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ABSTRACT

Research in the speaker recognition community has continued to ad-
dress methods of mitigating variational nuisances. Telephone and
auxiliary-microphone recorded speech emphasize the need for a ro-
bust way of dealing with unwanted variation. The design of recent
2010 NIST-SRE Speaker Recognition Evaluation (SRE) reflects this
research emphasis. In this paper, we present the MIT submission
applied to the tasks of the 2010 NIST-SRE with two main goals—
language-independent scalable modeling and robust nuisance mit-
igation. For modeling, exclusive use of inner product-based and
cepstral systems produced a language-independent computationally-
scalable system. For robustness, systems that captured spectral and
prosodic information, modeled nuisance subspaces using multiple
novel methods, and fused scores of multiple systems were imple-
mented. The performance of the system is presented on a subset of
the NIST SRE 2010 core tasks.

1. INTRODUCTION

The 2010 NIST speaker recognition evaluation (NIST-SRE) was
largely a continuation of the previous 2008 NIST-SRE. The same ba-
sic recording channels were used as in the 2008 SRE—auxiliary mi-
crophone and telephone channels. Auxiliary microphones were first
introduced in the 2005 evaluation and have been a part of the main
tasks in following evaluations. Speaking styles were first changed
in the 2008 SRE. All previous evaluations since their inception of
the NIST-SRE have used the speaking style found in conversational-
telephone speech. The 2008 evaluation introduced the interview-
condition in which a subject was simultaneously recorded on mul-
tiple microphones. Recorded speakers in the 2010 evaluation were
required to speak English. The majority of test subjects were native
US English speakers with a large minority of non-native talkers.

Microphone and recording channel variation motivated contin-
ued research in techniques to reduce these nuisance factors. Nui-
sance mitigation has dominated the speaker identification field in
recent years. Research has progressed on two fronts, 1) factor anal-
ysis [1] and 2) weighted nuisance attribute projection [2, 3]. Our
submitted systems reflect this research emphasis.

All of our systems have the following attributes—inner prod-
uct based, subspace compensation, and language-independent mod-
eling. This makes the systems easily adapted to new languages, scal-
able, and robust to channel nuisances.
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To address the tasks of the NIST evaluation we fielded mostly
low-level cepstral-based algorithms and one system relying on
high-level ’prosodic’ features [4]. The MIT Lincoln Labora-
tory/CSAIL/RLE system submission can be categorized into three
areas; 1) GMM factor analysis, 2) SVM and kernel based, and 3)
high-level prosodic modeling. The two most notable additions this
year was a total variability (TV) system [5] and inner product dis-
criminant functions (IPDF) system [6].

Depending on the task, different combinations of systems were
combined with a logistic regression algorithm. The goal of fusion is
to gain performance by combining techniques that contain compli-
mentary information. The speaker ID community has historically
fused low-level systems (i.e. spectral based) and high-level sys-
tems (i.e. prosodic based). The philosophy is that the systems dis-
cern information that the other systems cannot find. In contrast to
prior evaluations (e.g., NIST SRE 2008), we found that our different
low-level cepstral systems fused well giving substantial performance
gains.

We present in the paper the system techniques and experimental
results of the submitted systems. The speaker recognition systems
are presented in Section 2. Section 3 presents the experimental re-
sults as well as post evaluation analysis. We conclude in Section 4,
with reflections on the 2010 NIST-SRE as well a indications of fu-
ture directions of research.

2. RECOGNITION SYSTEMS
2.1. Features
Two types of pre-processing of the data were performed—echo
cancellation for telphone speech and noise reduction [7] for mi-
crophone speech. Then, two types of features were extracted,
MFCCs and LPCCs. MFCCs were extracted with a standard front-
end [8]. LPCCs were extracted using HTK. For both feature sets,
changes were made based upon experiments at the 2008 JHU Sum-
mer workshop—bandwidth was changed to [0,4 kHz], RASTA was
turned off, acceleration and energy were added, and 0/1 normaliza-
tion of features was switched to feature warping. The feature vector
size per frame was 60 for MFCCs and 57 for LPCCs. Speech activ-
ity detection depended on the channel-type and was performed with
a combination of ASR, GMM-based, and energy-based detectors.

