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Abstract

In this paper, we propose a new approach to speaker diariza-
tion based on the Total Variability approach to speaker verifica-
tion. Drawing on previous work done in applying factor anal-
ysis priors to the diarization problem, we arrive at a simplified
approach that exploits intra-conversation variability in the To-
tal Variability space through the use of Principal Component
Analysis (PCA). Using our proposed methods, we demonstrate
the ability to achieve state-of-the-art performance (0.9% DER)
in the diarization of summed-channel telephone data from the
NIST 2008 SRE.

Index Terms: speaker diarization, factor analysis, Total Vari-
ability, principal component analysis

1. Introduction

Audio diarization is defined as the task of marking and cate-
gorizing the different audio sources within an unmarked audio
sequence. The types and details of the audio sources are appli-
cation specific, but can include particular speakers, music, back-
ground noise sources, et cetera. This paper concerns speaker
diarization, or “who spoke when”, the problem of annotating
an unlabeled audio file where speaker changes occur (segmen-
tation) and then associating the different segments of speech
belonging to the same speaker (clustering). [1]

We develop an approach to diarization based on the suc-
cesses of factor analysis-based methods in speaker recognition
[2], as well as diarization [3], [4]. Inspired by the ability of the
Total Variability subspace to extract speaker-specific features on
short segments of speech [2], [5], we propose a method for per-
forming speaker clustering directly in the low-dimensional To-
tal Variability subspace. By evaluating the performance of our
system on the same summed-channel telephone data from the
2008 NIST Speaker Recognition Evaluation (SRE), we show
that our resulting work is not only simpler than the Variational
Bayes system formulated previously in [3], but can also achieve
the same state-of-the-art performance.

The rest of this paper is organized as follows: Section 2 re-
views the Total Variability approach as a factor analysis-based
front-end for extracting speaker-specific features. Section 3
then motivates the use of PCA to exploit intra-conversation vari-
abilities for speaker clustering before Section 4 outlines the re-
maining details of our system. The results of our experiments
are explained in Section 5, and Section 6 concludes with a dis-
cussion of possible directions for future work.

2. A Review of Total Variability

At the heart of speaker diarization lies the problem of speaker
modeling. In an effort to enhance the classical method of mod-
eling speakers using Gaussian Mixture Models (GMMs) [6], re-
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cently developed methods apply factor analysis to supervectors
- a vector consisting of stacked mean vectors from a GMM -
in order to better represent speaker variabilities and compensate
for channel (or session) inconsistencies [2]. One such approach
is Total Variability, which decomposes a speaker- and session-
dependent supervector M as follows:
M=m+Tw+e (€))]

where m is the speaker- and session-independent supervector
commonly taken from a large GMM, known as the Universal
Background Model (UBM), trained to represent the speaker-
independent distribution of acoustic features [6]. 7" is a rectan-
gular matrix of low rank that defines the Total Variability sub-
space, w is a low-dimensional random vector with a standard
normal prior distribution N'(0, I), and the residual noise term
e ~ N (0,X) covers the variabilities not captured by T' [7].
The vector w will be referred to as a total factor vector or an
i-vector.

The cosine similarity metric has been applied successfully
in the Total Variability subspace to compare two i-vectors [2].
Given any two total factor vectors w; and ws, the cosine simi-
larity score is given as

(€3

(w1)" (w2)
score (w1, w2) = Tt~ [wal

By working within the Total Variability subspace instead of
projecting back into the GMM-supervector space, this scoring
function is considerably less complex than the log-likelihood
ratio scoring operations used in the past [6].

3. Intra-Conversation Variability

The Total Variability approach has achieved state of the art re-
sults in the task of speaker verification [2]; it is therefore natural
to try to adapt these methods for the problem of speaker diariza-
tion. We began by recognizing the shortcomings of standard
(speaker verification-based) inter-session compensation tech-
niques when applied to speaker diarization: the use of eigen-
channels was ineffective in [3], as was the rote application of
LDA+WCCN for the Total Variability-based i-vectors [2]. This
gave way to the realization that compensating for inter-session
variability was wholly unnecessary in the problem of diariza-
tion; because we were working on summed-channel telephone
conversations, there was really no inter-session. What we really
cared about were intra-session (or intra-conversation) variabil-
ities within each audio file. Such insight paved the way for the
rest of this work.

