
Subword-based Automatic
Lexicon Learning for ASR

Timo Mertens #,∗1 and Stephanie Seneff ∗2

# Norwegian University of Science and Technology
Department of Electronics and Telecommunication

Trondheim, Norway
1 tpm@mit.edu

∗ Spoken Language Systems Group
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
2 seneff@csail.mit.edu

Abstract—We present a framework for learning a pronunciation
lexicon for an Automatic Speech Recognition (ASR) system from
multiple utterances of the same training words, where the lexical
identities of the words are unknown. Instead of only trying to learn
pronunciations for known words we go one step further and try
to learn both spelling and pronunciation in a joint optimization.
Decoding based on linguistically motivated hybrid subword units
generates the joint lexical search space, which is reduced to
the most appropriate lexical entries based on a set of simple
pruning techniques. A cascade of letter and acoustic pruning,
followed by re-scoring N -best hypotheses with discriminative
decoder statistics resulted optimal lexical entries in terms of both
spelling and pronunciation. Evaluating the framework on English
isolated word recognition, we achieve reductions of 7.7% absolute
on word error rate and 14.4% absolute on character error rate.

I. INTRODUCTION

The word-level lexicon of an LVCSR system models the set
of words to be recognized along with their pronunciations. If
a word is not in the lexicon, the recognizer will make a substi-
tution, insertion or deletion error. This is known as the out-of-
vocabulary (OOV) problem. Numerous works have addressed
this aspect of LVCSR in various application scenarios. One
scenario is to detect which parts of the utterance correspond
to words unknown to the recognizer [1], [2], [3]where popular
approaches include using generalized word or subword filler
models, aligning word and subword representations or using
confidence measures obtained from various sources. Another
scenario is the derivation of a lexical representation for the
speech component of an unknown word. This, in turn, consists
of two parts: first, a pronunciation is hypothesized using
phonemic subword units, and second, said pronunciation is
converted to a spelling. Only generating a pronunciation for
an unknown word is sufficient in applications such as Spoken
Term Detection (STD) [6], where phonemic representations of
speech are adequate for indexing and search. For transcrip-
tion, however, an orthography needs to be estimated from a
given phonemic subword sequence, as in [7], where phone
transcriptions are converted to spellings using memory-based
learning for Dutch OOV words. Another approach is to take
the subword decoder output and perform a dynamic alignment
between a lattice and the words of a large fallback lexicon [8].

Lately, so-called flat hybrid models, originally used for letter-
to-sound (L2S) conversion, have gained popularity for detecting
and transcribing OOVs [9]. Such models essentially represent
subword units that encode both pronunciation and spelling.
The idea is to include such units in the word-level recognition
lexicon and language model (LM) and let the decoder decide
when to output a word or a subword sequence. The subword-
spellings of such subword sequences can then be merged into
lexical representations for the OOV.

The goal in this contribution is to learn a pronunciation
lexicon from some speech examples. Instead of only focusing
on either the spelling or the pronunciation aspects of lexical
entries, we propose techniques that optimize both jointly. The
motivation behind this is that we want to move away from
a static recognition lexicon and explore automatic approaches
to discovering an optimal lexical representation for a data set.
In scenarios like spoken term discovery [10], where acoustic
examples of the same word or phrase are clustered together, au-
tomatically proposing both spellings and pronunciations could
be used as a first step to learning lexical entries. Furthermore,
in applications like STD where a database of audio documents
needs to be indexed, the OOV problem could be overcome by
learning the words contained in the database automatically dur-
ing indexing. In the Spoken Language Systems group at MIT
numerous lines of research have investigated learning certain
aspects of the lexicon. [11] learns pronunciation baseforms
and variants using statistically learned subword units, [12]
uses linguistically motivated hybrid subword units to propose
spellings for perfect phone transcripts and [13] learns both
spellings and pronunciations for new words using the same
linguistic subword units as well as a statistical letter model.

