
An i-vector Extractor Suitable for Speaker Recognition with both Microphone
and Telephone Speech

Mohammed Senoussaoui1,2, Patrick Kenny2, Najim Dehak3, Pierre Dumouchel1,2
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Abstract
It is widely believed that speaker verification systems per-
form better when there is sufficient background training
data to deal with nuisance effects of transmission chan-
nels. It is also known that these systems perform at their
best when the sound environment of the training data is
similar to that of the context of use (test context). For
some applications however, training data from the same
type of sound environment is scarce, whereas a consid-
erable amount of data from a different type of environ-
ment is available. In this paper, we propose a new ar-
chitecture for text-independent speaker verification sys-
tems that are satisfactorily trained by virtue of a limited
amount of application-specific data, supplemented with a
sufficient amount of training data from some other con-
text.

This architecture is based on the extraction of pa-
rameters (i-vectors) from a low-dimensional space (to-
tal variability space) proposed by Dehak [1]. Our aim is
to extend Dehak’s work to speaker recognition on sparse
data, namely microphone speech. The main challenge is
to overcome the fact that insufficient application-specific
data is available to accurately estimate the total variability
covariance matrix. We propose a method based on Joint
Factor Analysis (JFA) to estimate microphone eigenchan-
nels (sparse data) with telephone eigenchannels (suffi-
cient data).

For classification, we experimented with the follow-
ing two approaches: Support Vector Machines (SVM)
and Cosine Distance Scoring (CDS) classifier, based on
cosine distances. We present recognition results for the
part of female voices in the interview data of the NIST
2008 SRE. The best performance is obtained when our
system is fused with the state-of-the-art JFA. We achieve
13% relative improvement on equal error rate and the
minimum value of detection cost function decreases from
0.0219 to 0.0164.

1. Introduction
In the last decade, many approaches have been tested
to improve performance of speaker recognition systems.

The most popular are those based on generative mod-
els, like Gaussian Mixture Models based on Universal
Background Model (GMM-UBM) [2]. Other generative
models such as Eigenvoices, Eigenchannels and the most
powerful one, the Joint Factor Analysis (JFA) [3], have
built on the success of the GMM-UBM approach.

Recently, Dehak [1] proposed a feature extractor in-
spired from the joint factor analysis. Unlike JFA which
models separately between-speaker and within-speaker
variability in a high dimension space of supervectors, De-
hak’s idea consists in finding a low dimensional subspace
of the GMM supervector space, named the total variabil-
ity space that represents both speaker and channel vari-
ability. The vectors in the low-dimensional space are
called i-vectors.

In [1], the i-vector features were tested on the 2008
NIST speaker recognition evaluation (SRE) telephone
data. The i-vectors are smaller in size to reduce the execu-
tion time of the recognition task while maintaining recog-
nition performance similar to that obtained with JFA. A
key ingredient to the success of this approach was the
enormous quantity of telephone data used to extract the
i-vector feature set.

Our objective in this paper is to test the i-vector rep-
resentation on the interview data of 2008 NIST speaker
recognition evaluation (SRE) using Dehak’s methods.

The main problem of this task is the small amount
of microphone data at our disposal to extract the i-vector
features. Indeed, this limited quantity does not allow a ro-
bust estimation of the total variability covariance matrix.
To overcome this problem of lack of data, we propose to
supplement the microphone data with telephone data, that
is 10 times greater in size. Using this augmented corpus,
we solve the estimation problem in a manner similar to
[3].

This paper is organized as follow. Section 2 explains
how the total variability features are processed in the case
of abundant data (telephone speech). In Section 2, we
discuss how to take advantage of telephone data to con-
struct an i-vector extractor for microphone speech. The
fourth and the fifth sections are dedicated, respectively,
to the channel compensation and classification methods



used in our experiments. Section 6 reports experimen-
tal results on the NIST 2008 interview data and the last
section presents conclusions.

2. i-vector feature extraction
The main idea in traditional JFA, introduced by Kenny
[3], is to find two subspaces which represent the speaker-
and channel-variabilities, respectively. Dehak’s experi-
ments [1] show that JFA is only partially successful in
separating speaker and channel variabilities. He found
that the channel space contains some information that can
be used to distinguish between speakers. For this reason,
Dehak proposed a single space that models the two vari-
abilities and named it the total variability space.

