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ABSTRACT

In this paper, we present a lower-bound estimate for dynamic time
warping (DTW) on time series consisting of multi-dimensional pos-
terior probability vectors known as posteriorgrams. We develop a
lower-bound estimate based on the inner-product distance that has
been found to be an effective metric for computing similarities be-
tween posteriorgrams. In addition to deriving the lower-bound es-
timate, we show how it can be efficiently used in an admissible K
nearest neighbor (KNN) search for spotting matching sequences. We
quantify the amount of computational savings achieved by perform-
ing a set of unsupervised spoken keyword spotting experiments us-
ing Gaussian mixture model posteriorgrams. In these experiments
the proposed lower-bound estimate eliminates 89% of the DTW pre-
viously required calculations without affecting overall keyword de-
tection performance.

Index Terms— dynamic time warping, posteriorgram

1. INTRODUCTION

Dynamic Time Warping (DTW) is a well-known dynamic program-
ming technique for finding the best alignment between two time
series patterns. DTW became popular in the automatic speech
recognition (ASR) community from the late 1970’s to mid 1980’s,
and was used for both isolated and connected-word recognition with
spectrally-based representations such as LPC [1]. DTW allowed
for minor local time variations between two speech patterns which
made it a simple and efficient search mechanism. Over time, DTW-
based techniques were supplanted by hidden Markov models which
were a superior mathematical framework for incorporating statistical
modeling techniques. However, DTW-based search has remained
attractive and has been used by researchers incorporating neural net-
work outputs for ASR [2, 3], and more recently for scenarios where
there is little, if any, training data to model new words [4, 5, 6].

One attractive property of DTW is that it makes no assump-
tions about underlying linguistic units. Thus, it is amenable to situ-
ations where there is essentially no annotated data to train a conven-
tional ASR engine. In our research, we are interested in developing
speech processing methods that can operate in such unsupervised
conditions. While we are ultimately interested in learning underly-
ing phonological units of new languages automatically, we are ini-
tially focusing on learning new words and word sequences, and per-
forming search queries on large corpora of unannotated data in an
unknown language. In the latter case, we have an example speech
query pattern, we wish to find the top K nearest-neighbor (KNN)
matches in some corpus of speech utterances. DTW is a natural
search mechanism for this application, although, depending on the
size of the corpus, there can be a significant amount of computation
involved in the alignment process.

For aligning two time-series consisting of M and N elements
or frames, DTW conservatively takes O(MN) time to compute a
match. If one pattern sequence is much longer than the other, M �
N , (e.g., searching for a word in a long recording), then any individ-
ual match will be O(M2), but we will need to initiate multiple DTW
searches (in the extreme, starting a new search at every frame in the
N frame sequence), which makes the overall computation more like
O(M2N). For very large N , (e.g., N > 107) this can be a consid-
erable burden.

To solve this computational problem, several lower-bound algo-
rithms have been proposed for DTW search in large databases [7, 8,
9]. The basic idea behind lower-bounded DTW is similar in concept
to the use of the future underestimate incorporated into A∗ graph
search. To start, N lower-bound DTW estimates are quickly com-
puted between the query pattern, Q and every possible speech seg-
ment, S, in the corpus of utterances. These lower-bound estimates
are sorted into a queue. Then, the lowest lower-bound estimate is
incrementally popped off the queue and the actual DTW alignment
score is computed for that particular match. This step is repeated
until the lowest estimate remaining in the queue is greater than the
Kth-best DTW score. The K-best search can then be terminated.

The prior research in lower-bound estimates for DTW search has
focused on the Euclidean distance as the pairwise distance match be-
tween two vectors. In our recent work with DTW, however, we have
been using a representation based on a sequence of posterior proba-
bility vectors – posteriorgrams, because of their superior generaliza-
tion across speakers compared to spectral-based representations [10,
11]. Posteriorgrams have been explored by many researchers and
are typically produced by phonetic recognizers [3, 12, 13, 14]. In
our research they are generated by a set of Gaussian mixture models
(GMMs) that are trained on a corpus in an unsupervised fashion.

In using the posteriorgram representation, it has been found that
the inner product between posteriorgram vectors produces superior
results on a variety of DTW-based tasks [11, 15]. Thus, if we are
to leverage the lower-bound concept for reducing DTW computa-
tion, we need to derive a lower-bound estimate method for inner
product distances. In this paper, we describe the lower-bound es-
timate method that we have developed for inner-product distances,
and prove that it is admissible for KNN-based DTW search. We
then perform keyword spotting experiments and compare the result
to previously reported results, and show that we can eliminate 89%
of the DTW calculations without affecting performance.

