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ABSTRACT

Recently we began using Amazon Mechanical Turk (AMT),
an Internet marketplace, to deploy our spoken dialogue sys-
tems to large audiences for user testing and data collection
purposes. This crowdsourcing method of collecting data
contrasts with the time- and labor- intensive developer an-
notation methods. In this paper, we compare these data in
various combinations with traditionally-collected corpora for
training our speech recognizer’s language model. Our results
show that AMT text queries are effective for initial language
model training for spoken dialogue systems, and that crowd-
sourced speech collection within the context of a spoken
dialogue framework provides significant improvement.

Index Terms— Language models, crowdsourcing, Ama-
zon Mechanical Turk

1. INTRODUCTION

Language models for speech recognizers require a substantial
amount of data. Amassing quality data for spoken dialogue
systems, however, is traditionally a laborious task. Devel-
opers must create a live system to record spoken user inter-
actions, launch marketing campaigns to promote usage, and
often manually transcribe the recorded audio. Recently we
explored the use of Amazon Mechanical Turk (AMT) to, in a
cost-effective manner, build large corpora in short spans of
time [1]. Data collection is crowd-sourced by embedding
the dialogue systems as a task for pay in the AMT inter-
face, which then distributes the system to workers. Using this
method, over ten thousand utterances can be collected in a
few weeks [1].

This paper explores the usefulness of such data collected
from AMT, in combination with previously collected data,
for the purposes of training our speech recognizer’s language
model for the City Browser dialogue system. We compare the
AMT corpora against those collected by traditional user test-
ing, human-generated sample text queries, and synthetic sen-
tences generated from templates. Since we are expanding the
capabilities of a new mobile version of the system to handle
arbitrary cities, we hope to identify which combinations of the
legacy data can improve the system as we continue to collect

more data. Our results show that crowd-based text collection
of user queries is effective for seeding language models in a
dialogue system, and that speech collected within the spoken
dialogue context substantially improves system performance.

This paper proceeds as follows: Section 2 discusses back-
ground and related work; Section 3 introduces the architecture
for the dialogue system used in our experiments; Section 4 de-
scribes enhancements to the system in preparation for crowd-
sourcing data collection; Section 5 presents the various data
sets used for language model training; Section 6 compares
various training corpora on their effectiveness in recognizer
language model training; and Section 7 concludes with future
work.

2. BACKGROUND & RELATED WORK

AMT is an online service which allows programmers to post
Human Intelligence Tasks (HITs), tasks to be solved by work-
ers for small monetary rewards generally ranging from $0.01
to $0.10 per task. The service has been increasingly used by
the research community for its crowdsourcing ability. One
such example is the use of AMT for user studies and feed-
back solicitation [2]. As long as tasks are verifiable and con-
crete, as opposed to subjective and qualitative, AMT has been
shown to provide high quality user studies at a cheaper and
faster rate than traditional in-lab studies.

Most relevant, however, is the use of AMT to efficiently
construct and annotate large corpora, especially important for
speech and natural language systems, as they rely on the train-
ing data for performance [3]. This is similar to other efforts,
such as a custom-built online gaming platform which directs
human computation [4], but instead focuses on monetary re-
wards. Corpora can be built at remarkable speeds using AMT.
For instance, a corpus of over 100,000 read utterances was
constructed in under two weeks [1]. These authors also col-
lected data for a Flight Browser domain, and a novelty was
that they asked AMT workers to provide plausible scenar-
ios for the dialogue-based efforts. We adopt a similar strat-
egy here. Similarly, researchers at Nokia were able to gener-
ate enough content from AMT to add new languages to their
speech recognizer [5]. In this paper, we seek to verify that
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Fig. 1. A screenshot of the latest City Browser interface.

such AMT corpora are in fact useful as training data for the
system’s language models.