Dehak’s basic assumption is that a given speaker- and
channel-dependent GMM supervectorM can modeled as
follows:

M = m+ Tw (1)

where m is a speaker- and channel-independent super-
vector (UBM supervector is a good estimate of m), T
is a low rank matrix, which represents a basis of the re-
duced total variability space and w is a standard normal
distributed vector. T is named the total variability ma-
trix; the components of w are the total factors and they
represent the coordinates of the speaker in the reduced
total variability space. These feature vectors are referred
to as identity vectors or i-vectors for short. The feature
vector associated with a given recording is the MAP es-
timate of w, whose calculation is explained in Kenny’s
Proposition 1 [4]. We denote it by ŵ. The matrix T is
estimated using the EM algorithm described in Kenny’s
Proposition 3 [4].

3. i-vector extraction in a context of sparse
microphone speech data

As mentioned previously, robust estimation of the total
variability matrix T in (1) requires a large amount of data,
whereas we have relatively little microphone data at our
disposal. The main contribution of this paper is to show
how to use telephone data in addition to microphone data
to estimate a new total variability matrix (we name it N )
that is suitable for speaker recognition on microphone
speech. We adopt a modified version of the method pro-
posed in [3] to deal with the cross-channel condition of
the 2006 NIST SRE. In that paper, it was shown how
to estimate supplementary eigenchannels on microphone
development data and append them to eigenchannels esti-
mated on telephone speech. Section IV in Kenny’s article
[3] presents results obtained with this method.

First, we estimate a gender dependent matrix T of
rank Rtel using only telephone data, by assuming the su-
pervector M associated with a telephone recording has
the form represented in (1).

Second, we estimate a gender dependent matrix T ′ of
rank Rmic using only microphone data, by assuming the
supervector M associated with a microphone recording

has the form

M = m+ Tŵ + T ′w′ (2)

where w′ is a standard normally distributed random vec-
tor.

Finally, we combine (1) and (2) to produce a feature
extractor which can be used for microphone speech as
well as telephone speech. In a companion paper [5], this
representation was also tested on the telephone speech
using probabilistic methods. That is, we assume that the
supervector M associated with a recording has the form

M = m+Nx (3)

where N = [T T ′]1 is the new total variability matrix of
rank R = Rtel + Rmic, x is a random vector of dimen-
sion D = R having a standard normal distribution. So
the new feature vector associated with a recording is the
MAP estimate of x.

The estimation procedure of the total matrix N is il-
lustrated in Figure 1:

Figure 1: The block diagrams showing the estimation of
the matrix N .

4. Channel compensation
I-vectors are extracted in a way that makes no distinction
between channel and speaker variability. So the problem
of channel variability has to be dealt with in construct-
ing classifiers for speaker recognition using i-vectors as
features.

We use a combination of Linear Discriminant Anal-
ysis (LDA) and Within Class Covariance Normalization
(WCCN). This combination was successfully tested with
NIST telephone data in [1].

4.1. Linear Discriminant Analysis

LDA is a supervised method, intended mainly for dimen-
sionality reduction. The power of LDA lies in the fact
that it uses class labels to find the optimal mapping to
the reduced space. This mapping minimizes the within

1The square bracket notation in N = [T T ′] represents the
concatenation of the pair of matrices.



class variability and simultaneously maximizes the be-
tween classes variability. To do this, LDA is based on
the optimization of the Fisher objective function:

J(u) =
utSbu

utSwu
(4)

where Sb and Sw represent, respectively, the between
classes covariance matrix and the within class covariance
matrix; u is a given space direction and t is the trans-
posed symbol. Given a training set of S speakers and ns

utterances per speaker, the optimization of Fisher’s cri-
terion (4) consists in solving the generalized eigenvalue
problem given by:

Sbu = λSwu (5)

The projection matrix A is given by the eigenvectors as-
sociated with the greatest eigenvalues. The formulas used
to calculate Sb and Sw are as follows:

Sb =
S∑

s=1

(xs − x̄)(xs − x̄)t (6)

Sw =
S∑

s=1

1
ns

ns∑
o=1

(xs
o − x̄s)(xs

o − x̄s)t (7)

where xs
o is the oth observation of speaker s (in our case

xs
o is an i-vector), x̄s = 1

ns

∑ns

o=1 x
s
o is the mean of the

observations of speaker s and x̄ represents the mean of
all instances in the training set. However, in the case of i-
vectors the mean x̄ is equal to zero, due to the assumption
that the i-vectors are normally distributed with zero mean
vector and identity covariance matrix.