2.2. IPDF-KL system
Inner product discriminant functions (IPDFs) are described in [6].
We use a comparison function from the IPDF framework based on
approximations to the KL divergence between two GMMs [3, 6]. For
a sequence of feature vectors from a speaker i, we adapt a gender-
independent 512 mixture GMM UBM using a relevance factor of
0.01 for the means and an ML estimate of the mixture weights. The
adaptation yields new parameters which we stack into a parameter
vector, ai.
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The IPDF-KL inner product, CGM , is given by

CGM (ai, aj) = (mi−m)t(λ
1/2
i ⊗In)Σ

−1(λ
1/2
j ⊗In)(mj−m)

(1)
wheremi andmj are the adapted means,m is the vector of stacked
UBM means, Σ is the block diagonal matrix of UBM covariances,
⊗ is the Kronecker product, In is the identity matrix of size n, and
λi and λj are diagonal matrices of adapted mixture weights.

For compensation, weighted NAP (WNAP) [2] was used.
Weighting was based on the number of frames of speech in the nui-
sance training space. WNAP used a fixed matrix multiply.

To obtain scores, we applied gender independent WNAP to both
enroll and verification mean parameter vectors. The WNAP corank
was fixed at 128. We then scored using the CGM kernel. Both Z-
and T-Norm were applied.

2.3. JFA System
The base system for our Joint Factor Analysis (JFA) work was the
MITLL GMM UBM speaker detection system. Our JFA setup is
based on the work of [9], where the mean supervector is decomposed
as:

M = m+ V y +Dz + Ux, (2)
where m is the speaker-independent mean supervector of GMM
means, U defines the within-class (session/channel) variability sub-
space, V defines the across-class (speaker) variability subspace, and
D is a diagonal matrix describing the remaining speaker variability.

We used gender-dependent UBMs with 1024 mixtures. 300
eigenvoices were trained using a variation of PCA of the across-class
variability covariance matrix. To reduce over-estimation bias of the
eigenvalues, a cross-validation approach was used where the eigen-
vectors were estimated from one partition of the training data and
the eigenvalues were estimated as the energy in these directions over
the other partition. We found that using this approach, the diago-
nal matrix could be estimated from the same data. In a similar way,
100 eigenchannels were estimated from the within-class covariance
matrix. Two of these estimates were generated, one for telephone
channels and the other for microphone conditions, and stacked to-
gether into a combined 200-dimensional matrix.

Enrollment of speakers in this system consists of estimating
V y +Dz in the presence of Ux, and is done by stacking all the pa-
rameters together and extracting the speaker model. Testing is done
by removing Ux from the test utterance. To speed up the Gaussian
scoring, only the linear (inner product) term is calculated as in [10].
ZT-norm was applied to these output scores.

2.4. Prosodic System
A more extensive overview of the prosodic system and its features
is detailed in [4]. These features are extracted at the pseudo-syllabic
level and correspond to a Legendre polynomial approximation of
the pitch and energy contours. We used six Legendre polynomial
coefficients each for pitch and energy, as well as the duration of the
pseudo-syllable to obtain a feature vector of 13-dimensions. We used
a gender-dependent Universal Background Model (UBM) composed
of 512 Gaussians per gender and gender-dependent total variability
matrices of 200 eigenvectors trained only on telephone speech [11].
LDA was used to reduce the dimension to 75, while WCCN normal-
ized the cosine scoring. We used cosine scoring and applied zt-norm
to normalize the final decision scores.

