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Abstract
This paper explores the use of continuous speech data to learn
stochastic lexicons. Building on previous work in which we
augmented graphones with acoustic examples of isolated words,
we extend our pronunciation mixture model framework to two
domains containing spontaneous speech: a weather information
retrieval spoken dialogue system and the academic lectures do-
main. We find that our learned lexicons out-perform expert,
hand-crafted lexicons in each domain.
Index Terms: grapheme-to-phoneme conversion, pronuncia-
tion models, lexical representation

1. Introduction
The lexicon remains a peculiarity in the modern speech recog-
nizer in that, unlike the language and acoustic models, data does
not typically underpin its creation. Instead, the lexicon is usu-
ally a long list of hand-crafted rules in the form of dictionary
entries that map a word to one or more canonical pronuncia-
tions. A data-driven approach to lexicon generation might dis-
card the notion of canonicalization altogether, and instead gen-
erate a stochastic lexicon with pronunciations weighted accord-
ing to learned statistics. Like the acoustic and language mod-
els, ideally pronunciations would be learned from data closely
matching the test domain. In this work, we explore learning pro-
nunciations from continuous speech data using a pronunciation
mixture model (PMM).

The literature is replete with investigations of various letter-
to-sound models to predict pronunciations of new words [1,
2, 3]. These approaches, however, are limited by the under-
lying expert lexicons upon which they are trained. Our work
follows the examples of [4, 5, 6, 7] which use spoken exam-
ples to refine pronunciations. The work of [6], for example,
adapts a graphoneme model’s weights using acoustic examples
and is applied to a name recognition task, while the work of [7]
uses forced alignment to generate a list of possible pronunci-
ations for words, and then assigns weights using a Minimum-
Classification-Error criterion. They then test on a business name
query corpus. Curiously, this type of work is rarely applied
across the entire lexicon to regularize the pronunciations with
respect to the underlying acoustic models.

By contrast, in our work we learn pronunciations across all
lexical entries rather than the few out-of-vocabulary words for
which we do not have an expert opinion. Thus, our test ex-
periments directly compare a learned stochastic lexicon with
manually-crafted pronunciations. Although expert-lexicons
typically outperform state-of-the-art letter-to-sound models, we
show that incorporating spoken examples can yield pronuncia-
tions that are as good, if not better, than their hand-crafted coun-
terparts. We use a generative approach similar to [6] to train the
lexicon. Unlike previous work, however, we train pronuncia-
tions for all words on the same continuous speech used to learn

the acoustic models. Despite the fact that the acoustic models
were trained using the expert pronunciation dictionary, we are
still able to show a significant improvement over experts with a
learned lexicon. We see this work as a step towards being able
to train a speech recognizer entirely from an orthographically
transcribed corpus.

2. Pronunciation Modeling
Pronunciation variation has been identified as a major cause of
errors for a variety of ASR tasks. Pronunciations are typically
modeled in a speech recognizer by phonemic dictionary which
may be accompanied by a set of rewrite rules to account for
phonological variation.

The ASR system used in this paper incorporates man-
ually crafted phonological rules that account for segmental
mismatches between the underlying phonemic baseforms and
surface-level phonetic units. These rules have been shown to
outperform relying on context-dependent acoustic models to
implicitly model phonetic variation [8].

In this work, we model the ASR’s search space using a
weighted finite-state transducer (FST) [9]. The FST search
space has four primary hierarchical components: the language
model (G), the phoneme lexicon (L), the phonological rules
(P ) that expand the phoneme pronunciations to their phone
variations, and the mapping from phone sequences to context-
dependent model labels (C). The full network can be repre-
sented as a composition of these components:

N = C ◦ P ◦ L ◦G (1)

In this paper, we first experiment with learning context-
independent phoneme pronunciations along with their weights.
That is, we try to replace the manually crafted FST L while
keeping the pronunciations rules FST P unchanged. In a sec-
ond experiment, we explore learning phone pronunciations di-
rectly, thus avoiding the use of the phonological rewrite rules
altogether.