4.2. Within Class Covariance Normalization

WCCN was introduced by Andrew Hatch [6] in the con-
text of SVM classifiers. This method proposes to use the
inverse of the within class covariance matrix to normal-
ize the linear kernel. To avoid confusion with the LDA’s
within class covariance, we refer to this matrix as W .
This matrix is calculated in a manner similar to that given
in (7). The purpose of the WCCN is to minimize the er-
ror expectation of false alarm and false rejection in the
training stage of a linear kernel SVM.

In our systems, W is calculated in the projected space
of the LDA and is used with cosine kernel [1] (as we will
see in later sections).

4.3. Using telephone data to estimate the normaliza-
tion matrices of LDA and WCCN

As in the case of T-matrices, we need to use telephone
data in addition to microphone data to estimate LDA pro-
jections and WCCN matrices. We have deployed two
strategies to do so: pooling and weighting.

• The first one consists in the use of all micro-
phone and telephone i-vectors to estimate the LDA
matrices Sb and Sw, and the WCCN (or equiva-
lently W−1). We refer to this scheme as strategy
of pooling.

• In the second strategy, we begin by estimating
LDA matrices from telephone i-vectors, then we
similarly estimate other LDA matrices from the
microphone data. Thereafter, we calculate the fi-
nal LDA matrices by a weighted average of micro-
phone and telephone LDA matrices. More specif-
ically, we estimate the between-class covariance
Sb from telephone Sbtel and microphone Sbmic

between-class covariance matrices as follows:

Sb = PtelSbtel + PmicSbmic

where Ptel and Pmic are the weights associated
with the microphone and telephone between-class
covariances, respectively. These weights are set
empirically. The same weighting approach is used
for the within-class covariance matrix of WCCN.
We refer to this scheme as strategy of weighting.

5. Classification methods
In this section we briefly describe the two classification
methods used for this work: Support vector machines and
Cosine Distance Scoring.

5.1. Support Vector Machines

Since its introduction by Vapnik [7], SVM has become
widely used in statistical learning. A SVM is a super-
vised binary linear classifier which finds, among all pos-
sible linear hyperplane separators, the one which max-
imizes the margin between two labeled classes of data.
The classification function f associated with the optimal
hyperplane separator H is given by:

f : RN → R
x 7→ f(x) = wtx+ b (8)

where x is an instance vector, w and b are respectively
the weights and bias vector estimated during the training
stage. For a given test instance xt, the classification is
based on the sign of the function of hyperplane separa-
tor f :

Classification(xt) : sign(f(xt) = wtxt + b) (9)

As defined, SVM is a linear classifier. In this context
a linear separation is equivalent to using a linear kernel
as follows:

k(x1, x2) = 〈x1, x2〉 (10)

where 〈x1, x2〉 is the dot product of the instance vectors
x1 and x2.

The introduction of kernel functions to classical
SVM classifiers allows more complex problems to be



solved, as revealed by the good performances obtained
by Dehak [1] for the core condition and the 10sec-10sec
contexts of NIST telephone data. Accordingly, we carry
out our experiments with the use of the cosine kernel. The
cosine kernel between two observation vectors x1 and x2

is given by:

k(x1, x2) =
〈x1, x2〉
‖x1‖‖x2‖

(11)

At first glance, one can observe that the cosine kernel is
just a norm-normalized version of the linear kernel. How-
ever, this norm-normalization compensates a dilatation of
data in the kernel space, that in turn has a positive effect
on channel compensation in the case of i-vectors.