2.5. Eigenvoice Comparison System (ECS)
For ECS, speaker model enrollment consists of generating speaker
factors for the enrollment and test utterance strain, without any ses-
sion variability modeling or compensation. The speaker factors are

assumed to have a Gaussian distribution. We use a standard log-
likelihood ratio test and keep only the inner product. We perform an
inner product with normalized vectors,

LL(stest|strain) =
s
T
testΣ

−1

wcstrain√
(sTtestΣ

−1
wcstest)(sTtrainΣ

−1
wcstrain)

(3)

The speaker loading matrix for obtaining the factors is from the JFA
system. The matrixΣwc is full covariance and is estimated from the
session variability data. ZT-norm is applied to the scores.

2.6. SVM GSV
The SVMGMM supervector system is based on [3]. The system was
applied almost unchanged from NIST SRE 2008 [8] except for dif-
ferent input features. GMM supervectors were derived using MAP
adaptation of means only with a relevance factor of 4 on a per utter-
ance basis. NAP [3] was used for nuisance compensation. A KL-
based SVM kernel was used for enrollment. Scoring was an inner
product. ZT-norm was applied to the scores.

2.7. Total Variability System
The total variability system is composed of two subsystems, one ex-
clusively for telephone speech and another for microphone or in-
terview data. The parameters for the first subsystem were trained
on telephone data. We use a gender-dependent UBM with 2048
Gaussians and gender-dependent total variability matrices consist-
ing of 600 eigenvectors trained on telephone speech [5]. The use
of Linear Discriminant Analysis (LDA) reduces our dimensionality
to 250, and Within Class Covariance Normalization (WCCN) car-
ries out the channel compensation in the total variability space [5].
Similar to [11], we use cosine scoring and zt-normalization to make
the final decision. As with everything else so far, the impostors for
zt-norm were entirely selected from telephone speech data.

The second subsystem is used when we have microphone and
interview data in training or in testing. This system is based on the
total variability space and its 600 total factors estimated on telephone
speech and an additional 200 total factors trained in microphone and
interview data. We then use Probabilistic LDA [5] to project all mi-
crophone and telephone total factors of dimension 800 into speaker
space of dimension 600. The PLDA consists of a mean vector of
dimension 800 estimated from telephone data, an eigenvoice ma-
trix of dimension 800x600 trained on telephone speech, an eigen-
channels matrix of dimension 800x200 trained exclusively on mi-
crophone and interview speech, and a full covariance matrix trained
from telephone speech. After the projection with PLDA, we used
LDA to reduce the 600 dimensions to 250 and WCCN to normalize
the cosine kernel. These channel compensation matrices are esti-
mated using telephone, microphone and interview data all together.
And as before, the decision score is computed using cosine scoring,
but the final scores are normalized using s-norm [5].

2.8. Adaptive Norming
Adaptive norming of scores showed promise in our development set
for minimizing the new minDCF criterion and was applied to three
systems—IPDF, JFA, and TV. Adaptive normalization techniques
were applied with inspiration from several sources including cohort
normalization [12], T-Norm, Z-Norm, and adaptive variants [13].

As with classic cohort selection [12] and Z- and T-norm, there
are several issues in adaptive methods—cohort selection, cohort nor-
malization function, and whether the model or test score is normal-
ized. Cohorts selection was accomplished by a simple method. For a
given message or model, cohorts were selected as the highest scoring
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models or messages (respectively) from a large dataset. Cohort nor-
malization was performed with the mean and standard deviation of
the cohort scores. More details on our methods are in a companion
paper [14].

2.9. Fusion
Fusion was performed using a separate logistic regression for nine
subconditions of the core NIST SRE task. The criteria function of
the logistic regression, normalized conditional cross-entropy, was
adjusted to use the new target prior for the 2010 NIST SRE. Al-
though the criterion function is not the same as NIST performance
metric CDet, CDet was generally improved when we optimized us-
ing the same effective target prior that matches Bayes’ optimal deci-
sion rule.