3. Grapheme-to-Phoneme Conversion
We utilize the joint-multigram approach employed in [1, 3] to
model the relationship between graphemes and phonetic units.
In this work, we use the term graphone to denote a model that
maps graphemes to phones and graphoneme to refer to a model
that maps graphemes to phonemes.

We begin by constructing an n-gram model over gra-
phoneme sequences. We let w denote a grapheme sequence
drawn from the set of all possible grapheme sequencesW and
b denote a phoneme sequence drawn from the set of all possi-
ble phoneme sequences, B. A joint model of the letter-to-sound
task can be formalized as:

b∗ = arg max
b∈B

P (w,b) (2)
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Generally speaking, a graphoneme, g = (w, b) ∈ G ⊆ W ×B,
is a sub-word unit that maps a grapheme subsequence, w, to
a phoneme subsequence, b. By analogy, a graphone is an al-
ternative sub-word unit that maps a grapheme subsequence to
a phone subsequence. In this work, we restrict our attention
to singular graphones or graphonemes, in which a mapping is
made between at most one grapheme and at most one pho-
netic unit. The empty subsequence ε is allowed, however a
mapping from ε to ε is omitted. Taken together, a sequence
of graphonemes, g, inherently specifies a unique sequence of
graphemes w and phonemes b; however, there may be multi-
ple ways to align the pair (w, b) into various graphoneme se-
quences g ∈ S(w,b). The following table shows two possible
graphoneme segmentations of the word “couple”.

w = c o u p l e
b = k ah p ax l

= k ah p ax l
g1 = c/k o/ah u/ε p/p ε/ax l/l e/ε
g2 = c/k o/ε u/ah p/p ε/ax l/l e/ε

Given this ambiguity, employing graphonemes in our joint
model requires us to marginalize over all possible segmenta-
tions. Fortunately, the standard Viterbi approximation has been
shown to incur only minor degradation in performance [3].

P (w, b) =
X

g∈S(w,b)

P (g) ≈ max
g∈S(w,b)

P (g) (3)

In our work, we use the open source implementation pro-
vided by [3], which runs the Expectation-Maximization (EM)
algorithm on a training corpus of word-phoneme pronunciation
pairs to automatically infer graphoneme alignments. We then
train a standard 5-gram language model over the automatically
segmented corpus of graphonemes. This configuration has been
shown to produce good results for singular graphonemes [10].

4. Pronunciation Mixture Model
In [11], we use the joint distribution learned from the lexicon as
described above to seed a pronunciation mixture model (PMM),
which employs EM to iteratively update a set of parameters
based on a example utterances. With the PMM approach, we
learn a distribution over pronunciations for a particular word
by treating them as components in a mixture and aggregat-
ing the posteriors across spoken examples. Beginning with the
parametrization θw,b = P (w,b) in the isolated word case, we
can characterize the log likelihood of a data set (uM1 ,w) as fol-
lows:

L(θ) =

MX
i=1

log p(ui,w; θ) =

MX
i=1

log
X
b∈B

θw,b · p(ui|w,b)

For each word w the EM algorithm can be run to itera-
tively update pronunciation weights, which may then be used
in a stochastic lexicon. The following equations specify the ex-
pectation and maximization steps respectively:

E-step: P (b|ui,w; θ) =
θw,b · p(ui|b,w)P
p θw,p · p(ui|p,w)

M-step: θ∗w,b =
1

M

MX
i=1

P (b|ui,w; θ)

5. PMM for Continuous Speech
Extending this approach to continuous speech requires addi-
tional considerations. We once again model the sequence of
phonetic units as a hidden variable, however, the general ASR
problem is now a search for the most likely string of words
W∗ = w∗1 , · · · ,w∗k given an utterance u:

W∗ = arg max
W

P (W|u) = arg max
W

X
B∈B∗

P (W,B|u) (4)

where now, B ∈ B is a sequence of phonemes or phones that
might span multiple words and include silence. Thus, for the
continuous case, we consider silence to be a phonetic unit and
denote it with a ‘-’. For example, a possible phoneme sequence
B for an utterance with transcription “the boy ate the apple”
could be “dh ax b oy - - ey td - dh ah ae p ax l”.