Building on this existing body of research, we propose to
learn a lexical inventory from scratch. We present a framework
that decodes training speech utterances with linguistically mo-
tivated hybrid subword units, and utilizes pruning approaches
to reduce this lexical search space. We investigate the use-
fulness of learning pronunciations and spellings both isolated
and jointly from training data that only contains clusters of
utterances, but no lexical information. Although we address
only isolated word learning, the ultimate vision is a system that



Syllabic	
  layer	
  

Phonemic	
  layer	
  

Graphemic	
  layer	
  

rhyme1	
   onset	
   rhyme	
   usyl	
   rhyme	
   usyl	
   ambi	
   rhyme	
  

	
  -­‐aek	
   s+	
   	
  -­‐ehl	
   	
  -­‐axr	
   	
  -­‐aam	
   	
  -­‐ax+	
   5	
   	
  -­‐er+	
  

a	
  c	
   c	
   e	
  l	
  	
   e	
  r	
   o	
  m	
   e	
   t	
   e	
  r	
  

ac	
  /	
  ae	
  k	
   c	
  /	
  s	
   el	
  /	
  eh	
  l	
  	
   er	
  /	
  ax	
  r	
   om	
  /	
  aa	
  m	
   e	
  /	
  ax	
   t	
  /	
  5	
   er	
  /	
  er	
  
Spellneme	
  

representa4on	
  

a)	
  

b)	
  

Fig. 1. Subword Parse Table for ’communication’.

is capable of learning lexical entries from continuous speech,
making the OOV problem obsolete for certain applications such
as STD.
In the remainder of this paper we first present the subword units
used to drive the ASR system. Sec. 3 describes the framework
used to learn a lexicon from a speech database, followed by
the experimental setup. Sec. 5 explains the experiments and
presents evaluation results. The paper is concluded in Sec. 6.

II. SUBWORD-BASED ASR FOR LEXICON LEARNING

The goal of this contribution is to investigate techniques for
automatic lexicon learning: given some speech data, generate
word-level lexical entries that best represent the data. To create
the lexical search space, we use subword-based ASR to first
decode speech into sequences of subword units and then use
statistics from the decoding output to select the most adequate
lexical representations for each word. This section describes
the subword units used in this work.
As noted in Sec. 1, a number of subword units have been pro-
posed for various ASR-related tasks. Of special interest for rec-
ognizing OOVs are hybrid units that encode both spelling and
pronunciation. Although the focus has been largely on learn-
ing such a unit inventory automatically from some exemplar
spellings/pronunciations, other, more linguistically motivated
subword segmentations have been investigated as well [12],
[14]. In this contribution we use so-called spellnemes, proposed
in [12]. The underlying idea behind spellnemes is to segment
a word into hybrid units conditioned on a set of linguistic
constraints, where each unit is associated with both spelling
and pronunciation. These constraints are enforced through a
linguistic model that essentially represents a parse table for
a given word. A parse table consists of various layers which
model different subword aspects such as syllabification, sub-
syllabic position, stress and morphology. An example parse for
the English word accelerometer can be found in Fig. 1 a).

As can be seen in Fig. 1 b), the lower two layers of the parse
table can be used to segment a given word into both spelling
and pronunciation chunks, where each cell contains a so-called
spellneme. The inventory of spellnemes is obtained from a large
language-specific pronunciation lexicon. Each word is parsed
using a context-free grammar which was developed manu-
ally. The grammar basically describes permissible letter/phone
alignments. If a word fails to parse according to the grammar,
the corresponding rules are updated manually. This procedure is
applied iteratively across the whole lexicon. Each word can be
represented as a sequence of spellnemes as long as the spelling

or pronunciation can be parsed with the grammar. This serves
de-facto as a reversible L2S or S2L module.

In comparison to graphones [15], another hybrid unit, spell-
neme segmentations are constrained by linguistic features of
the language in question. That is, where graphones are learned
statistically according to some optimization criterion, the set
of possible spellnemes is based predominantly on the syllable
structure of the language. An important question in subword-
based ASR is how much context a subword unit should
model. At one end of the spectrum, phone units model the
least amount of acoustic context but allow for the highest
degree of generalization. On the other side, larger units like
morphemes [14] or spellnemes increase lexical constraints for
the decoder, but struggle with unseen events. Graphones usually
fall in between, since letter/phone alignment lengths, and thus
the modeling context, are usually chosen depending on the task.
Once an inventory of spellnemes has been derived from some
training data, a spellneme language model needs to be trained.
The same data that was used for generating the unit inventory
can be utilized to train an N -gram model. In this contribution
we only consider isolated word recognition, which means that
we do not need to model cross-word effects and can therefore
straightforwardly train the model on the lexicon. As explained
before, we want to learn a task-specific recognition lexicon
from scratch based on subword ASR. By using an N -gram
model over spellnemes, one could argue that word-like units
are encoded in the LM with a strong bias towards observed
words. Although this is correct, the AMs of the recognizer
strongly influence the final decoder output, which means that
unseen spellneme sequences are likely to be output for words
that were not observed during spellneme training. Our idea of
lexicon learning, ultimately, is that we train a subword model
on a big static training lexicon, potentially containing millions
of words, and use that general model to obtain the most precise
and concise lexical representation for a given data set. The
model will perform better on frequent words, but, at the same
time, should also be able to generate sensible representations
for infrequent words.