3. EXPERIMENTS
3.1. Experimental Setup
The corpora used for NIST SRE 2010 development lists consisted
entirely of data from the 2008 NIST speaker evaluation. These
lists were used for system tuning, system selection, and backend fu-
sion/calibtration. Several adjustments were made so that the data
would be suitable for developing a system designed to perform well
in the 2010 NIST SRE:

• additional background training data: the NIST SRE 2008
interview microphone data was partitioned into two approx-
imately equal sets one of which was used for subspace, ZT-
norm or background model data and the other was used for
development train and test data.

• increased non-targets: an exhaustive set of non-target tri-
als was created for each development test data set in order to
match the much lower target prior in the 2010 NIST SRE.

3.2. Results on Selected Core Tasks
System fusion results for 2010 NIST-SRE for our primary fusion
system are presented in Table 1. The results are broken out into four
of the nine training condition categories of the 2010 NIST-SRE. We
additionally show results for trials of 2.5 minutes of training/testing
data—the short condition—for comparison to prior evaluations.

• Sub-Conditions 1 and 2 – Int-Int Same-Mic and Int-Int
Different-Mic: Single training and testing utterances from in-
terview microphones.

• Sub-Condition 3 – Int-4w: Single training from an interview
microphone and testing utterance from a telephone.

• Sub-Condition 5 – 4w-4w: Single training and testing utter-
ances from a telephone.

Table 1 shows the performance of our fused systems for multi-
ple tasks. Note that “old minDCF” corresponds to the DCF from
prior (2008 and before) evaluations. The fused system varied

Table 1. Eval system performance on Eval10 Core task for Fused
System

Cond Duration EER Old minDCF actDCF
(%) minDCF

1 all 2.63 0.126 0.458 25.302
1 short 3.12 0.140 0.480 24.909
2 all 3.21 0.158 0.517 1.835
2 short 3.58 0.171 0.533 1.971
3 all 2.86 0.117 0.454 0.538
3 short 3.18 0.128 0.478 0.566
5 all & short 1.86 0.090 0.380 0.507

per subtask and was: conditions 1, 2 (GSV+TV+JFA), condition
3 (IPDF+TV+JFA), condition 5 (IPDF+TV+JFA+Prosodic+ECS).
Performance in terms of minDCF and EER is very good for the
overall system. Calibration for the fused system had issues which
we explore in the following experiments.

During the post evaluation analysis, we discovered that two of
the spectral systems (JFA of section 2.3 and IPDF-KL system of
section 2.2) had calibration and performance issues. Both the JFA
and IPDF-KL systems exhibited sensitivities to front-end process-
ing that did not appear in the experimentation with the development
corpus. We investigated three changes to the front-end processing
(Section 2.1). The processing changes we consider here are: 1) pre-
forming feature warping instead of feature norming, 2) using the full
bandwidth (0-4KHz) instead of our standard band-limiting to (300-
3100 Hz), and 3) turning rasta off. Table 2 shows the experimental
progression in turning each of these processing changes off in-turn.
In Table 2 we see that the performance of both systems in condi-
tion 2 was slightly worse. In condition 5 of Table 2, the JFA system
got slightly better, but the IPDF-KL system improved significantly.
After investigating performance issues, we looked at system calibra-
tion, see Table 3. The table shows that the new features significantly
narrows the gap between minDCF and actDCF.

We then fused three systems (IPDF-KL/GSV+TV+JFA) using
the configuration 001—results are shown in Table 4. We can see
from the table that the new feature configuration improves system
performance and calibration. Note that condition 1 is still difficult
in actDCF since the meta-data is not available to detect matched and
mismatched microphones for fusion.

3.3. Challenges in the NIST SRE 2010 Experimental Setup
The 2010 NIST-SRE posed challenges with its experimental de-
sign and presentation. The first most notable change was the new
minDCF point. Previous years had the decision cost function (DCF)
point with the cost of miss, cost a false alarm and probability of tar-

Table 2. Performance on short train and test for Eval10 Core task,
Multiple Feature Types. Mask is FW (1) or FN (0); full bandwidth
(1) or telephone bandwidth (0); rasta on (1) or off (0).