Equation 4 can be decomposed as follows:

W∗ = arg max
W

X
B∈B

P (W)P (B|W)P (u|W,B) (5)

where P (W) is the language model, P (B|W) can be com-
puted using a stochastic lexicon and P (u|W,B) can be ap-
proximated with the acoustic model P (u|B). Note that the
speech recognizer used in this paper uses standard Viterbi ap-
proximations during decoding. This reduces Equation 5 to the
following:

W∗ = arg max
W,B

P (W)P (B|W)P (u|B) (6)

5.1. EM for Estimating Phoneme Pronunciations

We now extend the Pronunciation Mixture Model (PMM)
framework developed for isolated word recognition [11] to learn
the appropriate weights that can model P (B|W) in continuous
speech.

Our training data is comprised of M utterances and their
transcriptions {ui,Wi} where Wi = wi1, · · · , wiki . We
parametrize the log-likelihood as follows:

MX
i=1

logP (ui,Wi|θ) =

MX
i=1

log
X
B∈B

X
ψ∈Ψ(Wi,B)

P (ui,Wi,B, ψ|θ)

where ψ is an additional hidden variable defined to segment
the phonetic sequence B into k baseforms while deleting
the silences. Thus, ψ is drawn from possible segmentations
Ψ(Wi,B) and can be indexed to retrieve a particular word-
baseform pair. For example:

• ψ1(dh ax b oy - - ey td - dh ah ae p ax l) = dh ax

• ψ2(dh ax b oy - - ey td - dh ah ae p ax l) = b oy

• ψ3(dh ax b oy - - ey td - dh ah ae p ax l) = ey td

• ψ4(dh ax b oy - - ey td - dh ah ae p ax l) = dh ah

• ψ5(dh ax b oy - - ey td - dh ah ae p ax l) = ae p ax l

We can now further decompose the term as follows:

P (ui,Wi,B, ψ) = P (ui|B)P (wi
1, · · · ,wi

ki ,b1, · · · ,bki)

where bi = ψi(B). Our acoustic models are trained such that
when B is the phoneme alphabet, a pronunciation bi is context
independent and the equation above can be rewritten as:

P (ui,Wi,B, ψ) = P (ui|B)

kiY
j=1

θwij ,ψj(B) (7)
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where θwij ,bj = P (wi
j ,bj). Our log-likelihood then becomes:

MX
i=1

logP (ui,Wi|θ) =

MX
i=1

log
X
B∈B

X
ψ∈Ψ(Wi,B)

P (ui|B)

kiY
j=1

θ
wi
j
,ψj(B)

The parameters, θ, are initialized to our graphoneme n-
gram model scores and multiple iterations of the EM algorithm
are run.

E-step:

Mθ[w,p] =
MX
i=1

X
B∈B

X
ψ∈Ψ(Wi,B)

P (B, ψ|ui,Wi, θ)M[p,w,Wi,B, ψ]

M-step:

θ∗w,p =
Mθ[w,p]P

w′,p′∈V×BMθ[w′,p′]

where M[p,w,Wi,B, ψ] is the number of times word w ap-
pears in Wi aligned with the pronunciation p.

The weights learned are directly used in a stochastic lex-
icon for decoding continuous speech. The term P (B|W) in
Equation 5 can be computed as:

P (B|W) =
X

ψ∈Ψ(W,B)

kY
j=1

θwj ,ψj(B)P
p∈B θwj ,p

(8)

5.2. EM for Estimating Phone Pronunciations

The phonetic rules our recognizer applies between the
phoneme-based lexicon and the context-dependent acoustic
models create context dependencies across words at the phone
level. A misguided attempt to apply the PMM directly to learn-
ing phone pronunciations would ignore the independence as-
sumption made in Equation 7, which is no longer valid. In
this section, we explore a model that assigns a probability to a
word-pronunciation pair given the last phoneme of the previous
word’s pronunciation:

P (w1,b1, . . . ,wn,bn) =

nY
i=1

P (wi,bi|bi−1)

=

nY
i=1

P (wi,bi|LAST (bi−1))

Where LAST (b) is the last phone in the phone sequence
b. Here we make several independence assumptions, the first
is similar to the Markov assumption made in n-gram language
modeling, the second references the fact that only the ending of
the previous word’s pronunciation can affect the current word’s
pronunciation. Our new features θw,b|p = P (w,b|p), where
b ∈ B and p is a single phone, can now be used in equation 7
as follows:

P (ui,Wi,B, ψ) = P (ui|B)

|Wi|Y
j=1

θψj(B),wij |LAST (ψj−1(b))

(9)

6. Experimental Setup
Experiments using the SUMMIT landmark-based speech rec-
ognizer [12] were conducted in two domains: a weather query
corpus [13] and an academic lecture corpus [14].

6.1. Experimental Procedure

To evaluate the performance of our PMM model we used the
following procedure for both the weather and lecture domains.
We begin by cleaning the acoustic model training set by remov-
ing utterances with non-speech artifacts to generate a training
set for PMM pronunciations. We then prepare two recogniz-
ers, the first based on manually created pronunciations of all the
words in the training set and the second a learned PMM rec-
ognizer that contains all the pronunciations generated by our
PMM model. We then compare the Word Error Rate (WER) of
both recognizers on a common test set. Thus, both recogniz-
ers use precisely the same vocabulary, but the pronunciations
are chosen or weighted either by human or machine. Although
the expert-lexicon leaves pronunciations unweighted, it does
include a number of entries with multiple pronunciations. To
keep the number of PMM pronunciations included in the search
space to a reasonable size we use a 0.005 threshold to prune out
low probability pronunciations.

The weather query corpus is comprised of relatively short
utterances, with an average of 6 words per utterance. After
pruning the original training and test sets of all utterances con-
taining non-speech artifacts, we ended up with a 87,600 utter-
ance training set with an 1,805 word vocabulary and a 3,497
utterance test set. The acoustic models used with this corpus
were trained on a large data set of telephone speech of which
this corpus is a subset.

The lecture corpus contains audio recordings and manual
transcriptions for approximately 300 hours of MIT lectures
from eight different courses and nearly 100 MITWorld semi-
nars given on a variety of topics [14]. The lecture corpus is
a difficult data set for ASR systems because it contains many
disfluencies, poorly organized or ungrammatical sentences, and
lecture specific key words [15]. Compared to the weather cor-
pus the sentences are much longer, with about 20 words per
utterance on average.

As in the weather domain, we discard utterances that con-
tain non-speech artifacts from the training set used to train the
acoustic model end up with a 50K utterance training set. We
then cleaned the remaining utterances to create a 6,822 utter-
ance test set. We report results on training pronunciations and
decoding with back-off maximum likelihood trained Acoustic
Models [15]. We leave the use of discriminatively trained mod-
els for future work. The back-off maximum likelihood model
uses a set of broad phonetic classes to divide the classification
problem originating from context-dependent modeling into a
set of subproblems. The reported results differ from those in
paper [15] because we use a 25K word vocabulary of all the
words in our training set. The original paper uses a 35K word
vocabulary with some words absent from the training set.

6.2. Graphone/Graphoneme Training

A 150,000 word dictionary of manually generated phoneme
pronunciations was used to train the graphoneme n-gram pa-
rameters according to the procedures described in [10].

To train our graphone model, one might be tempted to sim-
ply expand the phoneme-based lexicon according to the pro-
nunciation rules learned in Section 2. Unfortunately, given the
manner in which our acoustic models were trained, the begin-
nings and endings of pronunciations are context-dependent at
the phone level. Thus, we must expand all the sentences in
our weather and lecture training corpora first to their phoneme
pronunciations using the manually crafted dictionary and then
to their phone variations using the pronunciation rules. These
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Weather Lectures
Graphoneme L2S 11.2 47.6
Expert 9.5 36.7
Phoneme PMM 8.3 36.3
Phone PMM 8.3 36.1
Context PMM 8.3 37.7

Table 1: Results in WER (%)

phone pronunciations were properly generated since the pro-
nunciation rules had access to the context of a word in a sen-
tence.

