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ABSTRACT

The focus of the 2010 NIST Speaker Recognition Evaluation
(SRE) [1] was the low false alarm regime of the detection error
trade-off (DET) curve. This paper presents several approaches that
specifically target this issue. It begins by highlighting the main
problem with operating in the low-false alarm regime. Two sets of
methods to tackle this issue are presented that require a large and
diverse impostor set: the first set penalizes trials whose enrollment
and test utterances are not nearest neighbors of each other while the
second takes an adaptive score normalization approach similar to
TopNorm [2] and ATNorm [3].

Index Terms— Speaker Recognition, False Alarms, Score Nor-
malization, Adaptive Normalization

1. INTRODUCTION
The 2010 NIST Speaker Recognition Evaluation (SRE) [1] intro-
duced a new detection cost function (DCF) that highly penalizes
false alarms (FA): a typical system yields approximately 0.01% false
alarms at the minimum DCF operating point. At that operating point
the detection threshold falls in the tail of the non-target score dis-
tribution which is not a regime that typical speaker verification and
normalization algorithms optimize for. Typical algorithms focus on
ensuring a large degree of separability between target and non-target
score distributions and typical score normalization schemes attempt
to reduce score distribution variability over different target models
and test utterances.
This work examines the low false alarm regime and proposes algo-
rithms that attempt to tackle it directly. The approaches leverage a
large set of unlabeled impostor utterances to identify suspect false
alarm trials whose match score can then be penalized.
The paper begins by briefly introducing the baseline system used in
this work which consists of the total variability (TV) speaker com-
parison system followed by symmetric score normalization (SNorm)
and highlighting the difficulty encountered by this system in the low-
FA regime. The proposed methods to tackle this difficulty are then
presented and evaluated on an extended English telephony develop-
ment set from the 2008 NIST SRE with promising outcomes. The
methods are then applied to the telephony condition of the 2010
NIST SRE with less favorable results. This unexpected discrepancy
between the 2008 and 2010 evaluations is explored and the likely
reason identified and fixed resulting in improved performance on the
2010 SRE.

2. BASELINE SYSTEM AND THE PROBLEM
2.1. Total Variability (TV)
The baseline system used in this work is the total variability (TV)
system proposed in [4]. A brief description is provided in this sec-
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tion, extended details may be found in the original work. The TV
system is based on the TV space which is a linear subspace of the
GMM supervector space that includes all variability, speaker and
nuisance, observed in the GMM supervectors of the training data-
set. The subspace is chosen such that for a given speech utterance its
corresponding GMM supervector (mutt), adapted from a universal
background model (UBM), can be represented as

mutt = mUBM + Ttelwutt (1)

where mUBM is the UBM mean, Ttel is the low-rank matrix defin-
ing the TV subspace, and wutt is the corresponding factor of the
utterance in the space. In this work Ttel is trained on telephony data
such that the ws are Normally distributed with zero mean and unit
variance.
In the TV space, the match score (s(utta, uttb)) between two utter-
ances utta and uttb is computed as a weighted inner-product where
the weighting effectively performs channel compensation:

s(utta, uttb) =
wt

uttaAW−1Atwuttb√
wt

utta
AW−1Atwutta

√
wt

uttb
AW−1Atwuttb

.

A corresponds to a linear discriminant analysis (LDA) projection
matrix, trained to project into a space that captures inter-speaker
variability while avoiding within speaker variability, and W is the
within speaker covariance matrix computed in the LDA space. It is
of importance to note the symmetry in the scoring function.
The system operates on cepstral features, extracted using a 25 ms
Hamming window. 19 Mel frequency cepstral coefficients together
with log energy are calculated every 10 ms. Delta and double delta
coefficients were then calculated using a 5 frame window to pro-
duce 60-dimensional feature vectors. This 60-dimensional feature
vector was subjected to feature warping using a 3 s sliding win-
dow. The UBMs used are gender dependent Gaussian mixture mod-
els containing 2048 Gaussians. The UBM and the LDA projection
are trained on data from the Switchboard II, Switchboard cellular,
and telephone utterances from the 2004/05/06 NIST SRE. The TV
subspace is trained on the these corpora as well as the Fisher English
corpus. The WCCNmatrix is computed using only the telephone ut-
terances from the 2004/05/06 NIST SRE data sets. The focus of this
work will be on the one conversation enroll one conversation test
scenario and the development set is an extended trial set drawn from
the 2008 NIST SRE English telephony data. Final performance will
be measured on the extended condition 5 of the 2010 NIST SRE
which consists of normal vocal effort English telephony speech.