In the remainder of the paper, we first review basic concepts
and notations of DTW and posteriorgrams in Section 2. The deriva-
tion and proof of the proposed lower-bound estimate is given in Sec-
tion 3, and a description of the KNN keyword search using DTW
with the lower-bound estimate is given in section 4. Experimental
results and discussion are reported in Section 5. Finally, we con-
clude and suggest some future research.
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2. BACKGROUND

In this paper we derive a lower-bound estimate for DTW based on
Gaussian posteriorgrams. However, we believe that the estimate
is valid for all posteriorgrams, such as the phonetic posteriorgrams
used in [12, 13].

2.1. Gaussian Posteriorgram

The Gaussian posteriorgram is a feature representation of speech
frames generated from a GMM. In our work, a D-mixture, un-
supervised GMM, G, is trained from a set of unlabeled speech
frames, �x1, . . . , �xN . A posterior probability, pj

i = P (gj |�xi), can
then be calculated for any speech frame, �xi, for each Gaussian
component gj ∈ G. A speech frame, �xi, can then be repre-
sented by a D-dimensional posterior probability feature vector,
�pi = {p1

i , . . . , p
D
i }, where

P
j pj

i = 1 ∀i.

2.2. DTW on Gaussian Posteriorgrams

Consider the two posteriorgram sequences for a speech query, Q =
{�q1, . . . , �qM}, and a speech segment, S = {�s1, . . . , �sN}, where �qi

and �sj are D-dimensional posterior probability vectors. The local
distance between �qi and �sj can be defined by their inner product as
d(�qi, �sj) = − log(�qi · �sj). Given a particular point-to-point align-
ment warp, φ = (φq, φs), of length Kφ between Q and S, the as-
sociated alignment score, Aφ(Q, S), is based on the sum of local
distances

Aφ(Q, S) =

KφX

k=1

d(�qφq(k), �sφs(k))

where 1 ≤ φq(k) ≤ M and 1 ≤ φs(k) ≤ N . The overall best
alignment score, DTW(Q, S) = minφ Aφ(Q, S).

If all possible warping paths, φ, are considered between Q and
S, then there are O(MN) inner-product distances that will need to
be computed. In order to eliminate unreasonable warping paths, a
global path constraint is usually used to keep the warping paths be-
tween Q and S from being too far out of alignment [1]. This can be
accomplished, for example, by ensuring that |φq(k)−φs(k)| ≤ r so
that the warp will keep local distances within r frames of each other
along the entire alignment.

3. A LOWER-BOUND ESTIMATE FOR DTW

Given two posteriorgram sequences, Q, and S, we can deter-
mine a lower-bound of their actual DTW score by first deriving
an upper-bound envelope sequence, U = {�u1, · · · , �uM}, where

�ui = {u1
i , · · · , uD

i } and uj
i = max(qj

i−r, · · · , qj
i+r). Note that

the variable r is the same as it used for the DTW global path con-
straint, and that, in general,

PD
j=1 uj

i ≥ 1. U can thus be viewed
as a D-dimensional windowed maximum envelope derived from
Q. Figure 1 illustrates an example of U on one dimension of a
Gaussian posteriorgram. A lower-bound DTW score between two
posteriorgrams, Q and S, can then be defined as

L(Q, S) =

lX

i=1

d(�ui, �si)

where l = min(M, N). Note that the computational complexity of
computing L(Q, S) is only O(l).
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Fig. 1. Example of a 1-dimensional upper-bound envelope sequence
(red) compared to the original posteriorgram (blue) for r = 8.

To prove that L(Q, S) ≤ DTW(Q, S) for posteriorgram se-
quences Q and S, we follow the strategies that are used in [7, 8]. By
expanding both terms, we wish to show that

lX

i=1

d(�ui, �si) ≤
KφX

k=1

d(�qφq(k), �sφs(k))

where φ is the best warping path that produces DTW(Q, C). The
right hand side (RHS) can be further split into two parts

lX

i=1

d(�ui, �si) ≤
X

k∈MA

d(�qφq(k), �sφs(k)) +
X

k∈UM

d(�qφq(k), �sφs(k))

where MA denotes a matched set containing exactly l warping pairs,
while UM corresponds to an unmatched set that includes all remain-
ing warping pairs. We construct the matched set as follows. For the
ith term on the left hand side (LHS), a warping pair (φq(k), φs(k))
from the RHS is selected into MA if φs(k) = i. If there are multi-
ple warping pairs from the RHS with φs(k) = i, we select the pair
with smallest φq(k) (although it only matters that one is selected).
Note that there are always enough pairs to select into the matched
set since l ≤ Kφ. By following this construction rule we ensure that
the size of the matched set is exactly l so that each term on the LHS
is matched exactly once by an element in the matched set. Based on
the definition of the inner-product distance, all terms on the RHS are
positive. Thus, all terms in UM can be eliminated if we can prove
that the LHS is less than the terms in MA.

