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ABSTRACT

Recent advances in the field of speaker recognition have resulted in
highly efficient speaker comparison algorithms [1] [2]. The advent
of these algorithms allows for leveraging a background set, consist-
ing a large numbers of unlabeled recordings, to improve recogni-
tion [3] [4]. In this work, a relational graph, where nodes represent
utterances and links represent speaker similarity, is created from the
background recordings in which the recordings of interest, train and
test, are then embedded. Relational features computed from the em-
bedding are then used to obtain a match score between the record-
ings of interest. We show the efficacy of these features in speaker
verification and speaker mining tasks.

Index Terms— Speaker Recognition, Speaker Mining, Rela-
tional Features, Graph Embedding

1. INTRODUCTION

Text-independent speaker comparison is the process of providing a
match score between two speech recordings, we refer to the pair of
speech recordings as a trial. In the past, the match score has been
computed either by considering the two recordings in isolation, as
in [1] [2], or using an impostor set of recordings and one of the two
recordings to train a support vector machine (SVM) classifier and
then test on the other [5]. Small sets of impostor recordings have
also been used in score normalization [6] to calibrate scores across
trials.

Recently, non-SVM algorithms that fall within the inner prod-
uct discriminant functions (IPDFs) [2] or total variability (TV)[1]
frameworks have provided state of the art comparison performance
that is fast and efficient. In previous work we leveraged this effi-
ciency to score each of the trial utterances against a large number,
several thousands, of unlabeled background utterances. In [3] we
used the scores between the trial and background utterances to em-
bed the trial utterances as nodes in a graph, whose links correspond
to speaker similarity and whose nodes are the recordings, and the
distance along the graph between two utterances of a trial was used
as a match score. In [4] the background set consisted of only im-
postor recordings and the scores were used to reduce false alarms by
performing adaptive score normalization.

Motivated by the link prediction problem [7] this work embeds
the trial recordings along with the background set in a graph and,
in addition to using the shortest path as a match score, extracts sev-
eral other features that capture the interconnection between the trial
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utterances and the background. This results in each trial being rep-
resented by a set of these graph relational features which can then
be used with a classifier, e.g. linear SVM, that is trained to sepa-
rate between true trials, where the trial recordings correspond to the
same speaker, and false ones. The classifier is then used to classify
whether an unseen pair of recordings corresponds to a true or false
trial.

We will begin with a description of the total variability system
which we will use both as a baseline and for graph construction. We
then discuss the graph construction and embedding, followed by the
relational features we’ll extract from the graph. Next we present the
classifier used along with the train and test setup. We conclude with
results that show the efficacy of these features and suggestions for
future work.

2. TOTAL VARIABILITY (TV)

The baseline system used in this work is the total variability (TV)
system proposed in [1], a brief description is provided in this sec-
tion, extended details may be found in the original work. The sys-
tem begins by adapting the means of a universal background model
(UBM), a Gaussian mixture model (GMM) representing the speech
of the general population, to a specific utterance, utt. The vector of
stacked means of the adapted GMM, mutt, is called a GMM super-
vector and is used as a sufficient statistic representing the recording.
The TV system is based on the TV space which is a linear subspace
of the GMM supervector space that includes all variability, speaker
and nuisance, observed in the GMM supervectors of the training
data-set. The subspace is chosen such that for a given speech utter-
ance its corresponding GMM supervector (mutt) can be represented
as

mutt = mUBM + Ttelwutt (1)

where mUBM is the UBM mean supervector, Ttel is the low-rank
matrix defining the TV subspace, and wutt is the corresponding fac-
tor of the utterance in the space. In this work Ttel is trained on
telephony data such that the w’s are normally distributed with zero
mean and unit variance.

In the TV space, the match score (s(utta, uttb)) between two
utterances utta and uttb is computed as a weighted inner-product
where the weighting effectively performs channel compensation:

s(utta, uttb) =
wt

uttaAW−1Atwuttb
√

wt
utta

AW−1Atwutta

√

wt
uttb

AW−1Atwuttb

.

A corresponds to a linear discriminant analysis (LDA) projection
matrix, trained to project into a space that captures inter-speaker
variability while avoiding within speaker variability, and W is the
within speaker covariance matrix computed in the LDA space. It is
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of importance to note the symmetry in the scoring function and that
due to the normalization, in the denominator, s(utta, utta) = 1.