2.2. Symmetric Score Normalization (SNorm)
It is common for speaker verification systems to be followed by a
score normalization technique, the goal of which is to reduce within
trial variability leading to improved performance, better calibration,
and more reliable threshold setting. In this work symmetric score
normalization (SNorm) [5] is used as the baseline. For every score
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s(utta, uttb) between two utterances, the corresponding SNorm
score ŝ(utta, uttb) is

ŝ(utta, uttb) =
s(utta, uttb)− μa

σa

+
s(utta, uttb)− μb

σb

(2)

where μi and σi are the mean and standard deviation of the scores of
utti scored against an impostor list. Gender dependent impostor lists
are used that consist of 614 female and 406 male English telephone
utterances drawn from the 2005/06 NIST SRE data-sets.
2.3. The Problem
The 2010 NIST SRE set a very low prior of 0.001 on target trials in
the detection cost function (DCF) which results in false alarms (FAs)
costing significantly more than misses. The minimum DCF thresh-
old, therefore, falls in the tail of the non-target trial scores as can be
seen in Figure 1. For the TV baseline with and without SNorm the

Fig. 1. The Problem

figure shows the minimum DCF threshold and the overlap of the his-
tograms of the target and non-target trial scores of the development
set used. The low overlap between target and non-target trials in both
plots and the reduced variance of the scores for the SNormed system
highlight the efficacy of the TV system for speaker verification and
SNorm for score normalization. However, TV and SNorm, though
effective, do not specifically tackle the tails of the score distributions
in the overlap region, which we will attempt to do in this work.

3. PROPOSED SYSTEMS
We tackle the problem by trying to identify the high scoring non-
target trials, i.e. the trials in the tail of the non-target trial distri-
bution. This is done by leveraging a wealth of available data as an
impostor set, a set of utterances that do not share common speak-
ers with the development or test set, and asking the question: “are
the two utterances in the trial more similar to one another or to utter-
ances in the impostor set?” Gender dependent impostor sets are used
consisting of 9281 female and 6932 male telephony utterances from
the 2004/05/06 NIST SREs excluding those used to perform SNorm.
All match scores, between the trial utterances or a trial utterance and
an impostor utterance, are computed using the symmetric equation
(2).
In the proposed methods, one is not constrained to using a specific
system to score trials. However, inner product scoring based sys-
tems, such as TV and inner product decision functions [6], are espe-
cially well suited because they allow for fast and efficient compari-
son of a large number of utterances, as is needed when scoring each
trial utterance against the thousands of impostor utterances.

Table 1. % of trials flagged on the development set
Strategy % target flagged % non-target flagged
NN-OR 18.7 99.87
NN-AND 25.2 99.96

3.1. False Alarm Detectors

3.1.1. Nearest Neighbor AND/OR (NN-AND/NN-OR)
We begin with two strategies to detect whether a trial is likely a non-
target trial, i.e. one that would contribute to false alarms. These
strategies were motivated by previous work [7] that used NN-graphs
and approximate geodesic distances to compare two utterances. The
first proposed strategy, called NN-OR, flags a trial as a non-target if
either of the trial utterances, enrollment or test, are closer, indicated
by a higher match score, to utterances in the impostor set than to the
other trial utterance. The second, called NN-AND, flags a trial as
non-target if both trial utterances are closer to utterances in the im-
postor set.
We evaluate the two strategies on the development data-set by ex-
amining the percentage of target and non-target trials that get de-
tected and labeled as non-target trials, a perfect detector would have
detected and flagged 100% of the non-target and 0% of the target
trials. Table 1 shows that while the majority of the non-target tri-
als were detected correctly, a significant number of target trials were
falsely detected.
This observation suggests a strategy that, rather than making a hard
decision to label all utterances flagged by these detectors as non-
targets, penalizes those trials by subtracting an offset from the trial
score. Figure 2 shows the minDCF and EER values on the develop-
ment set as a function of the offset, and shows that both strategies
perform better than the baseline SNorm system and that NN-AND
with an offset of 2 yields the best performance.

