithm. At the time we perform peak detection on a feature
envelope, we also estimate the instantaneous speech rhythm. By
assuming that a normal speaker will not dramatically change their
speech rhythm within an utterance (an assumption we discuss later),
we use the current speech rhythm to predict the next possible time
period where a syllable nucleus might appear. Within this period, we
perform parameter-free peak detection to locate syllabic nuclei. We
investigate our approach on the TIMIT dataset by measuring interval
distributions of upcoming syllables both with and without speech-
rhythm scaled durations. We also develop a robust syllabic nuclei
detection method; report its performance on TIMIT; and compare
results to a state-of-the-art method. Our experimental results show
that the rhythm-based method significantly improves syllabic nuclei
detection performance, and shows promise for other forms of speech
processing.

In the following section, we will give a detailed description of
our syllable nuclei detection algorithm. Experimental results will be
reported in Section 3. We conclude and discuss ideas for future work
in Section 4.

2. ALGORITHM DESIGN

Our speech-rhythm guided syllable nuclei detection algorithm can
be divided into two main stages. In the first stage, similar to con-
ventional methods, we apply envelope analysis on the input speech
signal. In the second stage, we estimate the speech rhythm on the
signal envelope to help us with syllable nuclei detection. A flowchart
of our proposed algorithm in shown in Figure 1. Each of the stages
is described in more detail in the following three subsections.

2.1. Envelope Analysis

To filter out noise at different frequency levels, the peripheral audi-
tory based band-pass filter has been widely used in analyzing speech
signals. In our approach, we use an equivalent rectangular band-
width filter (ERB) to first split the wave signal into 20 channels. The
ERB filter can be viewed as a series of gammatone filters operating
on the ERB rate scale. The output signal of the i-th ERB filter is

xi(t) = tm−1 exp(−2πbit) cos(2πCF nor
i )H(t) (1)

where m is the filter order (in our implementation, we set m = 4),
bi is the bandwidth, CF nor

i is the center frequency converted from
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Fig. 1. Algorithm flowchart (RG stands for rhythm guided).

the ERB scale, and H(t) is the unit step signal. For a more detailed
description of the ERB filter, we refer readers to [9].

After band-pass filtering, we extract the envelope Ei(t) of each
channel. Let xi(t) be the signal in the i-th channel. To compute the
envelope, we apply the Hilbert transform on xi(t) to get the magni-
tude Xi(t) as

Xi(t) = xi(t) + i · H(xi(t)) (2)

where H(·) denotes the Hilbert transform. The envelope of the i-th
channel can be calculated by Ei(t) = |Xi(t)|. In order to rein-
force the energy agreement of each channel, we first normalize each
channel envelope and then sum them to get the total envelope repre-
sentation E(t) of the input speech signal E(t) =

PN
i=1 Ei(t) where

N is the number of channels.
Unlike some previous methods, we do not choose to do sub-band

selection, and we use direct summation instead of sub-band tempo-
ral correlation of the energy envelopes. There are two main reasons
for this. First, since we are using a two-stage method, the more sub-
bands we use to contribute the total envelope, the more information
we can use for speech-rhythm estimation. Second, we noticed that
with temporal correlation, energy peaks may occur a little bit later
than their actual location. The amount of delay is dependent on the
length of the correlation window. Although this delay does not affect
the total number of peaks, it does affect the accuracy of our subse-
quent speech-rhythm estimate. Therefore, we chose not to perform
correlation so as to not interfere with the second stage processing.

2.2. Rhythm Guided Peak Counting

A perfect peak counting algorithm would find all true positive peaks
and make no false predictions. In most peak picking methods, there
are two important parameters that determine peak selection [10].
The first is the ratio of the height of a peak over the highest peak
in the current working set. The other is the ratio of the contrast of a
peak with its immediately neighboring valleys. The first parameter
uses global information while the second parameter may vary on a
case by case basis, even within an utterance. In addition, due to the
various sources of noise, it can be difficult to find parameter thresh-
olds that avoid all spurious peaks while detecting all correct peaks.
Thus, we seek to use the speech rhythm information to avoid requir-
ing these two parameters in processing the spectral envelope. The
basic procedure is to use a conventional method to find the first two
syllabic nuclei via envelope peaks; then estimate the instantaneous

speech rhythm based on these two nuclei; and then subsequently
predict intervals where the next syllable nucleus may appear; finally,
we use a simple slope based peak detection algorithm in each inter-
val that avoids the use of any parameters or thresholds. This simple
peak detection and speech rhythm estimation are performed repeat-
edly until the end of the utterance is reached.