III. LEXICON LEARNING

Fig. 2 illustrates the proposed lexicon learning framework.
Given a database of clustered but unknown isolated word
utterances, we use the spellneme decoder described in Sec.
2 to generate an N -best list for each utterance. The core of the
framework is the so-called hypothesis pruning stage where the
goal is to filter the hypotheses proposed by the ASR decoder
according to some statistics obtained across the decoder output



Spellneme	
  
inventory	
  

Spellneme	
  
LM	
  

Word-­‐level	
  
spellneme	
  
lexicon	
  

Spellneme	
  
decoding	
  

Hypothesis	
  
pruning	
  

Word-­‐level	
  
lexicon	
  

Pronuncia:on	
  
valida:on	
  

Spellneme	
  N-­‐
best	
  output	
   Rank	
  Scoring	
   Thresholding	
  

Joint	
  
valida:on	
  

Spellneme	
  N-­‐
best	
  output	
  

Le>er	
  
Pruning	
  

AcousAc	
  
Pruning	
  

Rank	
  Scoring	
  Thresholding	
  

Word-­‐specific	
  
Cluster	
  

…	
  

Fig. 2. Overview of the lexicon learning framework. A spellneme decoder produces subword hypotheses for both spelling and pronunciation. Two pruning
methods are investigated: pronunciation validation and joint validation.

of either the utterances within the same cluster or across the
utterances of all clusters. The output of this filter is a word-level
lexicon which, ideally, encodes an exhaustive set of lexical
entries tailored to the data in question. The rest of this section
describes two approaches to hypothesis pruning: first, we focus
on learning the pronunciation for a set of words. Then, we
increase the complexity of the problem by trying to optimize
with respect to both spelling and pronunciation.

A. Pronunciation Validation

As the lexicon maps orthographies to pronunciations, it is
important to model an optimal pronunciation space for each
word. This problem is known as pronunciation modeling: if too
many pronunciation variants per word are included, acoustic
confusability at runtime leads to decreased accuracy. Including
only canonical pronunciations, on the other hand, might not
capture all variations robustly. The assumption when trying to
predict the optimal set of pronunciations for a word is that the
identity, i.e., the spelling, of the word is known (which is used
to drive a letter-to-sound system followed by acoustic pruning).
In our scenario, however, the utterances are clustered into sets
where it is known that all utterances in a given set represent the
same word, but the identity of this word is unknown. For this
reason, we cannot constrain the search space of the subword
decoder with the spelling, and instead have to use the N -gram
spellneme LM shown in Fig. 2. The idea is then to constrain the
pronunciation search space to those hypotheses that represent
the most reliable pronunciations for the cluster.

The core of the pronunciation validation approach is a
scoring method based on discriminating between the average
ranks of correct and incorrect pronunciation hypotheses in N -
best lists. Note that a pronunciation can be obtained for a
sequence of spellnemes by simply concatenating the pronunci-
ations of each individual subword. Rank scoring is formulated
as follows. Let Sc be the set of spellneme N -best hypotheses
for word cluster c, where sc ∈ Sc and h ∈ sc denote a
specific N -best list and a specific pronunciation hypothesis in
sc, respectively. The fitness of a hypothesis h is then defined

as

in score(h) =
count(h ∈ Sc)

1
|Sc|

∑
sc∈Sc

rank(h ∈ Sc)
(1)

where the numerator reflects how often a hypothesis occurred
in all relevant N -best lists, which is then normalized by
the average rank (i.e., N in the N -best list) that hypothesis
achieved in said lists. If a hypothesis is not in the N -best list
we assign a rank of n + 1. The intuition behind the in score
is that a hypothesis that is decoded often for the target cluster
at a high position is probably more relevant than a hypothesis
that occurs only rarely and at lower N . In the same spirit we
also want to penalize hypotheses that occur often in irrelevant
N -best lists, that is, hn ∈ Sc̄:

out score(h) =
count(h ∈ Sc̄)