The system operates on cepstral features, extracted using a 25
ms Hamming window. 19 Mel frequency cepstral coefficients to-
gether with log energy are calculated every 10 ms. Delta and double
delta coefficients were then calculated using a 5 frame window to
produce 60-dimensional feature vectors. This 60-dimensional fea-
ture vector was subjected to feature warping using a 3 second sliding
window. The UBMs used are gender dependent Gaussian mixture
models containing 2048 Gaussians. The UBM and the LDA projec-
tion are trained on data from the Switchboard II, Switchboard cel-
lular, and telephone utterances from the 2004/05/06 NIST SRE [8].
The TV subspace is trained on the these corpora as well as the Fisher
English corpus. The WCCN matrix is computed using only the tele-
phone utterances from the 2004/05/06 NIST SRE data sets [8].

2.1. Symmetric Normalization (SNORM)

It is common for speaker verification systems to be followed by a
score normalization technique, the goal of which is to reduce within
trial variability leading to improved performance, better calibration,
and more reliable threshold setting. In this work the baseline used
consists of the TV system followed by symmetric score normaliza-
tion (SNorm) [6]. For every score s(utta, uttb) between two utter-
ances, the corresponding SNorm score ŝ(utta, uttb) is

ŝ(utta, uttb) =
s(utta, uttb)− µa

σa
+

s(utta, uttb)− µb

σ b
(2)

where µi and σi are the mean and standard deviation of the scores of
utti scored against an impostor list. Gender dependent impostor lists
are used that consist of 614 female and 406 male English telephone
utterances drawn from the 2005/06 NIST SRE data-sets.

3. GRAPH EMBEDDING

The symmetric scoring function s(utta, uttb) in Section 2 is used
to compute a pair-wise match score between each two recordings in
the set consisting of the background and trial utterances, resulting
in a square and symmetric match-score matrix. The score matrix
encodes not only the direct comparison between the trial utterances
but also how they interact with the background set. This information
can be leveraged to improve on the direct match score. Motivated by
the link prediction problem [7] we generate a relational graph that
summarizes the score matrix and extracts relational features from
the graph. These features in addition to the direct match score can
be combined to label a trial as true or false.

The relational graph consists of nodes representing recordings
and undirected edges between the nodes. Two nodes are connected
by an edge if they are “similar” enough. This can be decided in one
of two ways: the first connects two nodes if their pair-wise match
score is above a set threshold ε, the second includes an edge be-
tween two nodes if one is among the K-nearest neighbors (KNNs)
of the other. The KNNs of a particular node is the set of K record-
ings whose pair-wise score with the recording is the highest. The
choice of which graph construction method and the parameters K
and ε will result in very different graphs. These differences allow us
to examine the match-score matrix from different perspectives which
we speculate would yield somewhat complementary graph relational
features. We therefore include both construction methods and sev-
eral parameter choices in the feature extraction process.

Another choice in graph construction is whether the edges of
the graph are weighted or not. Weighted graphs use the pair-wise

score between two recordings for the weight of the edge connecting
them. Binary graphs on the other hand have all their edge weights
set to unity, therefore all the information is encoded in whether an
edge exists between two nodes or not. In the next section, we pro-
pose several relational features, some applicable to both binary and
weighted graphs, others to only one.

4. GRAPH RELATIONAL FEATURES

Once the trial and background utterances are embedded in a graph
we can extract several features that capture the interaction between
the trial utterances via the graph. These features are split into two
main classes: those that examine only the immediate neighborhood
of the trial utterances and those that extend beyond that. To simplify
the presentation of the features we first present some notation:

• The nodes in the graph, representing trial and background ut-
terances, are indexed from 1 toM , whereM is the total num-
ber of nodes in the graph.

• Each trial consists of an enrollment and test utterance E and
T respectively.

• Nx is the set of neighbors of node x, i.e. the nodes connected
to x by an edge, e.g. NE is the set of neighbors of E.