Consider an individual warping pair in MA, (φq(k), φs(k)), as
it relates to the ith term on the LHS, d(�ui, �si). By expanding the
distance function back into the negative log inner-product, the in-
equality we need to prove becomes

lX

i=1

− log(�ui · �si) ≤
X

i∈MA

− log(�qφq(i) · �sφs(i))

Since both sides now have the same number of terms, the in-
equality holds if each term on the LHS is less than or equal to the
corresponding term on the RHS. By eliminating the log and examin-
ing only the individual dot product terms, we therefore need to show

�ui · �si ≥ �qφq(i) · �sφs(i)
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Algorithm 1: KNN Search with Lower-Bound

Data: Q,U and C
Result: RL containing k most possible utterances having

keyword Q
begin

for each utterance c ∈ C do
for each segment s ∈ c do

lb = ComputeLB(U, s)
PQ.push([lb, s])

KthBest = MaxFloat
while PQ �= ∅ AND (|RL| < k OR
PQ.top.lb < KthBest) do

[lb, s] = PQ.top
v = DTW(Q, s)
c = FindC(s)
UpdateC(c, s, v)
if c ∈ RL then UpdateRL(RL)
else RL.add(c)
if |RL| ≤ k then KthBest = FindMax(RL)
else KthBest = FindKthMax(RL)
PQ.pop()

Note that because of the way the matched set was selected,
φs(i) = i so that �si = �sφs(i). Since the DTW global path constraint
r limits the warping pair so that |φq(i) − φs(i)| ≤ r we can also
say |φq(i) − i| ≤ r, or i − r ≤ φq(i) ≤ i + r. We can therefore

see from the definition of uj
i , that uj

i ≥ qj
φq(i) so that our inequality

holds: L(Q, S) ≤ DTW(Q, S).
One special property of the posteriorgram is that the summation

of posterior probabilities from all dimensions should be one. Thus,
the lower-bound could be trivial if �ui · �si ≥ 1 because on the RHS
�qφq(i) · �sφs(i) ≤ 1. However, if let umax = max(u1

i , . . . , u
D
i ), the

LHS can be written as

�ui · �si ≤ umax ·
DX

j=1

sj
i = umax

since
PD

j=1 sj
i = 1. Since we also know that umax ≤ 1 we can see

that the lower-bound estimate is not the trivial case.

4. KNN SEARCH WITH LOWER-BOUND ESTIMATE

In order to determine the K nearest neighbor (KNN) segmental
matches to a spoken keyword query, the default approach is to con-
sider every possible match for all possible segments in each corpus
utterance. By incorporating the lower-bound estimate described
previously, we can find the top KNN matches much more efficiently,
as shown in pseudo-code in Algorithm 1.

The basic idea of the algorithm is to use the lower-bound DTW
estimate to prune out utterance segments whose lower-bound DTW
estimates are greater than the Kth best DTW score. In Algorithm 1,
the function ComputeLB calculates the lower-bound DTW estimate
between the spoken keyword query, Q, and every possible utterance
segment, S, using the upper envelope U . All utterance segments and
their associated lower-bound estimates are stored in a priority queue
ranked by the lower-bound estimate.

During KNN search, the algorithm begins from the top (small-
est estimate) of the priority queue and calculates the actual DTW

distance between the spoken keyword query and the associated seg-
ment. After using the function FindC to locate the utterance con-
taining the current segment, the function UpdateC updates the best
DTW distance in that utterance. Then, the function UpdateRL up-
dates the result list if the best DTW score in the current utterance
changes. If the result list does not contain the current utterance, the
current utterance is added into the result list. Finally, if the size of
the result list is less than or equal to K, the Kth best is set to the
maximum value of the associated DTW score of the utterances in
RL. If the size of the result list is greater than K, then the Kth best
is set to the Kth maximum value in RL. The search algorithm ends
if K possible utterances are in the result list and the lower-bound
estimates of all remaining segments in the priority queue are greater
than the Kth best value.

5. EVALUATION

Since we have shown that the lower-bound estimate results in a
KNN-DTW search that is admissible, we wish to measure how
much computation can be saved with the lower-bound estimate. In
order to do this, we have chosen to duplicate previously reported
keyword spotting experiments that we have performed on the TIMIT
corpus using posteriorgram-based DTW search [10].