7. Experimental Results
The results for learning pronunciations can be seen in Ta-
ble 1. A baseline using a lexicon generated directly from gra-
phonemes is shown to be significantly worse than both experts
and the PMM. More interestingly, phoneme PMM pronuncia-
tions achieve more than a 1.2% WER reduction on the weather
test set and a 0.4% WER reductions on the lectures test set
over the hand-crafted lexicon. Both results were deemed statis-
tically significant (p<0.001) using the Matched Pair Sentence
Segment Word Error test. These results were achieved by run-
ning the EM algorithm until convergence which took around
8 iterations. It is important to note that we are learning these
pronunciations without human supervision and hence this tech-
nique can be reliably used to predict pronunciations for out-of-
vocabulary words from continuous speech. We also show im-
provement over a baseline of expert crafted pronunciations by
training on the same data used for training our acoustic models.
This suggests that not only are we learning better-than-expert
pronunciations, we are also allowing more information to be
extracted from the training set that can complement the acous-
tic models. This smaller size vocabulary of the weather domain
could explain the higher gains achieved: since the PMM in-
cludes multiple pronunciations per word, this might make them
more confusable a fact that is more apparent in the 25k vocabu-
lary Lecture domain.

We also test on learning phone pronunciations in a similar
context-independent setup as that of phonemes (Section 5.1).
The results are referenced as “Phone PMM” in Table 1.
One advantage of learning phone pronunciations in a context-
independent setup is that we are no longer using the pronuncia-
tion rules that might be over-expanding the search space. This
fact is made apparent in Table 2 where we see an increase in the
number of pronunciations per word but a smaller search space.

A second reason to favor removal of phonological rules
from the recognizer is simply that, when the lexicon is trained
appropriately, they appear to be an unnecessary complication. It
is also interesting to note that Phone PMM training is faster and
requires only 4 EM iterations to achieve convergence. The dis-
advantage of the direct expansion approach we have described
so far is that phone pronunciations are context-dependent with
respect to the underlying acoustic models, a fact that is not rep-
resented in the learned lexicon.

We tried to model these cross-word dependencies by us-
ing the context-dependent model described in section Context
PMM. Whereas the move from graphonemes to graphones re-
duces the complexity of our recognizer, incorporating context
dependent models grows the search space, as seen in Table 2.
From the results in table Table 1, however, it is clear that they
are an unnecessary complication, and even hurt performance in
the lectures domain. The degradation is likely due to a prob-
lem of context sparsity, which is caused by a greater mismatch

Weather Lexicon Avg # Prons # States # Arcs Size
Expert 1.2 32K 152K 3.5 MB
Phoneme PMM 3.15 51K 350K 7.5 MB
Phone PMM 4.0 47K 231K 5.2 MB
Context PMM 63 253K 936K 22 MB
Lecture Lexicon Avg. # Prons # States # Arcs Size
Expert 1.2 226K 1.6M 36 MB
Phoneme PMM 1.8 501K 7.6M 154 MB
Phone PMM 2.3 243K 1.2M 28 MB
Context PMM 8.9 565K 2.7M 61MB

Table 2: Lexicon statistics for the weather and lecture domains.

between training and test in the lecture corpus.

8. Summary and Future Work
In this work we have shown that training a lexicon from contin-
uous speech can yield improvements in WER when compared
to a recognizer using a hand-crafted alternative. There are two
clear directions in which we hope to further this work. The
first is to co-train the acoustic models and the lexicon in an it-
erative fashion, effectively taking a maximum-likelihood step
along a set of coordinates in the probability space represented
by the recognizer. The second is to move beyond maximum-
likelihood, and explore discriminative approaches to pronuncia-
tion learning on continuous speech. Regardless, we believe that
wrapping the lexicon into a statistical framework is a construc-
tive step, which presents exciting new avenues of exploration.
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