1
|Sc̄|

∑
sc̄∈Sc̄

rank(h ∈ Sc̄)
(2)

The overall score is then

score(h) = in score(h)− out score(h), (3)

which means that, if a pronunciation achieves a high score,
it should be an adequate representation for the lexical entry.
This score, however, is not a normalized probability, which
makes it difficult to threshold. An intuitive way of choosing
the set of pronunciations for a lexical entry is to sort all
proposed pronunciations according to the above score and
pick the top ranking ones. To avoid hardcoding the number
of pronunciations, we decided to consider the distribution
of scores across all proposed pronunciations for c. We first
determine the standard deviation σ across the scores, and
pick only those pronunciations whose scores are more than
x multiples of σ away from the mean µ:

decision =
{

accept if score(h) - µ ≥ x · σ
reject otherwise

As irrelevant hypotheses will have scores in similar regions this
technique only retains a pronunciation that has a large enough
margin between its score and the mean. Using other decode
information such as AM scores is left for future work.



Pronunciation validation optimizes a lexicon with respect
to the suitability of a set of pronunciations for a given word
across all clusters. Lexical entries, however, also require an
orthographic representation. Hence, the next section describes
how we extend the above methods to optimize both spelling
and pronunciation jointly when learning lexical entries.

B. Joint Validation
As spellnemes represent hybrid units, the output of the

spellneme decoder in Fig. 2 can be interpreted in terms of
both spelling and pronunciation. Instead of only focusing on
the pronunciation, as in the previous section, we also want to
obtain a set of spellings that describe a cluster.
Letter pruning: To obtain a spelling for a decoder hypothesis
h the spelling components of each spellneme in h can be
merged (since we only discuss isolated word recognition we
can ignore cross-word effects). As with pronunciation valida-
tion, we start with the set of N -best outputs for a given cluster
Sc. The proposed spellings at each N of all sc ∈ Sc are used
to train an N -gram letter model. By considering co-occurrence
statistics over the proposed letter sequences for c we can prune
those letter hypotheses that fall below a threshold, essentially
removing spurious spellings. We use either the L2S module
described in Sec. 2, or directly the pronunciations proposed by
the decoder to synthesize pronunciations for the spellings. The
reason for exploring two methods of selecting pronunciations is
to understand whether the pronunciation search space should be
restricted by means of using the spellneme output, or whether it
should be opened up by synthesizing alternative pronunciations
with the L2S module.
Acoustic pruning: The hypotheses are then used as candidates
for an acoustic pruning stage, which is simply decoding the
utterances belonging to c based on the proposed lexical entries
that survived letter pruning. Letting the AMs decide which
pronunciations fit c best moves from orthographic constraints
enforced through letter-pruning to optimizing the pronunciation
aspect of the lexical hypotheses. As opposed to rank scoring,
both letter and acoustic pruning optimize the lexical represen-
tation for every c in isolation.
Rank scoring: Rank scoring as proposed in Eq. 3 can again
be used to discriminatively filter the surviving hypotheses from
the acoustic pruning stage. Now, the optimization is carried out
across the whole lexicon, that is, over all c. This entails that
we compile the survivors of acoustic pruning into a general
word-level lexicon. Although we do not know the spelling
representation of c, we can still use the discriminative nature of
rank scoring by replacing the spelling of a lexical hypothesis
with an id referencing the cluster it originated from. Instead of
spellings, the intermediate lexicon therefore maps cluster-ids to
pronunciations, where the ids for multiple pronunciations for a
cluster are enumerated uniquely. We then decode the training
data again with this lexicon and apply rank scoring to these
N -best output lists, which is possible since we have a notion
whether a hypothesis was decoded for the correct cluster or
not.
To summarize, the proposed joint optimization first focuses on
learning a spelling model for every cluster, which is used to
prune unlikely entries. Acoustic pruning ranks the remaining
hypotheses for a single cluster, and rank scoring prunes this

0.0	
  
1.0	
  
2.0	
  
3.0	
  
4.0	
  
5.0	
  
6.0	
  
7.0	
  
8.0	
  
9.0	
  
10.0	
  
11.0	
  
12.0	
  
13.0	
  
14.0	
  
15.0	
  
16.0	
  
17.0	
  
18.0	
  
19.0	
  
20.0	
  
21.0	
  
22.0	
  
23.0	
  
24.0	
  
25.0	
  
26.0	
  
27.0	
  
28.0	
  
29.0	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  

W
ER

	
  (%
)	
  

n	
  

Baseline	
  
Spellneme_noPrune_1-­‐best	
  
Spellneme_noPrune_10-­‐best	
  
Spellneme_rankScore_x=0.5	
  

Fig. 3. WER (%) as a function of varying N -best list depth. noPrune uses
only the output of the spellneme decoder by picking the m-best hypotheses
as pronunciations. rankScore prunes the spellneme hypotheses and retains
a hypothesis if score(h) ≥ x · σ

set discriminatively according to decoder statistics across all
clusters.