Dehak and al. found that LDA alone is not sufficient
to offset the channel effect. The best results were ob-
tained when LDA was followed by WCCN, as explained
in Section 4. Specifically, for two given i-vectors x1 and
x2, we first project i-vectors using the LDA projection
matrix. Then we normalize the cosine kernel by the in-
verse of the WCCN matrix, as follows:

k(x1, x2) = (12)
(Atx1)tW−1(Atx2)√

(Atx1)tW−1(Atx1).
√

(Atx2)tW−1(Atx2)

where A and W are respectively LDA and WCCN pro-
jection matrices.

This kernel normalization is applied in both classi-
fiers, support vector machine and cosine distance scoring.

5.2. Cosine Distance Scoring

The SVM classifier uses target data and a set of impostors
data to train a target model, and thereafter determines the
sign of the function f to make the final decision. Unlike
SVM, the Cosine Distance Scoring classifier calculates
the target i-vector using its training data in the enrollment
stage, which implies that no target model is required. In
the test stage, a score is calculated by taking the cosine
distance between the test instance and the target one. This
score is compared to a decision threshold θ in order to
make the final decision according to:

score(xtarget, xtest) =
〈xtarget, xtest〉
‖xtarget‖‖wtest‖

R θ (13)

Results reported by Dehak and al. [1] show that the use of
CDS classifier for telephone speech yields better perfor-
mances than those obtained by SVM, especially for the
10sec-10sec condition of the NIST 2008 SRE.

6. Experiments and results
In this section, we first describe our experimental set-up,
followed by performance results.

6.1. Experimental set-up

6.1.1. Universal Background Model

We use gender-dependent UBMs containing 2048 Gaus-
sians. This UBM is trained using LDC releases of
Switchboard II, Phases 2 and 3; Switchboard Cellular,
Parts 1 and 2; and NIST 2004-2005 Speaker Recogni-
tion Evaluation (SRE). The gender-dependent joint factor
analysis models are trained on the same quantities of data
as the UBM training. Speech parameters are represented
by a vector of dimension 60 of Mel Frequency Cepstral
Coefficients (MFCC) i.e. static MFCC, delta and double
delta.

6.1.2. Joint Factor Analysis

In this work, we will be presenting results obtained by
the application of JFA on interview speech of the NIST’s
condition short2-short3. The underlying theory of JFA
is beyond the scope of this article, but interested readers
can refer to Kenny and al. [3] for details. For our experi-
ments, we use a joint factor analysis configuration which
is made up of 300 speaker factors and 100 channel fac-
tors computed from the same data as those used to train
the UBM. One hundred (100) additional channel factors
are computed from all NIST microphone speech data.

6.1.3. Total variability matrix N

As mentioned in Section 3, the computation of the ma-
trix N proceeds as follows. First, we compute a 400-
dimension matrix T from LDC releases of Switchboard
II, Phases 2 and 3; Switchboard Cellular, Parts 1 and 2;
and NIST 2004 and 2005 SRE (i.e. telephone speech).
Second, a 200-dimension matrix T ′ is estimated from all
NIST microphone data (i.e. NIST 05, NIST 06 and 2008
interview development microphone data). Finally, we ap-
pend T to T ′ to obtain a variability matrix N of dimen-
sion 600, which is also the dimension of our i-vectors.

6.1.4. Support Vector Machines and Cosine Distance
Scoring

To build the SVM classifier, we use the normalized co-
sine kernel shown by equation (12) to carry out the kernel
space transformation in the SVM systems.

Similarly, for the CDS classifier, we use normalized
cosine distances according to (13).

6.1.5. Score normalization

We use 200 t-norm female models and 1007 z-norm fe-
male utterances taken separately from NIST 05 and NIST
06 microphone data. All SVM scores are z-normalized
scores while CDS scores are zt-normalized.

6.1.6. Voice activity detection for interview data

To eliminate the silence parts in the microphone speech
recordings, we used the transcripts of the microphone
data provided by NIST as a proxy for voice activity de-



tection. This fails on some files so the results we present
are incomplete.

6.2. Results

In this section, we present performance results only for
the female part of the NIST short2-short3 task since the
error rate on the corpus of females is lower than males
and that the behavior of experiments is similar for both
corpora. Specifically, we focus on cases where all auxil-
iary microphones used for recording the training corpus
are different from those used for recording the test cor-
pus (det3). For evaluation, we use the Equal Error Rate
(EER) and the minimum of NIST’s Detection Cost Func-
tion (DCF) as metrics for performance evaluation.