To clearly and efficiently represent the speech rhythm, we turn
the speech rhythm estimation into a sinusoid function fitting prob-
lem. Given a peak location set P , we fit a sinusoid function Fk1,k2 ,
with frequency, k1, and phase offset, k2, of which peak locations are
matched to the peak locations in P . The target sinusoid function is

Fk1,k2(x) = sin(k1 · x + 2π · k2) (3)

By using a least mean squares fitting scheme, the objective func-
tion can be written as

{k1, k2} = arg min
k1,k2

1

|P |
|P |X

i=1

(1 − Fk1,k2(pi))
2

(4)

where pi ∈ P denotes the location of peak pi and k2 ∈ [0, 1).
Using these notations, a stepwise description of the syllable nuclei
detection method is as follows:

• Step 1 After the i-th peak pi is found, add pi into P

• Step 2 Based on the observed peaks in P , perform least mean
squares fitting on P to get the current best ki

1 and ki
2

• Step 3 Align all the pi in P to the nearest xj and find xpi

representing the sinusoid peak location to which the newly
found pi is assigned

• Step 4 Calculate the smallest xs where Fki
1,ki

2
(xs) = 1 and

xs > xpi

• Step 5 Run slope based peak counting within the range
[xpi , xs + 3π

ki
1
]. If we have multiple peak candidates, pick the

maximum one. Thus, we only allow one peak in this range.

• Step 6 If a peak is found, go to Step 1. If not, set xpi = xs

and go to Step 5. Repeat until reaching the end of utterance.

Note that we need at least two peaks to estimate the first set of
k1 and k2. We initialize k1 to be 2π

k1
= 100ms to avoid the unin-

teresting solution of large k1. We tried both the standard contrast
based and simple slope based peak counting algorithm and found
that the selection of these two algorithms has little effect on the re-
sults, especially when we consider the overall precision and recall.
We illustrate the first three steps in our algorithm on a TIMIT utter-
ance in Figure 2. The blue curve is the extracted Hilbert envelope;
the red circles consist of the current peak location set P . The sinu-
soid function, shown in magenta, is the fitted estimate of the current
speech rhythm. The black dotted lines correspond to vowel bound-
aries in the phonetic transcription. From top to bottom, the figure
shows the first three iterations of our algorithm. In the top plot, the
first two peaks corresponding to the vowels /eh/ and /ax/ have been
found without rhythm. From their locations, a rhythm sinusoid is
estimated and extended into the future. In the middle plot, the next
peak has been identified in the /ao/ vowel, which corresponds to the
maximum peak in the interval under location (corresponding to 1.5
cycles of the rhythm sinusoid from the last peak). The rhythm sinu-
soid is re-estimated and extended into the future. In the bottom plot,
the next peak has been located in the /ih/ vowel. This particular peak
could have been easily missed due to its small size.
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Fig. 2. Example of speech-rhythm based detection of syllable nuclei.
See text for details.

2.3. Pitch Verification

We observe that it is possible for our rhythm guided approach to find
spurious peaks at the beginning or end of an utterance, or it can place
some peaks in utterance internal pauses. Thus, pitch verification is
used to remove spurious peaks in unvoiced regions. For both meth-
ods after all peaks are detected, a removal operation is performed if
we find a peak being located in a highly likely unvoiced region.

3. EVALUATION

In order to evaluate the speech rhythm-based method we designed
two sets of experiments to 1) verify the correctness of our rhythm es-
timation idea; 2) compare the syllable nuclei detection performance
with state of art techniques. The TIMIT dataset, which includes a to-
tal of 6300 phonetically-transcribed read-speech utterances, is used
in both sets of experiments. Since the basic TIMIT corpus has no
syllable segment annotation, we only consider vowels as syllable
nuclei in all experiments.

3.1. Syllable-Nuclei Intervals

In order to establish the merit of the speech rhythm idea we ex-
amined the durations between nearby vowels in the TIMIT corpus,
where vowels represented syllable nuclei. We gathered statistics on
all syllable pair and triple sequences, measuring the interval between
the first and last vowel center of each sequence. As shown in the left
plot of Figure 3, we are thus effectively measuring the syllable nu-
clei intervals (SNIs) of adjacent syllables (shown in blue), and of
those separated by exactly one syllable (shown in red). Note that
from any given vowel center, the expected interval to the next vowel
center is approximately 200ms, and an additional 200ms to the fol-
lowing vowel center. The plot clearly shows tremendous overlap in
the two distributions however, so that there is a tremendous range
where either one or two syllabic nuclei could occur. This observa-
tion explains why previous approaches to syllabic nuclei detection
often resorted to elaborate peak picking selection methods to decide
where peaks could occur.
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Fig. 3. Distribution of Syllable-Nuclei Intervals in TIMIT and their
corresponding rhythm-scaled versions.
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Fig. 4. Example of estimated instantaneous rhythm periodicity for a
single TIMIT utterance. See text for details.