IV. EXPERIMENTAL SETUP

We evaluate the proposed methods on the Phonebook cor-
pus [16] which contains telephone-quality words spoken in iso-
lation. We divided the corpus into a training portion, consisting
of 2k unique words with 10 occurrences of each word, and a
test portion with the same inventory of words but only two
utterances per word.
The spellneme subword inventory is derived from the 300k
most frequent words of the Google N -gram corpus, resulting
in 2745 unique spellnemes. We trained a 3-gram spellneme LM
based on the same data. An expert-based word-level pronun-
ciation lexicon containing the in-corpus words only was used
to measure baseline recognition performance. The SUMMIT
segment-based decoder [17] was used in this work. We use
context-dependent diphone AMs based on 14 Mel-Frequency
Cepstral Coefficients averaged over 8 regions at hypothesized
phonetic boundaries. Diagonal Gaussian mixture models with
up to 75 mixtures per model were trained on telephone speech.

We use error rates to evaluate certain aspects of lexicon
learning. Word error rate (WER) is used to measure the dis-
criminability between learned pronunciations in a basic isolated
word recognition scenario. Character error rate (CER) is used
when assessing the quality of the proposed spellings, which
is a more discerning measure for spelling learning, as a slight
deviation from the true spelling gets a much higher score than a
gross misspelling. When evaluating N -best lists, the minimum
CER across all N is reported.



V. EXPERIMENTS & RESULTS

A. Pronunciation Validation

First, we want to evaluate the ability of a spellneme-based
ASR system to learn the pronunciation-side of the lexical
entries across all c without having any knowledge of the
word’s actual spelling. Each c is decoded with the spellneme
system and N -best lists are produced, where n = 10 for all
experiments. To prepare the baseform lexicon, the spelling of
a proposed lexical entry at each N in each c was replaced
by c’s true word label and enumerated according to N . The
resulting word-level lexicon was then used to decode the
training data again. We applied rank scoring to the resulting
N -best lists and only kept lexical entries whose scores were
x standard deviations above the mean. We found x = 0.5 to
be optimal. This lexicon is then used to decode the test data.
In this experiment, WER measures the ability of the learned
lexical inventory to discriminate between correct and incorrect
pronunciations.

Fig. 3 displays WER as a function of the depth N in
the N -best list. First, the expert baseline lexicon achieves
the best results across all N . When simply taking the 1-best
hypotheses of the spellneme output as lexical entries, a WER
of 24.5% at n = 1 is achieved. This means that open spellneme
decoding is able to produce useful pronunciations for the word
clusters in question, however not of the same quality as expert
pronunciations. Including all hypotheses from the spellneme
output, denoted as noPrune_10-best, in the learned lexicon
results in more confusable pronunciations and a subsequent
increase by 2.8% absolute in WER compare to including only
the best hypotheses. Rank scoring, on the other hand, is able
to remove pronunciations that caused the decoder to confuse
lexical entries, resulting in an absolute improvement of 7.7%
for n = 1. Regardless of rank scoring, the spellneme-based
method does not achieve the same performance as manually
created pronunciations. Other automatic pronunciation learning
approaches, e.g., [11], achieved better performance than the
baseline lexicon. These approaches, however, condition the
pronunciation search space on a the word’s assumed known
spelling, which is not the case in our experiment.