3.1.2. Nearest Neighbor Difference (NN-DIFF)
In both NN-AND and NN-OR each trial is either flagged as a non-
target or not. We now propose to instead assign a confidence score
cD(enr, tst), where enr is the enrollment utterance and tst is the
test utterance, to each trial based on how suspect a trial is by:

cD(enr, tst) =
1

2
{ŝ(enr, tst)− ŝ(enr,NN1(enr))}

+
1

2
{ŝ(enr, tst)− ŝ(tst,NN1(tst))}. (3)

where ŝ(., .) is the SNormed TV match score (2), and NN1(utt) is
the utterance in the impostor set that is nearest, has highest match
score, to utt. cD will therefore take on a large negative value when
we are highly confident that a trial is a non-target and a large positive
value when we are highly confident it is a target trial. The confidence
score is then fused with the baseline SNorm score to obtain the final
trial score

sD(enr, tst) = (1− f)ŝ(enr, tst)− f ∗ cD(enr, tst), (4)

where f ∈ [0, 1]. Figure 2 shows the minDCF and EER values on
the development set as a function of the fusion parameter, with f =
0 being the baseline SNorm system and f = 1 using the confidence
score as the trial score. The parameter sweep suggests that a good
choice of f is in the range of .3 to .6. Also, setting the trial score to
be the confidence score, i.e. f = 1, performs well at the minDCF
point yet poorly at the EER.
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Fig. 2. Offset penalty sweep

3.2. K Nearest Neighbor Difference (KNN-DIFF) and Adaptive
Symmetric Normalization (ASNorm)
The first set of proposed methods share a common shortcoming: they
heavily rely on a single nearest neighbor from the impostor set. We
therefore extend the NN-DIFF idea in an attempt to reduce this re-
liance by averaging the scores of the topK NNs rather than just the
first, and call it KNN-DIFF. The confidence score is now

cKD(enr, tst) = 1

2
{ŝ(enr, tst)− μ(ŝ(enr,NNK(enr)))}

+ 1

2
{ŝ(enr, tst)− μ(ŝ(tst,NNK(tst)))}, (5)

where μ(.) is the mean and NNK(.) is the set of the K NNs. As
K gets large we can further divide out the standard deviation in the
confidence score resulting in an adaptive symmetric normalization
(ASNorm), similar to TopNorm [2] and ATNorm [3]:

cASN (enr, tst) =
ŝ(enr, tst)− μ(ŝ(enr,NNK(enr)))

σ(ŝ(enr,NNK(enr)))

+
ŝ(enr, tst)− μ(ŝ(tst,NNK(tst)))

σ(ŝ(tst,NNK(tst)))
, (6)

where σ(.) is the standard deviation.
Figure 3 shows how increasingK affects each of the strategies. No-
tice that a lower number of cohorts, K = 50, is needed in KNN-
DIFF, whileK = 1500 is best for ASN.
We now choose the best performing confidence scores cKD,K=50
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Fig. 3. Offset penalty sweep
and cASN,K=1500 and fuse them with the baseline SNorm scores,

sKD(enr, tst) = (1− f)ŝ(enr, tst) − fcKD,K=50(enr, tst)

sASN (enr, tst) = (1− f)ŝ(enr, tst) − fcASN,K=1500(enr, tst),

and show the sweep of the fusion parameter f in Figure 4. The fusion
shows that to optimize for minDCF f should be set to 0, meaning

Table 2. % of trials flagged on the development set
Strategy DCF*1e4 EER (%)
Baseline: TV no SNorm 5.32 1.73
Baseline: TV with SNorm 4.47 1.32
NN-OR offset=1.5 4.09 1.32
NN-AND offset =2 3.87 1.32
NN-DIFF 3.93 4.82
NN-DIFF fused f=.5 3.86 1.52
KNN-DIFF K=50 3.33 2.07
KNN-DIFF K=50 fused f=.7 3.58 1.32
ASNorm K=1500 3.35 1.30
ASNorm K=1500 fused f=.7 3.46 1.24

that the confidence score cKD or cASN should be used rather than
fusing with SNorm. However, the fusion does benefit EER, specifi-
cally in the KNN-DIFF case, where f = .7 seems to be a reasonable
trade-off between DCF and EER.
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Fig. 4. Fusion of KNN-DIFF and ASNorm with SNorm

3.3. Analysis
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Fig. 5. DET plots of the different systems on the development set.