Assuming we have some initial segmentation in place, we
can extract an i-vector for each segment. Then to associate
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each i-vector with a corresponding speaker, we generate clus-
ters from them. For our experiments, we assume that there are
exactly two speakers in the given conversation. Of course, it is
not known a priori where our two respective speakers lie in the
Total Variability space, but because i-vectors were designed to
contain primarily speaker-specific information, the most promi-
nent source of variability between these i-vectors ought to be
attributed to differences between the speakers’ voices.

We can find the directions of maximum variability within
our Total Variability space by using simple Principal Com-
ponent Analysis (PCA). Figure 1 shows the first two prin-
cipal components of a set of Total Factors extracted from a
male/female conversation The plot also includes, in black x’s,
the i-vectors corresponding to overlapped speech segments. To
be sure, the PCA projection was calculated on all i-vectors
including these overlapped speech segments, as we have not
yet explored ways to distinguish between overlapped and non-
overlapped speech.
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Figure 1: Plot of the first two dimensions (principal compo-

nents) of PCA-projected speaker i-vectors. The triangles in red
represent i-vectors of a male speaker, while the blue circles rep-
resent i-vectors of a female speaker in the same conversation.
The black x’s correspond to i-vectors representing overlapped
speech.

Though this is a visualization of only the first two principal
components from an initial i-vector dimension of 400, we can
already see a distinct separation between the sets of total fac-
tor vectors corresponding to different speakers. Furthermore,
it can be observed that the separation between the two clusters
is primarily directional; this is because a PCA projection cen-
ters the mean of the dataset at the origin and also because each
i-vector has a standard normal prior distribution. This suggests
that the most important information may be contained not in the
magnitude of the i-vector, but in its relative orientation. Figure
2 shows a length-normalized version of the first two principal
components for the same two speakers seen in Figure 1. Notice
how the majority of each cluster can be found in distinctly dif-
ferent regions along the unit circle. This further motivates the
use of the cosine similarity as a metric for comparing i-vectors.

To even further emphasize the importance of the PCA direc-
tions with the most variability (i.e. largest eigenvalues), we in-
troduce the following weighted modification to our cosine sim-
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Length-Mormalized Clusters - First Two Principal Components
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Figure 2: Plot of the length-normalized speaker i-vectors after
applying a two dimensional PCA-projection across the entire
conversation. Notice also the random scatter of the black x’s
corresponding to overlapped speech segments.
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score (w, wh) =

where w), is the PCA-projected i-vector and A is the correspond-
ing diagonal matrix of the eigenvalues. Additionally scaling
our PCA-projected i-vector components by the square root of
the eigenvalues A? gives us added emphasis on the directions
of higher variability (i.e. the “most” principal components).
Though PCA naturally gives more scoring weight to the larger
principal components, our experiments showed that increasing
this effect artificially had a positive impact on performance.

4. The Speaker Diarization System

This section describes the various parts of our proposed diariza-
tion system.

4.1. Segmentation

To obtain an initial segmentation on the summed-channel tele-
phone data, we use a Harmonicity and Modulation Frequency-
based Voice Activity Detector (VAD) described in [8]. Its out-
put gives us the start/stop times for segments that are classified
as speech. Over the entire test set, the average length of these
segments is 1.09s with a standard deviation of 0.648s. Though
the segment lengths range widely between 0.03s and 11.31s, we
chose to use this VAD without any additional refinements.

4.2. PCA-based Dimensionality Reduction

After extracting an i-vector for each speech segment in our
conversation, we apply PCA-based projection as described in
Section 3. Rather than forcing the system to adhere to a spe-
cific number of principal components (dimensions), however,
we specified a proportion p of eigenvalue mass to use instead.
That is, we use the dimensions corresponding to the n largest
eigenvalues such that
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where we assume that our set of eigenvalues {\; } is indexed in
decreasing order and D is the initial i-vector dimension. For
some additional insight, Table 1 provides some statistics re-
garding the number of dimensions used for different values of p
given an initial i-vector dimension of D = 400. Ultimately, the
proportion that provided the best empirical results was p = 0.5
(i.e. 50% eigenvalue mass), which we will use for our subse-
quent experiments.