B. Joint Learning

As described above, we merge the spellings of all spellneme
N -best lists for a given c and learn a letter N -gram model,
where we chose n = 3. This model is used to retain only
the 10 most likely spellings, which are then used to decode
all utterances in c. Doing this over all c we obtain a general
lexicon, which is then used to re-decode the training data,
followed by rank scoring. We start by evaluating the perfor-
mance of spelling learning, followed by an assessment of the
pronunciations associated with the final lexicon.
Spelling learning: We are now interested in how well the

framework learns the spelling component for c. We measure
CER based on the output of the acoustic pruning stage, i.e., the
decode of c in the training data. We deliberately ignore acoustic
confusability and only evaluate the fitness of the spellings
generated for that cluster. Results are illustrated in Fig. 4.
Again, we report CER as a function of N . Applying no pruning
yields a CER of 39.8% at n = 1, down to 26.9% at n = 5.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

45	
  

1	
   2	
   3	
   4	
   5	
  

CE
R	
  
(%

)	
  

n	
  

Spellneme_noPrune_L2S	
  

Spellneme_acous7cPrune_L2S	
  

Spellneme_acous7cPrune_L2S_le8erPrune	
  

Spellneme_acous7cPrune_noL2S_le8erPrune	
  

Fig. 4. Character Error Rate (CER; %) as a function of varying N -best
list depth. noPrune evaluates the output of the spellneme decoder only.
acousticPrune prunes the spellneme hypotheses by re-recognizing the
training data. letterPrune scores the spellneme output with a 3-gram letter
model and retains the top 10 hypotheses. L2S denotes using the L2S system
to generate pronunciations for spellings.

TABLE I
WER (%) ON THREE SPELLING LEARNING SETUPS. ALL APPROACHES USE

LETTER AND ACOUSTIC PRUNING.

Setup WER 1-best CER

L2S 23.0 24.7
noL2S 20.8 25.7
noL2S + rank scoring 15.9 ???

Using acoustic pruning does not affect the top-ranked results
in the N -best lists significantly (39.1%), but has more effect at
higher N : a decrease of CER of up to 8.1% absolute over no
pruning is achieved at the highest N . This means that spurious
spellings which were not high-scoring but still competitive
could be removed with the help of the AM. Letter pruning, on
the other hand, improves the 1-best output by up to 14.4% abs.
to 24.7%, and improvements remain consistent for higher N .
Constraining the input to the acoustic pruning stage by means
of imposing tight letter pruning appears to work well, especially
for finding the optimal 1-best hypothesis. Using the L2S system
compared to simply picking the spellneme output to obtain
the pronunciation appears to not affect CER significantly. In
our framework, predicting the best letter representation can
be ambiguous since a single hypothesized pronunciation can
have multiple spellings. We chose to pick the spelling with the
lowest letter LM score.

Pronunciation validation: The output of the spelling op-
timization is a lexicon based on a set of learned spellings
and their corresponding pronunciations. We focus on the three
setups that are of most interest: just using acoustic pruning,
and additionally using letter pruning, with the L2S or the
spellneme pronunciations. The last aspect to evaluate in the
framework is the quality of the overall lexicon in terms



of discrimination capabilities between lexical entries. As for
pronunciation validation, we replace the spellings in the lexicon
with placeholder cluster identities, re-recognize the training
data, optionally apply rank scoring and decode the test data
with the resulting lexicon. Results are shown in Table 1. First,
the difference between L2S and spellneme pronunciations,
which was negligible according to CER is more obvious when
considering WER: the system with L2S achieves a WER of
23.0% compared to 21.8% for the spellneme-based system.
An explanation for this is that the spellneme pronunciations
are already optimized toward what the AM favor, whereas the
set of pronunciations synthesized through L2S allows for noisy
hypotheses which increase confusion during subsequent acous-
tic pruning. As the letter representations are essentially the
same, that difference only becomes apparent when examining
the quality of the pronunciations w.r.t. the data and the AMs.
Applying rank scoring on that lexicon results in another 5%
abs. decrease in WER. The resulting lexicon performs slightly
better than the one optimized for pronunciation only, which
means that the additional constraint enforced by letter pruning
does not remove pronunciations that are preferred by the AMs.
Jointly optimizing the spelling and pronunciation by means of
spelling pruning and rank scoring yields therefore a lexicon
that has both the lowest CER on the training data and WER
on the test set.

VI. CONCLUSION

We presented a framework for learning a pronunciation
lexicon from a set of isolated word utterances without
knowing either pronunciation or spelling of the words in
question. The joint spelling/pronunciation search space
was generated by decoding the speech with linguistically
motivated subword units and a weakly constrained language
model. We presented various methods that optimize both
pronunciation and spelling either in isolation or jointly. On
an isolated word recognition task, we achieved 7.7% abs.
WER reduction when optimizing the pronunciations across
the whole lexicon. Optimizing the spelling of the lexical
entries resulted in up to 14.4% abs. reduction in CER over
the unconstrained baseline. The best lexicon according to both
acoustic discriminability and spelling accuracy was obtained
through a chain of spelling and acoustic pruning as well as
using decoder statistics to re-score potential lexical hypotheses.