The experiments in this paper focus on the City Browser
system, developed by the MIT Spoken Language Systems
group [6]. City Browser is a web-based multimodal appli-
cation designed for desktop and tablet use. A screenshot of
the interface is shown in Figure 1. The system allows users
to query for local points-of-interest (POIs) such as restau-
rants, hotels, and museums, using a combination of spoken
language and manual interface controls. The users’ spoken
utterances can be fully conversational, and are handled by the
system’s speech recognizer and natural language parser.

3. SYSTEM ARCHITECTURE

City Browser is built with the Web-Accessible Multimodal
Interfaces (WAMI) toolkit [6]. The architecture is shown
in Figure 2. WAMI provides the skeleton, to which are at-
tached a speech recognizer, a speech synthesizer, and the
language processing component. The shaded, gray boxes
represent components provided by the default WAMI toolkit.
The language processing component consists of a number of
specialized subcomponents, each specifically trained on the
map-based city browsing domain.

The WAMI framework passes on spoken utterances from
the client to the speech recognizer, SUMMIT [8]. SUMMIT
has the ability to dynamically swap out vocabulary sets for
proper nouns based on the user’s current metro region [9].
The output is the text transcription of the utterance, with the
proper nouns labeled by class. SUMMIT utilizes a class n-
gram language model [8].

The speech recognizer output and GUI manipulations by
the user are passed to the language understanding services.
The natural language parser converts the text to a meaning
representation, and context resolution and dialogue manage-
ment are performed to resolve semantic understanding in the
context of the preceding dialogue [7]. Once the user’s inten-
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Fig. 2. City Browser’s Architecture (reproduction of Figure 5
in [7]). Shaded boxes represent components provided by the
WAMI toolkit.

tion is decoded, the system performs a database lookup. A
language generation component prepares a well-formed ver-
bal response. The relevant results are returned back to the user
interface via the GUI and Audio controllers. The Suggestions
Generator proposes context-sensitive sentences that could be
spoken next, as a “Help” aid, and the Confidence Annotator
decides whether the utterance should be rejected.

4. DYNAMIC DATABASE GENERATION

A challenge to the scalability of the City Browser system is
the database content coverage. As a widely-deployed web ap-
plication, City Browser receives queries from users requesting
points of interest from a vast number of metro regions. Antic-
ipating the locations, building the static databases, and main-
taining up-to-date content is time-consuming for a large-scale
system, and therefore impractical.

In preparing for a widely deployable system on AMT, us-
able beyond our system’s previous Boston-only audience, we
enhanced City Browser with the ability to generate database
content on-demand. The goal was to supplement the static
pre-generated database with dynamic on-demand sources for
metro regions not in the static database. When users switch to
new metro regions with no database coverage, City Browser
expands the database on-the-fly with information pulled from
other content providers, such as Yelp, an online restaurant
information and review site. Through the content provider
search APIs, relevant point-of-interest data are retrieved and
converted to match the static database entries. Our enhance-
ments are isolated within the database look-up function so the
added functionality is transparent to the rest of the system.

5. LANGUAGE MODEL TRAINING CORPORA

Several different data collection methods were used to gener-
ate the language model training corpora.



5.1. Text-based Data

The text-based data consist of sample sentences generated di-
rectly as text. That is, either developers or paid workers pro-
duced text sentences that they believed could be spoken as
inputs to our speech dialogue system.

5.1.1. Template-based Generation

To seed our language models when launching our dialogue
systems, we use developer-engineered sentences. We have
developed a flexible capability to generate sentences from
context-free-rule-based templates [10], such as:

[can you] [tell me about] [named restaurant phrase]?

In which the rules in [ ] are expanded into alternative
phrase instantiations to complete a sentence. An example out-
put sentence for this rule might be:

Could you give me more details about Cam-
bridge Cafe?

An advantage of template-based sentences is that they do
not need a widely-deployable system and can be hand-crafted
by developers. But developers must take care to cover differ-
ent usage patterns in statistically appropriate frequencies.