Pct. Eig. Mass (p) | AvgDim (n) | Minn | Maxn
30% 10.3 5 10
50% 25.5 16 33
80% 70.1 52 84

Table 1: Comparison of the number of PCA-dimensions needed
for different proportions of eigenvalue mass. These statistics
were computed over 200 randomly selected test files from the
NIST 2008 SRE.

4.3. First Pass Clustering

To perform the clustering step with our new set of PCA-
projected and dimensionality-reduced i-vectors, we simply use
K-means (K = 2) clustering based on the cosine distance. The
iterative nature of this algorithm allows it to self-correct poor
initializations, whereas other methods such as the bottom-up
approach of agglomerative hierarchical clustering used in [3]
uses only one iteration to make hard decisions.

4.4. Re-segmentation

After an initial clustering, we refine our initial segmentation
boundaries using a Viterbi re-segmentation and Baum-Welch
soft speaker clustering algorithm detailed in [3]. At the acous-
tic feature level, this stage initializes a 32-mixture GMM for
each of the clusters (Speaker A, Speaker B, and non-speech N)
defined by the First Pass Clustering. Posterior probabilities for
each cluster are then calculated given each feature vector x
(i.e. P(A|zt), P(B|zt), P(N|z¢)) and pooled across the en-
tire conversation, providing a set of Baum-Welch statistics from
which we can re-estimate each respective speaker’s GMM. In
order to prevent this unsupervised procedure from going out of
control, the non-speech GMM is never retrained. In the Viterbi
stage, each frame is assigned to the speaker/non-speech model
with the highest posterior probability. This algorithm runs un-
til convergence but is capped at 20 Viterbi iterations, each of
which involves 5 iterations of Baum-Welch re-estimation [3].

4.5. Second Pass Refinements

We further refine the diarization results of the Re-segmentation
stage by extracting a single i-vector for each respective speaker
using the (newly-defined) re-segmentation assignments. Each
segment i-vector (also newly extracted) is then reassigned to
the speaker whose i-vector is closer in cosine similarity. We
iterate this procedure until convergence - when the segment as-
signments no longer change. This can be seen as another pass of
K-means clustering, where the “means” are computed accord-
ing to the process of i-vector estimation detailed in [2].

5. Experiments

We used a gender-independent UBM of 1024 Gaussians built
solely on 20-dimensional MFCC feature vectors without deriva-
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tives to train a gender-independent Total Variability matrix of
rank 400. This configuration was chosen to be somewhat con-
sistent with that of the Variational Bayesian (VB) system de-
scribed in [3], though we will also report later on the results of
using Total Variability matrices of different rank.

5.1. Evaluation Protocol

Set up by NIST, the Diarization Error Rate (DER) is the pri-
mary performance measure for the evaluation of diarization sys-
tems and is given as the time-weighted sum of the following
three error types: Miss (M) - classifying speech as non-speech,
False Alarm (FA) - classifying non-speech as speech, and Con-
fusion (C) - confusing one speaker’s speech as from another
[9]. In evaluating DER’s, we first obtain a reference by apply-
ing a speech activity detector to each separate channel of the
telephone conversation. Then the evaluation code ignores inter-
vals containing overlapped speech as well as errors of less than
250ms in the locations of segment boundaries. Although over-
lapped speech intervals do not count in evaluating DER’s, the
diarization systems do have to contend with overlapped speech
in performing the speaker segmentation and clustering.

It is clear that the Miss and False Alarm errors are solely
caused by a mismatch between the reference speech activity de-
tector and the diarization system’s VAD and Re-segmentation
output. A more straightforward metric for the effectiveness of
our speaker modeling and clustering methods is in the measure-
ment of Confusion error. In order to focus solely on this type of
error, the results reported in [3] were based on the use of refer-
ence boundaries as the initial speech/non-speech segmentation,
thus driving both miss and false alarm error rates to zero. On
our end, we will first report on the detailed results achieved us-
ing our own VAD to provide an initial segmentation. Then, for
proper comparison, we will also report on a final experiment
done using the reference boundaries as the initial speech/non-
speech segmentation.

5.2. Results

Following the work in [3], we evaluate the performance of our
diarization system on the summed-channel telephone data from
the NIST 2008 SRE. This consists of 2215 two-speaker tele-
phone conversations, each approximately five minutes in length
(= 200 total hours). Table 2 shows the results obtained from
our system at each stage described in Section 4.