We first examine Table 2 and Figure 5 (A) and notice that even
the simplest of the proposed strategies, that rely only on the first NN
and make hard decisions to flag a trial as non-target, can yield overall
improvement over SNorm and specifically a 13% relative improve-
ment at minDCF. Using the confidence score in NN-DIFF as the
trial score, however, aggressively targets the low-FA regime of the
DET curve at the expense of the rest. Fusing the confidence score
with SNorm provides a less aggressive system that improves in the
regime of interest while performing reasonably elsewhere.
The results of KNN-DIFF and ASNorm shown in Table 2 and Fig-
ure 5 (B) show that utilizing more than one NN in the confidence
score further improves performance at minDCF, yielding a 25% rel-
ative improvement over SNorm. However, the two methods differ
greatly in performance over the rest of the DET curve: KNN-DIFF
only shows improvement in the low-FA regime while ASNorm im-
proves overall. Fusing the confidence score with the SNorm trial
score trades off performance at the low-FA range for overall perfor-
mance.
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4. NIST SRE 2010 RESULTS
We now present in the first columns of Table 4 and Figure 6 the re-
sults of the proposed methods on the test set, condition 5 of the 2010
NIST SRE, versus the baselines. It is apparent from the DET plot
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Fig. 6. DET plots of the different systems on 2010 NIST SRE.
that the improvement observed on the development data-set is not
seen on the test set, specifically at the minDCF operating point.
In an attempt to resolve this discrepancy we examine the percent-
age of trials being flagged as non-targets in the simple NN-AND and
NN-OR algorithms, this is shown in the first two columns of Table 3.
Comparing these percentages to those in Table 1 it is apparent that
the test data-set is interacting with the impostor set in a different
manner than the development set: specifically a significantly smaller
percentage of trials were being flagged as non-targets. This could
be for one of two reasons: either the within set variability is lower
for the test set than the development set, or the impostor set is better
matched to the development data.
Changing the within set variability would require changing the sys-

Table 3. % of trials flagged on the test set
Strategy % target % non-tar % target % non-tar

flagged flagged flagged+08 flagged+08
NN-OR 5.7 99.32 8.38 99.71
NN-AND 10.7 99.76 16 99.92
tem we are using to drive the experiments, we therefore attempt to
better match the impostor set to the test set by including the 2008
NIST SRE English telephony utterances in the impostor set. The
last two columns of Table 3 show that there is about a two-fold in-
crease in the number of flagged utterances, indicating that the 2008
data is better matched to the 2010 data. The last two columns of
Table 4 and Figure 7 show that augmenting the impostor set to better
match the test data does improve performance over the original im-
postor set.
To provide a fair comparison between our proposed systems and
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B) K−NN−DIFF / ASNorm vs BASELINE
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Fig. 7. DET plots of the different systems with the augmented im-
postor set on 2010 NIST SRE.
the SNorm baseline we augment the SNorm set with a uniformly
selected subset of utterances from the 2008 data-set. The compari-
son with the baseline is presented in Table 4 and Figure 7 and, even

though the improvement is not as dramatic as was seen on the de-
velopment data, there is a consistent improvement in performance
over the DET range between the minDCF point and the EER point.
Specifically, a 5 − 10% and 8 − 10% relative improvement at the
minDCF and EER points respectively for the KNN-DIFF and AS-
Norm systems. However, even though the performance did improve
it still falls short of expected. This may be because the percentage
flagged in the last two columns of Table 3 are still lower than those
in Table 1 indicating a likely persistent miss-match not addressed by
augmenting the impostor set.

Table 4. minDCF and EER breakdown on test set
Strategy DCF EER DCFe4 EER (%)

*1e4 (%) with 08 with 08
Baseline: TV no SNorm 4.62 2.82 4.62 2.82
Baseline: TV with SNorm 4.21 2.32 4.13 2.29
NN-OR offset=1.5 4.21 2.30 4.21 2.32
NN-AND offset =2 4.23 2.32 4.28 2.32
NN-DIFF 4.07 2.30 4.11 2.32
NN-DIFF fused f=.5 4.07 2.22 4.05 2.16
KNN-DIFF K=50 4.00 2.11 3.70 2.06
KNN-DIFF K=50 fused f=.7 4.01 2.13 3.80 2.09
ASNorm K=1500 4.33 2.09 4.02 2.08
ASNorm K=1500 fused f=.7 4.17 2.11 3.92 2.11

5. CONCLUSION AND FUTUREWORK
The goal of this work was to attempt to directly tackle the newly
proposed DCF with systems that leverage a large impostor set. Our
results on the development set were very promising with even the
simplest algorithms outperforming the baseline, however, perfor-
mance on the test set was on-par with the baseline. Upon explor-
ing this discrepancy, it became apparent that an impostor set that is
well matched to the data of interest is crucial to the proposed al-
gorithms. Augmenting the impostor to better satisfy this criterion
led to better performance. However, performance still fell short of
what was observed on the development set, most likely due to not
addressing all of the miss-match. Future work will focus on identi-
fying well matched impostor sets, as well as further exploring this
apparent miss-match between the 2010 NIST SRE data-set and the
NIST SRE data from previous years.
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