5.1. Keyword Spotting Task

The unsupervised keyword spotting experiment was performed on
the TIMIT dataset, using the standard training set of 3,696 utterances
and test set of 944 utterances. Since the lower-bound estimate does
not require any parameters, no development set was used for tun-
ing. A conventional MFCC-based spectral representation was used
to generate 13 MFCC’s every 10ms using a 25ms analysis frame.
A 50 component GMM was created in an unsupervised fashion on
the training set. The GMM was used to subsequently represent with
10ms frame with a 50-dimensional posteriorgram.

For the keyword spotting experiments, 10 keywords were ran-
domly selected and one example for each keyword was extracted
from the training set. The keyword spotting task was to find the
K best matching utterances in the test set that contained the key-
word. Matching was performed using segmental DTW on each utter-
ance. More specifically, to compare the spoken keyword query with
a test utterance, a sliding window with the size equal to the length of
the keyword was applied to the test utterance to constrain the DTW
search region. The sliding window gradually moved (one frame for-
ward at a time) from the beginning frame of the test utterance to the
end frame, and a series of DTW matches was performed to locate
the best matching segment containing the keyword query [10]. The
score for a test utterance containing the keyword query corresponds
to the smallest DTW score obtained in that utterance.

5.2. Keyword Spotting Results

Since the lower-bound estimate is admissible, the results obtained
by the new KNN method are the same as have been reported earlier
where we achieved 14.6% equal error rate (EER) [10]. Of greater
interest, however, is the amount of computation we can eliminate
with the lower-bound estimate.

Figure 2 summarizes the amount of computational savings
which can be achieved with the lower-bound estimate. The figure
plots the average DTW ratio (scaled by log with base 10) against
the size of K in the KNN search for several different DTW path
constraint settings (r = 1, 3, 5, 7, 9). The average DTW ratio is
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Fig. 2. Average DTW ratio against KNN size for different global
path constraints, r.

the ratio of the number of utterance segments that require a DTW
score to be computed divided by the total number of segments for a
particular keyword search, averaged across all 10 keyword queries.
For r = 1, for example, an exact DTW computation is needed
for only 0.11% of all possible segments when K=10. In our prior
experiments, we achieved a minimum EER for r = 5 [10]. With
the current framework we achieve the same EER for K=200, and
require only 11.2% of exact DTW scores to be computed compared
to our previous results. Finally, it is interesting to note that even
when K=944 (i.e., which finds all utterances in the test set), only
75% of the DTW calculations are needed since the lower-bound
estimate prunes away undesirable segments in each utterance.

In terms of computation time, the results are quite dramatic.
While our original DTW experiments required approximately 2 min-
utes to search for matches for the 10 keywords on a 200 CPU com-
pute cluster, the new DTW-KNN method takes approximately 2 min-
utes on a single CPU or about 12s/query. Since the test set corpus
corresponds to approximately 48 minutes of speech, this translates
to approximately 14 seconds/query/corpus hour/CPU.

6. CONCLUSION AND FUTURE WORK

In this paper, we present a lower-bound estimate for DTW-based
methods that uses an inner-product distance metric such as for a pos-
teriorgram representation. Given a query posteriorgram and a test
posteriorgram, the lower-bound is obtained by calculating the inner-
product distance of the upper envelope of the query posteriorgram
against the test posteriorgram. The lower-bound underestimates the
actual DTW score between the query and test posteriorgrams, which
provides an efficient pruning mechanism for KNN search. Based
on the experimental results in a spoken keyword spotting task, the
KNN-DTW search can eliminate 89% of DTW calculations while
producing the same detection performance as the baseline system
with no pruning.

Although we have already demonstrated the lower-bound esti-
mate works effectively in a DTW-based keyword spotting applica-
tion, it should be equally effective in all uses of DTW-based search.
For example, we plan to quantify its performance in unsupervised

pattern discovery applications that we are also exploring [6, 11].
This task essentially involves convolving a corpus of utterances
against itself to find re-occurring patterns. In unsupervised con-
texts where there is no training data, a segmental DTW framework
has been found to be effective, although a significant amount of
computation is required. Recent research results have shown that
a tremendous amount of computation can be avoided [14]. Based
on the computational savings we have achieved here, we expect the
lower-bound estimate will be very effective on this task, and has the
added advantage of being admissible for KNN search.

Finally, since the lower-bound calculation can be easily paral-
lelized, we plan to examine other computing architectures such as
GPU computing to further speed up the entire algorithm.
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