5.1.2. Crowd-sourced Text Data

A natural extension to developer-generated text sentences
is to crowd-source the process. Like the template-based
method, no functional system is required. We created an
AMT task which requests workers to provide us with typed
sample queries. Our task describes a hypothetical system and
presents screenshots of the system interface. Additionally,
we give the workers five reference sentences, representative
of the queries understood by the system. A screenshot of this
AMT task is shown in Figure 3.

Initially we paid workers $0.03 per sentence provided, for
a total of 7800 sample inputs. We then experimented with
decreasing the pay rate, collecting an additional 4200 inputs at
$0.025 per sentence. We found that the rate of collection was
essentially unchanged. Overall the entire collection process
took approximately 3 days, and yielded 13,313 sentences.

In the process we encountered several difficulties. We
found that the AMT workers were extremely biased by the
example sentences we provided. In our initial iteration of the
HIT, we emphasized the Boston metro region, only to find
that a significant portion of the worker queries also refer-
enced Boston. Therefore we updated the examples to refer-
ence cities across the nation. Similarly, the HIT also suffered
from worker abuse. In one such example, a single worker sub-
mitted over 5,000 sample inputs consisting of a single phrase
structure “show me CUISINE restaurants in CITY”, in which
each sentence differed from the others only by the cuisine

Fig. 3. The Mechanical Turk HIT used to collect queries.

type or city. These data are worse than automatic template-
based data, and were therefore discarded. In our next iteration
of the HIT, we made it clear that a variety of sentences were
needed, and that simple swapping of proper nouns would re-
sult in a rejected submission.

In order to use the sample AMT inputs as training data, we
needed to tag the POIs with appropriate word classes. Several
well-known algorithms exist for this task, such as the contex-
tual semantic tagger in [11]. For our purposes, we did not
care if the contents within each tag were accurate – we only
wanted to obtain representative patterns for the sentence-level
constructs, and would replace each tagged entity with a tag
label, ignoring the specific instantiation, before using these
sentences in language model training. Our system utilizes
eight distinct classes, namely, city, hotel, landmark, museum,
neighborhood, restaurant, station, and streetname.

For this, we used a novel approach which is described
more fully in a companion paper [12]. The natural language
grammar is used to parse a large set of representative tagged
utterances, and a set of strings encoding the sequence of
preterminal categories in the parse trees are written out. A
class trigram language model is constructed from these out-
puts, and is used to produce an N-best list of candidate preter-
minal sequences from each untagged utterance. Appropriate
tag labels are inferred from the preterminal assignments. The
parser then parses each untagged sentence while honoring
the strong constraints (including both preterminal categories



and tag assignments) specified in each N-best preterminal
sequence hypothesis. It finally chooses randomly among the
top three parsable solutions. There were many erroneous as-
signments, for example calling a hotel a restaurant or calling
a city a neighborhood, but we are hoping the general language
patterns will be for the most part accurately represented and
distributed reasonably over all the tag categories.

5.2. Speech-based Data

The speech-based data consists of transcriptions of actual spo-
ken interactions with our dialogue system.

5.2.1. Traditional Data Collection

Our traditional method for collecting user interactions in-
volved either bringing users into the lab, or recording user
interactions with kiosks deployed around campus. More
recently, the group has begun leveraging the potential of
Internet-based applications, and deployed our dialogue sys-
tems online, offering substantial gift certificates ($10 - $20)
and requesting users to solve scenarios [7]. We make use of a
2,163 sentence corpus of data collected via these methods.

5.2.2. Crowd-sourced Speech Data

AMT offers a more cost-effective means to collect data from
a larger user base. The method follows along the lines of
deploying online systems, but specifically embeds the online
systems in the AMT Internet marketplace. First, following
the ideas in [1], we used AMT to request workers to gener-
ate the potential interaction scenarios. We then prepared a
customized version of the City Browser system for live inter-
action via AMT. This version mimicked the same dimensions
and look and feel of the mobile version. However, we made
a small number of changes, such as replacing audio synthesis
with text system responses, presenting incremental recogni-
tion results, and constantly displaying the task description.
These changes were guided by the AMT user testing frame-
work developed in [1]. We offered AMT workers $0.10 per
completed scenario.