Learning a lexicon from some unannotated but clustered data
is especially useful in scenarios where a dynamic lexicon is re-
quired, such as STD. The appealing aspect of our framework is
that only relevant terms are learned directly from the data while
relying on a subword inventory and language model that can be
trained on potentially millions of words. To make our methods
transferrable to more scenarios, future work will target learning
a lexicon from continuous speech. Directly incorporating other
ASR statistics, such as confidence scores, could be used to
improve pruning performance. Furthermore, alternative hybrid
subword representation have to be investigated as an alternative
to linguistically motivated units.

VII. ACKNOWLEDGMENTS

The work for this contribution was supported by the SMUDI
project under the Research Council of Norway’s VERDIKT
program.

REFERENCES

[1] T. Hazen and I. Bazzi, “A comparison and combination of methods for
oov word detection and word confidence scoring,” in Proc. ICASSP,
vol. 1. IEEE, 2001, pp. 397–400.

[2] H. Lin, J. Bilmes, D. Vergyri, and K. Kirchhoff, “Oov detection by joint
word/phone lattice alignment,” in Proc. ASRU. IEEE, 2007, pp. 478–
483.

[3] C. White, G. Zweig, L. Burget, P. Schwarz, and H. Hermansky, “Con-
fidence estimation, oov detection and language id using phone-to-word
transduction and phone-level alignments,” in Proc. ICASSP. IEEE, 2008,
pp. 4085–4088.

[4] T. Schaaf, “Detection of oov words using generalized word models and
a semantic class language model,” in Proc. Eurospeech. Citeseer, 2001,
pp. 2581–2584.

[5] F. Stouten, D. Fohr, and I. Illina, “Detection of oov words by combining
acoustic confidence measures with linguistic features,” in Proc. ASRU.
IEEE, 2009, pp. 371–375.

[6] T. Mertens, R. Wallace, and D. Schneider, “Cross-site combination and
evaluation of spoken term detection systems,” in Proc. CBMI. IEEE,
2011.

[7] B. Decadt, J. Duchateau, W. Daelemans, and P. Wambacq, “Phoneme-
to-grapheme conversion for out-of-vocabulary words in large vocabulary
speech recognition,” in Proc. ASRU. IEEE, 2001, pp. 413–416.

[8] O. Scharenborg and S. Seneff, “Two-pass strategy for handling oovs in
a large vocabulary recognition task,” in Proc. Eurospeech, 2005.

[9] M. Bisani and H. Ney, “Open vocabulary speech recognition with flat
hybrid models,” in Proc. Interspeech. Citeseer, 2005, pp. 725–728.

[10] A. Park and J. Glass, “Unsupervised pattern discovery in speech,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1,
pp. 186–197, 2008.

[11] I. Badr, I. McGraw, and J. Glass, “Learning new word pronunciations
from spoken examples,” in Proc. Interspeech, 2010.

[12] S. Seneff, “Reversible sound-to-letter/letter-to-sound modeling based on
syllable structure,” in Proc. HLT. Association for Computational
Linguistics, 2007, pp. 153–156.

[13] G. Choueiter, S. Seneff, and J. Glass, “New word acquisition using
subword modeling,” in Proc. Interspeech, vol. 2007. Citeseer, 2007.

[14] T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Virpioja, and
J. Pylkkönen, “Unlimited vocabulary speech recognition with morph
language models applied to Finnish,” Computer Speech & Language,
vol. 20, no. 4, pp. 515–541, Oct. 2006.

[15] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-phoneme
conversion,” Speech Communication, vol. 50, no. 5, pp. 434–451, 2008.

[16] J. Pitrelli, C. Fong, S. Wong, J. Spitz, and H. Leung, “Phonebook:
A phonetically-rich isolated-word telephone-speech database,” in Proc.
ICASSP, vol. 1. IEEE, 1995, pp. 101–104.

[17] J. Glass, “A probabilistic framework for segment-based speech recog-
nition,” Computer Speech & Language, vol. 17, no. 2-3, pp. 137–152,
2003.