Error Breakdown
DER (%) | M | FA C o (%)
First Pass 13.8 7.7 (20| 4.0 9.6
Re-segmentation 5.6 03 (23| 29 8.6
Second Pass 4.2 03|23 1.5 7.0

Table 2: Results obtained after each stage of the diarization
procedure described so far. The configuration for the First Pass
Clustering uses 400-dimensional i-vectors as input to a PCA-
projection involving 50% of the eigenvalue mass.

The helpfulness of the Re-segmentation step is readily ap-
parent, both for correcting the mismatch between the initial and
reference VAD’s as well as for improving on Speaker Confu-
sion error. Because it does not change the speech/nonspeech
boundaries, the Second Pass Refinement stage does not affect
the Miss/False-Alarm errors, but is rather effective in driving
down Speaker Confusion error. We can also see in the break-
down that the reason for a seemingly high DER in the First Pass



Clustering is primarily due to missed speech in the initial seg-
mentation itself.

These results can be further improved by optimizing over
different initial ranks of the Total Variability (TV) matrix. Table
3 shows the statistics obtained from the various i-vector dimen-
sions attempted. Note that PCA (50% eigenvalue mass) is still
applied to the set of i-vectors corresponding to each individual
test file.

TV40 | TV100 | TV200 | TV400 | TV600
Avg Dim 7 14 20 26 28
DER (%) 39 3.7 3.8 4.2 4.0
o (%) 6.6 6.4 6.4 7.0 6.9

Table 3: Overall diarization performance of Total Variability
matrices of varying rank. The second row lists the average num-
ber of dimenisions that resulted after the PCA projection (50%)
was estimated.

We settled on the TV100 configuration, which gave the best
results despite a relatively low dimensionality, for our final ex-
periment. Table 4 compares our final results to those of the sys-
tems described in [3]. The BIC-based system served as a base-
line for the FA/VB-based work. Both of those systems were ini-
tialized using the reference speech detection boundaries; thus,
they incurred no Miss (M) or False Alarm (FA) error, and all
of their error is attributed to Speaker Confusion (C). For a valid
comparison, we report the results of our system (TV100, 50%
PCA) using the reference boundaries as an initial segmentation,
denoted “Ref VAD.” And finally, we also report the results ob-
tained using our “Own VAD” as described in 4.1.

Speaker Confusion (%) | oc (%)
BIC-based Baseline 3.5 8.0
VB-based FA 1.0 3.5
Ref VAD + TV100 0.9 3.2
| Own VAD + TV100 [ 1.1 [ 33 ]

Table 4: Comparison of diarization results on the NIST SRE
2008 Summed-Channel Telephone Data. (BIC - Bayesian In-
formation Criterion; FA - Factor Analysis; VB - Variational
Bayes; VAD - Voice Activity Detector; TV - Total Variability)

We can see that our “Ref VAD” system - which follows
the exact same evaluation protocol as the BIC and VB systems
- slightly outperforms the VB system, while the performance
of our “Own VAD” system degrades slightly as a result of a
mismatched initial segmentation. At the end of the day, how-
ever, the difference in performance between these three systems
(VB, “Ref VAD”, “Own VAD”) is minimal. Nevertheless, what
is clear is that these approaches are both very successful in the
two-speaker telephone diarization task at hand.

6. Conclusions

Inspired by the success of factor analysis and Total Variabil-
ity for the speaker modeling, we have developed a system
that achieves state-of-the-art results on the two-speaker tele-
phone diarization task. Our previous benchmark, the VB sys-
tem described in [3], elegantly integrates the factor analysis
paradigm with the prior work on Variational Bayesian methods
for speaker diarization described in [10]. In a search for added
simplicity, we utilized the effectiveness of the cosine similarity
metric in the Total Variability subspace.
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There are still many ways in which we can improve and re-
fine this initial approach. For one, there is a need to address the
problem of overlapped speech detection. Finding a good way to
robustly detect and remove corrupted segments would be help-
ful for our PCA initialization and subsequent clustering [11].
Additionally, our reported results have been restricted to two-
speaker telephone conversations; we have not yet addressed the
issue of applying our system to a conversation setting involving
an unknown number of speakers. To that end, we see poten-
tial in extending our approach to diarization by applying Vari-
ational Bayesian methods for model selection (i.e. determining
the number of speakers) and clustering in the Total Variability
space [12].
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