A total of 69 scenarios were collected from workers, of
which 36 were usable. We modified some of the scenarios to
locate them in Boston, as the Boston database is enhanced and
the system is more mature. However, several of our scenarios
involved ten novel cities, such as Folsom California, Orlando
Florida, and Plano Texas. Four example scenarios are shown
in Figure 4. In total we collected 2360 utterances from 124
scenario-based tasks and 93 users. A sample interaction is
shown in Figure 5. A screenshot of the AMT task is shown in
Figure 6.

Since AMT workers have been previously shown to be
cost effective for transcription [1, 13, 14], we decided to also
use them for this task here. We first conducted an experiment
on a subset of the spoken utterances, to assess whether they

You’re in New York shopping on Canal Street, when your friend calls
and tells you to meet her at the Gershwin Theatre. Find out how to get
there using public transportation.

You are helping friends find their way to the Cheer’s Bar in the Boston
Commons. Help them find their way from State Street to the Bar.

You want to take your little sister to the water park and hotel about 1
hour north of Vancouver, WA but don’t know the name. Find out the
resort’s name and phone number.

You are driving through Northern California to meet a long lost family
member at the historic Cascade theater located in Redding, California,
but your not sure what freeway exit to take or where the theater is lo-
cated. Find the theater address and freeway exit information.

Fig. 4. Four example scenarios generated by AMT workers.

U1: Find a hotel near Harvard University.
S2: There are 10 hotels near Harvard University. All of them are

in Cambridge. Most are in Harvard Square. [results shown on
map]

U3: [user clicks results and scans listing] Find a hotel in Harvard
Square.

S4: There are 8 hotels near Harvard Square. They are concentrated
on Cambridge Street and Bennett Street. [results shown on
map]

U5: Find a hotel on Cambridge Street.
S6: There are 2 hotels near Harvard Square on Cambridge Street.

The A Friendly Inn and the A Bed and Breakfast in Cambridge.
[results highlighted on map]

U7: What is the address for A Friendly Inn on Cambridge Street?
S8: A Friendly Inn is located at 1673 Cambridge Street in Harvard

Square in Cambridge. [A Friendly Inn is focused on map]

Fig. 5. A sample interaction between a user and the City
Browser system. U indicates the user, and S indicates the
system.

would be effective for our task. The transcription task pre-
sented workers with audio files and our speech recognizer’s
top transcription hypotheses. Workers were then asked to cor-
rect the recognition output. A screenshot of this task is shown
in Figure 7. The HIT had three workers transcribing each
utterance, and workers were paid $0.01 per transcription. It
took approximately one day to obtain transcriptions in tripli-
cate of the 579 utterance set, for a total cost of under $30.

An alignment script automatically merged the transcrip-
tions based on a voting scheme using transcription similari-
ties. Manual examination of 50 utterances showed that ap-
proximately 90% of the sentences were transcribed without
errors. Encouraged by these results, we then used AMT to
obtain transcriptions for the remainder of our audio corpus,
an additional 1781 utterances.

6. COMPARING CORPORA BY PERFORMANCE

Our next step was to analyze the effectiveness of the Turker-
collected data (both text and speech) for language model
training for the speech recognizer. We use the recognizer’s



Fig. 6. A screenshot of the Mechanical Turk interface of City Browser.

Fig. 7. The Mechanical Turk HIT for transcribing audio.

word error rate (WER) as the performance metric. Each
of the experiments below uses a training corpus formed by
configuring a different subset of the available corpora.

We set aside two corpora as test sets: a 289 utterance
Boston-based corpus, and a 476 utterance non-Boston corpus.
A set of 989 utterances from Boston-based scenarios formed
our AMT speech training corpus.