We performed a total of three experiments. The first
uses microphone data only. The second uses both micro-
phone and telephone data. Finally, the last experiment
fuses several systems trained using telephone and micro-
phone data.

The objective of this experiment is to obtain a perfor-
mance benchmark for systems driven with little data from
the same environmental context. As shown in Table1,
the best performance is obtained by a SVM classifier that
achieves an EER of 5.18% and a minDCF of 0.0242. We
also observe that the rotation of the i-vector space by
LDA brings more discrimination than CDS (i.e. a space
which minimizes intra-speaker variability and maximizes
inter-speaker variability) for the same dimension of 600.

Table 1: EER, minimum DCF and optimal dimension for
SVM and CDS systems based on microphone data only.
The i-vectors are estimated as summarized in Section 3.

EER minDCF Dim
SVM 5.18% 0.0242 600
CDS 6.13% 0.0345 600

In this first experiment, we showed results obtained
with SVM and CDS classifiers for microphone data only.
A first experiment with both microphone and telephone
data shows that a JFA classifier surpasses the perfor-
mance obtained so far with an EER of 3.97% and a
minDCF of 0.0219 (as shown in the first line of Table
3). This observation motivates us to use telephone data in
addition to microphone data in estimating the LDA pro-
jections and WCCN matrices.

In the second experiment, we tested two strategies to
use both microphone and telephone data as discussed in
Section 4.3: pooling and weighting. As our results show
(Table 2), the best strategy applied to both types of data is
that of weighting.The best performance by EER metric is
obtained with a SVM. The dimension of the SVM is then
400, the weights are Pmic = 0.2 and Ptel = 0.8 with an
EER of 4.57%. The best performance by minDCF metric
is as well obtained with a SVM (minDCF of 0.0219). For
this case, the SVM is of dimension 350 and the weights
are set to Pmic = 0.3 and Ptel = 0.7.

In the second experiment, it is worth noting that the
parametric dimension has been reduced to 350, compared
to 600 in first experiment. Furthermore, according to the
minDCF metric, the SVM classifier yields a better perfor-
mance (0.0217) than the best obtained so far (0.0219 with
JFA). However, under the EER metric, the JFA classi-
fier performs better than a SVM one (3.97% compared to
4.57%). These observations motivated us to devise a third
experiment that fuses a JFA classifier with SVM and CDS
classifiers. The merging of classifiers is carried out using

Table 2: EER, minimum DCF and optimal dimension for
systems based on SVM and CDS classifiers, using mi-
crophone and telephone i-vectors to compensate channel
effects with the pooling and weighting methods summa-
rized in Section 4.3.

EER minDCF Dim
pooling SVM 6.44% 0.0338 400

CDS 7.13% 0.0400 400
weighting SVM 4.68% 0.0217 350

4.57% 0.0220 400
CDS 5.46% 0.0305 400

the FoCal toolkit presented in [8]. In this experiment, we
train the JFA classifier on microphone speech under the
same conditions, namely NIST short2-short3. Further-
more, for SVM and CDS classifiers, we have reused the
same size and weight as those in the second experiment.
Table 3 shows the performance achieved in this case.

Compared to a single JFA classifier, fused systems
offer better performance under both metrics. According
to the minDCF metric, a SVM-JFA classifier improves re-
sults by decreasing the minDCF from 0.0219 to 0.0164.
According to the EER metric, a CDS-JFA improves per-
formance by a relative 13%.

Table 3: EER and minimum DCF for a system based on
JFA classifier and other fused systems.

EER minDCF
JFA 3.97% 0.0219

SVM-JFA 3.47% 0.0164
CDS-JFA 3.44% 0.0178

7. Conclusion
In this paper, we have presented a new way to use mi-
crophone and telephone speech in order to design an i-
vector extractor that is suitable to work on microphone
speech as well as telephone speech. We have also shown
how we could add telephone speech to further compen-
sate channel effects with LDA and WCCN in our i-vector
space. The best results are obtained when these systems
are fused with the classical joint factor analysis. We



achieved 13% relative improvement on equal error rate
and the minimum value of detection cost function de-
creases from 0.0219 to 0.0164.
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