In an ideal case, if we knew the regular speech rhythm of syl-
labic nuclei, we would be able to better predict where the next sylla-
ble nucleus would occur. We can approximate this rhythm concept
with our computed sinusoid frequency k1 and use it to normalize
the SNIs that were measured previously. Specifically, we scale each
interval by the utterance-specific factor of 3π/k1, resulting in a di-
mensionless quantity which is plotted on the right side of Figure 3.
This plot shows that the majority of SNIs for immediately adjacent
syllables occur within an interval of 3π/k1 of an existing syllabic
nucleus (blue). It also shows much less overlap with SNIs of follow-
ing syllables (red). This result motivated our approach for syllabic
nuclei detection, allowing us to avoid thresholds or parameters. The
only parameter we selected was the value of 3π/ki.

The rhythm estimates used in Figure 3 were estimated over an
entire utterance. A plot computed with rhythm estimates computed
iteratively shows very similar results. We have also found that the
estimates for rhythm converge relatively quickly. Figure 4 shows
how the rhythm sinusoid periodicity (2π/ki), changes over time as
it is computed in a left-to-right fashion over an utterance. With each
new peak detection (apart from the first two), shown in the upper plot
of the figure, the sinusoid is re-estimated, and the period is plotted in
the lower part of the figure. After several peaks have been located,
the rhythm estimate becomes fairly stable, although the detection
region still allows the detection of closely spaced syllable nuclei.
Note that the default starting periodicity is 200ms.
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Table 1. Syllable Nuclei Detection Comparison on TIMIT

TCSSC nRG RG

Best Recall 0.8606 0.7997 0.8659
Best Precision 0.9969 0.9984 0.9886

Best F-measure 0.9021 0.8858 0.9207

3.2. Performance Comparison

To demonstrate the performance of our rhythm-guided (RG) syllable
nuclei detection approach, we compared it against the state-of-the-
art syllable nuclei based speaking rate estimation method TCSSC
(temporal correlation and selected sub-band correlation) [8]. Ac-
cording to a recent comparative study paper of speaking rate [7],
TCSSC has the best performance out of 8 different systems. In addi-
tion, since the RG method and TCSSC have different signal process-
ing modules, we built another system (nRG) that applies the con-
ventional contrast based peak counting algorithm to the Hilbert en-
velope data without any rhythm guiding. Our intent was to quantify
the degree to which rhythm information can help with syllable nu-
clei detection. We used the same ESPS pitch tracker [11] for both
methods.

The results of our vowel detection experiments are reported in
Table 1 in terms of the best overall recall, precision, and F-measure
that could be achieved with each approach. A successful detection
meant that there was exactly one syllabic peak detected within a
50ms window of an actual vowel.

Since the TCSSC and nRG method used conventional peak pick-
ing, we tested a variety of different parameters to optimize perfor-
mance. The only nRG parameter that was used was the 3π/k1 search
interval, which was held fixed. All three methods had signal process-
ing parameters that were varied to optimize performance.

The results indicate that in the best case scenario the three meth-
ods can locate between 80-87% of the vowels, and in another best
case scenario can locate vowels with very high precision of 99%.
The TCSSC and RG methods can achieve almost the same best re-
call performance, although the RG method requires significantly less
parameter tuning.

Adding rhythm-based information clearly helps with recall and
overall F-measure, although it seems to reduce best case precision
over the nRG method. Overall, the best case F-measure showed the
RG method outperformed both TCSSC and nRG methods. Given
that TCSSC produced better recall results than nRG, it will be inter-
esting to explore hybrid methods that combine elements of both the
TCSSC and RG methods.

4. SUMMARY AND FUTURE WORK

This paper has presented our initial efforts at extracting and using
speech rhythm information for the task of syllable nuclei detection.
We presented a method to efficiently estimate the instantaneous
speech rhythm, and to use it to help with the subsequent syllable
nuclei detection. We demonstrated the potential usefulness of the
instantaneous speech rhythm frequency by normalizing syllable
nuclei intervals from vowels in the TIMIT corpus. We then per-
formed a comparison between our method, both with and without
speech rhythm information, compared to the current best-reported
syllable nuclei detection approach, and showed that the rhythm-
guided improved overall performance, while essentially eliminating
parameters that need to be tuned to a corpus.

While the results we have observed are encouraging, they are
preliminary, and there is much room for further improvement. For
example, it is possible that a signal processing module that enhances
syllabic peaks could improve the performance of the rhythm-guided
syllable detection. More importantly however, we have begun to ex-
amine spontaneous speech, or long audio segments. It is clear that
without proper compensation for natural pauses, the speech rhythm
estimate will be gradually biased to a slower rhythm than is actually
the case. Using the rhythm estimator only the presence of speech
(i.e., with a voice activity detector [12]), should ameliorate this situ-
ation. Finally, we are interesting in developing a probabilistic frame-
work for thinking about speech rhythm, and how it may be incorpo-
rated into other speech processing applications.

Since there is nothing inherently language specific about the
speech-rhythm method, we have begun to analyze a variety of differ-
ent languages, and have been encouraged by the initial results. Ulti-
mately, we believe that speech-rhythm information should be helpful
for speech recognition as well. We are beginning to explore its util-
ity in landmark-based speech recognition [13], within the context of
language independent processing.
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