• |X| is the cardinality of the setX .
• ||x|| is the 2-norm of the vector x .
• The vector vx is a typically sparse vector, of sizeMx1, that
captures the interaction of x with the remaining graph nodes:
- Zero valued entries in the vector indicate the lack of an
edge between the utterance x and the nodes corresponding to
the zero locations.
- For weighted graphs, the value of the non-zero vector en-
tries indicates the weight of the edge between x and the cor-
responding graph node.
- For binary graphs, all non-zero entries have a value of one
and indicate edges between x and the graph nodes.

4.1. Neighborhood Features

The premise of these features is that if E and T are utterances of the
same speaker then their match scores with the background utterances
should be similar indicating they lie within the same neighborhood
of the graph.

4.1.1. Binary graph

We adopt the following features from [7] where they are used for
link prediction:

• Common neighbors=|NE ∩NT | counts the number of com-
mon neighbors between E and T .

• Jaccard’s coefficient= |NE∩NT |
|NE∪NT | normalizes the common

neighbor score by the total number of nodes connected to
both E and T . An example scenario where the normal-
ization would be useful is in the case where a particular
enrollment utterance E shares the same number of common
neighbors with two separate test utterances T1 and T2, how-
ever |NT2

| # |NT1
| and thus the Jaccard coefficient would

penalize T2.
• Adamic=Σz∈NE∩NT

1
log|Nz|

a measure that combines the
size of the intersection set with how highly connected the
nodes in the intersection are. This could be thought of as
another form normalized common neighbors.
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4.1.2. Weighted graph

The features in this section are inspired by those of the binary graph.
• Inner product=vtE .vT is based on the common neighbors
measure.

• Normalized inner products= vt
E
.vT

||vE ||.||vT || and vt
E
.vT

||vE ||+||vT ||

which are inspired by Jaccard’s coefficient.
• Adamic Weighted=Σz∈NE∩NT

1
log||vz||

, based on the binary
Adamic feature.

• Landmark Euclidean distance=||vE − vT ||, a measure that
considers the recordings in the graph as landmarks and that
the vectors vE and vT represent the coordinates of E and T
in the space defined by the landmarks.

4.2. Paths Features

In the previous sections our discussion has focused on graphs con-
structed based on match scores. One can also create graphs based on
the Euclidean distance between the TV representation of the record-
ings. In the K-NN version of the distance based graphs the NN are
selected to be the closest ones to a recording in the Euclidean space.
And in the epsilon version of the graphs, edges exist between nodes
that are less than ε apart from one another. Given the normaliza-
tion of the match score presented in Section 2 the euclidean distance
between two recordings is just

e(utta, uttb) =
√

2− 2s(utta, uttb). (3)

These distance graphs allow for extracting paths based features that
go beyond the immediate neighborhoods of the trial utterances:

4.2.1. Shortest path

• Shortest path=2−SP (E,T ), where SP (E, T ) is the value of
the shortest from node E to T , which we compute using a
Matlab implementation of the Dijkstra algorithm [9].

• Number of hops=2−NH(E,T ) , whereNH(E, T ) is the num-
ber of edges traversed along the shortest path from E to T .

4.2.2. N-Step Markov (NSM):

NSM is a feature used to quantify the relative importance of E to
T [10] by computing the probability that a random walk started at E
will visit T after N steps are taken. Which can be computed as the
value at the T th index of the vector:

NSM(E, .) = AiE +A
2iE +A

3iE + ... +A
N iE , (4)

where iE is a vector of sizeMx1 of all zeros except for 1 at the Eth
index, andA is anMxM matrix representing transition probabilities
from one node to another. We obtain A from the distance graph by
dividing each outward edge from a node by the sum of all outward
edges from that node. In this paper we choose to set N = 15 since
beyond that the contribution ofAN iE to the NSM score is minimal.

5. CLASSIFIER

In Section 3 we presented two graph embedding techniques, K-NN
and epsilon graphs, each with a parameter that can be varied to obtain
different resultant graphs. These graphs are then used in Section 4
to extract three categories of features: binary graph neighborhood

Table 1. The graph relational features used in classification
K used in K-NN ε used in Epsilon Graph

BGN 5, 10, 20, 50, 100, .35, .4, .45
250, 500, 750, 1000

WGN 5, 10, 20, 50, 100, -.4, -.3, -.2, -.1,
250, 500, 750, 1000 0, .1, .2, .3, .4

Paths 1.1, 1.2, 1.3

(BGN), weighted graph neighborhood (WGN) and paths features.
Combining the different graph construction with the different fea-
ture extraction techniques results in a large set of features to repre-
sent each trial. We narrow the set down to 135 features according to
the efficacy of each individual feature on the development set. Ta-
ble 1 lists the resulting set.