It was at first unclear what to do about the proper nouns.
In usage, the system is populated dynamically with proper
nouns obtained from the database for the metropolitan region
in dialogue context. However, this feature is difficult to im-
plement in batch runs, and also difficult to interpret. So we
decided to use the static full database of proper names for
Boston, but to explicitly augment it with all the proper names
that showed up in our test set. Thus, we are not evaluating the

Language Model Training BOS Other
1. corpus+templates (baseline) 25.6% 35.9%
2. text 23.8% 35.0%
3. speech 21.1% 30.7%
4. text+speech 22.1% 30.2%
5. corpus+speech 21.7% 30.4%
6. corpus+text+speech 21.2% 30.9%
7. corpus+templates+text+speech 22.9% 30.8%

Table 1. Language Modeling Experiments. The CB corpus
consists of 2,163 transcribed utterances from recorded user
interactions with the previous City Browser system. The
templates are 20,000 sample sentences generated from man-
ually created template files. The AMT speech data consists
of transcripts of 989 utterances drawn from AMT spoken in-
teractions with Boston-based scenarios. The AMT text rep-
resents 13,313 tagged text input queries. Results are reported
as WER on two test sets: a 289 utterance Boston-based corpus
(BOS), and a 476 utterance non-Boston corpus (Other).

effect of out-of-vocabulary (OOV) proper names in these ex-
periments. This seems appropriate, as what we are interested
in is the degree to which our different data sets capture the
sentence structure of the user queries.

We ran a number of experiments, evaluating language
model performance using different combinations of training
data. The complete results are shown in Table 1.

Experiments 2 - 4 demonstrate that crowd-based data col-
lection can potentially replace conventional forms of data col-
lection for spoken dialogue system development. Experiment



2 shows that text data collection alone (without any system
involvement) performs favorably compared to our prior sys-
tem’s baseline data. Experiment 3 shows that even small
amounts of Boston-based speech within the context of a spo-
ken dialogue system is extremely effective. We believe the
speech data were especially effective for Boston (yielding the
best overall results) because the scenarios used for the Boston
test data overlapped with the training scenarios. However, it is
also interesting that the Boston-based speech data were highly
effective for the non-Boston based test data. Experiment 4
gave the best results for the non-Boston scenarios overall.

Experiments 5-7 evaluated how well combinations of
prior data and new AMT data could be used for language
modeling. Although the WER results are not the lowest, we
believe Experiment 6 would be more robust than the speech-
only system (Experiment 3) because it is trained on a broader
range of material including prior Boston-based speech data.
It does appear however, that once data can be collected from
users, the template-based data become less necessary. Using
McNemar’s test (p<0.5), we find the 17% relative reduction
in WER between Experiments 1 and 6 on the Boston test data
to be statistically significant.

7. CONCLUSION AND FUTURE WORK

Developing spoken dialogue systems is problematic because
it is extremely difficult to acquire domain-dependent language
model data. In this paper, we have examined the extent to
which Amazon Mechanical Turk can be utilized to overcome
some of the important hurdles to rapid system deployment.
In particular, our results showed that AMT workers are use-
ful for several aspects of system development, including (1)
providing text corpora for system training even prior to the
existence of the system, (2) creating scenarios to use in data
collection experiments, (3) serving as subjects for dialogue-
based data collection, and (4) transcribing the audio data col-
lected through AMT interactions with the system.

We were especially interested in the question of the de-
gree to which AMT data (both text and dialogue-based speech
data) could be used to provide language model training for
the speech recognizer. We were gratified to find that AMT
text data (which could be collected prior to the existence of
the system) were at least as good as the original templates
and corpora we had previously collected in the laboratory for
language model training. AMT speech training data provide
further improvements in WER.

We also present here a new version of our system which
exploits on-line databases to provide information for any city
supported by Yelp. The model of linking directly to on-line
sources alleviates much of the burden of maintaining up-to-
date static databases.

As future work, we will continue to collect AMT dialogue
interactions with the system, especially for cities other than
Boston. We also want to investigate ways to use AMT to

help with real-time vocabulary augmentation (both spelling
and pronunciation).
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