Mask GSV JFA IPDF-KL JFA
minDCF minDCF minDCF minDCF
Cond 2 Cond 2 Cond 5 Cond 5

110 0.671 0.756 0.713 0.523
111 0.712 0.758 0.649 0.501
100 0.756 0.821 0.560 0.486
010 0.701 0.761 0.706 0.511
001 0.764 0.826 0.483 0.472

Table 3. Selected individual system performance on short train and
test for Eval10 subconditions

Cond Feat IPDF/GSV IPDF/GSV JFA JFA
minDCF actDCF min DCF actDCF

1 Eval 0.654 29.855 0.691 43.032
1 001 0.612 2.202 0.587 1.292
2 Eval 0.687 1.760 0.765 6.992
2 001 0.764 0.800 0.788 0.835
3 Eval 0.602 0.660 0.666 0.749
3 001 0.580 0.619 0.628 0.630
5 Eval 0.713 1.078 0.504 0.617
5 001 0.483 0.548 0.468 0.472
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Table 4. System performance on train and test on short for Eval10
Core task with 001 features for fused system

Sub-Cond. EER Old minDCF actDCF
(%) minDCF

1 1.89 0.092 0.324 1.439
2 3.04 0.151 0.541 0.546
3 3.15 0.125 0.454 0.563
5 2.03 0.095 0.380 0.393
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Fig. 1. Comparison of spectra of 2008 (dashed blue) and 2010 (solid
black) interview microphones recordings

get defined at CMiss = 10, CFalseAlarm = 1, and Ptgt = 0.01.
The new DCF point was set at (CMiss = 1, CFalseAlarm = 1,
Ptgt = 0.001). The most notable impact of the new operating point
was the need for more impostor trials. The number of trials should
be on the order of 1 million (depending on system accuracy). The
initial 2010 SRE trials were far too small to interrogate this new DCF
point. The extended evaluation was then created to correct this defi-
ciency. The consequence is that all results using the new DCF point
should be reported on the extended evaluation.

The other impact of the new operating point, is that the out-
put score distributions of individual systems may not be Gaussian.
We discovered this phenomenon in both the development and eval-
uation datasets. The development data were more non-Gaussian at
the DCF point when compared to the evaluation speech data. This
is counter to the Gaussian score assumptions made in most state-of
the art fusion techniques. Investigations at the old DCF point show
that the Gaussian score assumption still holds. This is certainly an
area for future study since it is not clear how to predict how much
future score distributions will diverge from Gaussian. It is also not
clear what is causing the divergence. If changes in the collection
paradigm influences these divergences, then systems are in greater
danger of becoming over-tuned to particular corpora.

In the post evaluation analyses of Section 3, we can see that the
greatest impact on performance and calibration is the limiting of the
bandwidth to 300−3140KHz. Figure 1 shows a clear difference in
the spectrums between 2008 and 2010 evaluation speech data. This
spectral mismatch between collection years impacted both of our
IPDF and JFA systems.

Another characteristic of the 2010 NIST-SRE setup was that
some of the conversational telephone speech was recorded with the
high vocal effort (HVE) apparatus. The same talkers where also
recorded with normal conversational speech. This constrains a por-

tion of the recorded speech to be collected over a limited number of
handsets. This changes the problem in these instances to be closer to
the access control concept of operations rather then a speaker iden-
tification problem over a broad corpus.

4. CONCLUSIONS
We have presented the MIT site speaker recognition system used
for the 2010 NIST-SRE. We have described the systems for
speaker recognition using total variability, factor analysis, dis-
criminative function techniques, channel compensation, and high-
level speaker recognition. Post-evaluation analysis showed calibra-
tion/performance issues for the IDPF-KL and JFA systems. Post
evaluation analysis was presented for these systems. The correc-
tions were reapplied to the evaluation fusion system and was shown
to correct the calibration and performance for the system overall.
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