These relational features are combined with the baseline match-
score to obtain a 136 dimensional feature vector that represents each
trial of interest, consisting of a train and test utterance. The features
are then individually normalized to have zero mean and unit vari-
ance across the training set. A linear SVM classifier is then trained
per gender on the development set to separate between true and false
trials. This is done using the LibSVM toolbox [11] with five fold
cross-validation to set the regularization parameter c. Once trained,
the SVM is used to classify test trials as true or false. The next sec-
tion presents the results of our approach on the speaker recognition
and speaker mining tasks.

6. RESULTS

The focus of this work will be on the one conversation train one con-
versation test scenario and all results will use the 2008 NIST SRE
English telephony data as a training/development set. The final per-
formance will be measured on condition 5 of the 2010 NIST SRE
which consists of normal vocal effort English telephony speech.

6.1. Speaker Recognition Task

The speaker recognition task follows the standard NIST SRE task
requiring that each trial be considered independently of all other tri-
als in the evaluation, therefore when extracting the graph relational
features for a given trial it was embedded in an impostor background
set. The background sets used are of size 6932 for males and 9281
for females and consist of utterances from the 2004/05/06 NIST
SREs.The regularization parameter c was set via cross-validation to
5 for males and 15 for females. Figure 1 shows the detection error
trade-off (DET) curves of the baseline, in blue, and our proposed al-
gorithm, in red, on the NIST SRE 08 data which was used to train
the SVM classifier. Keeping in mind that we are testing on the train-
ing data, it is worthwhile to note the potential of the graph relational
features.

Figure 2 shows the DET curves of the baseline, in blue, and our
proposed algorithm, in red, on the held out test set, and we note that
our algorithm yields moderate improvement over the baseline.

6.2. Speaker Mining Task

In the speaker mining task, we relax the constraint requiring each
trial to be considered independently and include all the trials of the
particular evaluation in the graph background set along with utter-
ances from the 2004/05/06 NIST SREs. This yielded background
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Fig. 1. Speaker recognition DET plots of the baseline and proposed
system on the training set (NIST SRE 08).
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Fig. 2. Speaker recognition DET plots of the baseline and proposed
system on the held out test set (NIST SRE 10).

sets of size 8475 for males and 12099 for females on the develop-
ment set and 9868 and 13209 for males and females on the held out
test set. We note that in this task the background set is not only com-
prised of impostor utterances and may have speaker overlap with the
trial of interest. During SVM training the regularization parame-
ter c was set via cross-validation to 3 for males and 2 for females.
Figure 3 shows the DET curves of the baseline, in blue, and our pro-
posed algorithm, in red, on the NIST SRE 08 data used to train the
SVM classifier. As in the recognition task, keeping in mind that we
are testing on the training data, it is worthwhile to note the potential
of the graph relational features.

Figure 4 shows the DET curves of the baseline, in blue, and our
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Fig. 3. Speaker mining DET plots of the baseline and proposed sys-
tem on the training set (NIST SRE 08).

proposed algorithm, in red, on the held out test set and clearly shows
the improvement of our algorithm over the baseline.

7. CONCLUSION AND FUTUREWORK
In this paper we have presented a framework to use relational fea-
tures extracted from speaker similarity graphs for improved speaker
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Fig. 4. Speaker mining DET plots of the baseline and proposed sys-
tem on the held out test set (NIST SRE 10).

comparison. We applied this framework to two speaker comparison
tasks, speaker recognition and mining. In both tasks, our proposed
system outperformed the baseline, with significant improvement ob-
served in the speaker mining task. We also present results from test
on train scenarios to highlight the potential of the features.

Future work will focus on improving generalization to the test
set by applying impostor driven feature normalization to the individ-
ual relational features, as well as subspace methods to handle corre-
lation and noise in the feature vectors.
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