
The MITLL NIST LRE 2011 Language Recognition System 

Elliot Singer, Pedro Torres-Carrasquillo, Douglas Reynolds, Alan McCree, Fred Richardson, 

Najim Dehak*, and Doug Sturim  

Massachusetts Institute of Technology 

Lincoln Laboratory 
{es,ptorres,dar,mccree,frichard,sturim}@ll.mit.edu 

*Computer Science and Artificial Intelligence Laboratory 
najim@csail.mit.edu 

 

 

Abstract

 

This paper presents a description of the MIT Lincoln 

Laboratory (MITLL) language recognition system developed 

for the NIST 2011 Language Recognition Evaluation (LRE). 

The submitted system consisted of a fusion of four core 

classifiers, three based on spectral similarity and one based on 

tokenization. Additional system improvements were achieved 

following the submission deadline. In a major departure from 

previous evaluations, the 2011 LRE task focused on closed-set 

pairwise performance so as to emphasize a system’s ability to 

distinguish confusable language pairs. Results are presented 

for the 24-language confusable pair task at test utterance 

durations of 30, 10, and 3 seconds. Results are also shown 

using the standard detection metrics (DET, minDCF) and it is 

demonstrated the previous metrics adequately cover difficult 

pair performance. On the 30 s 24-language confusable pair 

task, the submitted and post-evaluation systems achieved 

average costs of 0.079 and 0.070 and standard detection costs 

of 0.038 and 0.033. 

1. Introduction and Task 

The National Institute of Science and Technology (NIST) has 

conducted formal evaluations of language detection 

algorithms since 1994. The emphasis in NIST’s 2011 

Language Recognition Evaluation (LRE) was the 

performance of submitted systems on the most confusable 

language pairs, where “most confusable” was system 

dependent rather than predefined. The task in LRE11 was to 

decide which of two languages was spoken in a speech 

segment for a given pair of languages. The 24 languages in 

LRE11 were themselves selected from within language 

clusters so as to maximize confusions within the recognizers. 

Languages appearing in previous evaluations were: Bengali, 

Dari, English-American, English-Indian, Farsi/Persian, Hindi, 

Mandarin, Pashto, Russian, Spanish, Tamil, Thai, Turkish, 

Ukrainian, and Urdu. New languages for LRE11 were Arabic-

Iraqi, Arabic-Levantine, Arabic-Maghrebi, Arabic-MSA, 

Czech, Lao, Panjabi, Polish, and Slovak. (Although the 

targets should properly be referred to as classes, this paper 

will follow NIST usage and employ the term “languages.”) As 

in 2009, evaluation utterances were drawn by NIST from both 

conversational telephone speech recordings collected 
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specifically for NIST and “found” segments drawn from 

narrowband segments identified within foreign language 

broadcast sources, such as the Voice of America. 

 

The metric used to evaluate performers is based on the 

language pair cost function given by 

 

  1, 2 0.5 ( (*( 1) 2 ))Miss MissC L L P P LL   (1) 

 

From the submitted scores for the 276 possible pairs, the N=24 

pairs with the highest minimum costs were selected for the 

30 s segments, where the minimum costs were determined by 

varying decision thresholds. The overall performance measure 

was computed as the average across the N worst performing 

pairs using the hard decisions supplied by the participants to 

compute the language pair costs. More details are available in 

the NIST LRE11 Evaluation Plan [1]. In addition to this new 

metric, this paper will also show results using the standard 

detection metrics (Detection Error Tradeoff curves and 

decision cost functions) obtained from pooling scores from the 

collection of 24 language detection systems. It is important to 

maintain this standard metric since it allows comparison to 

previous LREs and has a direct interpretation of performance 

of an actual working system (the pair-wise metric is interesting 

as a diagnostic, but merely reflects the average performance of 

a set of two-language detectors). 

 

The organization of this paper is as follows: Section 2 

describes the development data used for the MITLL 

submission. Section 3 describes the core classifiers and score 

fusion method employed in the submitted and subsequently 

improved post-evaluation systems. Section 4 presents system 

performance on the NIST 2011 LRE task and a discussion of 

results, and Section 5 presents conclusions. 

2. Development Data 

Data for training and development testing was obtained by 

augmenting existing LRE09 resources with data from 

additional sources to cover shortfalls in the new and/or under-

represented languages in LRE11. The LRE09 resources 

consisted of 

 Telephone data from previous LREs (1996, 2003, 

2005, 2007, 2009): CallFriend, CallHome, Mixer, 

OHSU, and OGI-22 collections. 

 Narrowband segments from VOA broadcasts. 

The new data sources consisted of 

 NIST 2011 development data (Telephone and 

narrowband broadcast segments). 
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 Narrowband segments from Radio Free Asia, Radio 

Free Europe, and GALE broadcasts. 

 Arabic corpora from LDC and Appen (telephone and 

some interview data) 

No effort was made to remove duplicate speakers or to create 

gender balancing in the development corpus. A breakdown of 

the amount of data available for training is shown in Table 1. 
Post-evaluation experiments determined that the interview 

data source was not useful in training and could be removed. 

For development testing and fusion/calibration training we 

created 30 s, 10 s, and 3 s test sets comprising segments from 

previous LREs and segments extracted from longer files. We 

had 100-200 test segments per duration per source (CTS or 

BNBS) per language when available. 

Table 1: Hours of speech and number of segments per 

language in initial training corpus 

 CTS BNBS INT 
 hrs  #segs hrs #segs hrs #segs 

Arabic-Iraqi 16.5 289 13.2 800 18.7 483 
Arabic-
Levantine  

40.8 732 0 0 38.9 976 

Arabic-
Maghrebi  

7.7 100 0 0 0 0 

Arabic-MSA  0 0 108.3 7326 0 0 
Bengali  4.1 55 0 0 0 0 
Czech 13.5 100 0 0 0 0 
Dari 0 0 15.1 800 0 0 
English-
American 

78.4 633 0 0 0 0 

English-
Indian 

7.6 359 0 0 0 0 

Farsi 35.6 160 22.2 800 0 0 
Hindi 34.6 164 9 516 0 0 
Lao 0 0 1 100 0 0 
Mandarin 119.8 1020 11 800 0 0 
Pashto 0 0 13.4 800 0 0 
Polish 13.1 100 0 0 0 0 
Punjabi 9.3 100 0 0 0 0 
Russian 24.7 374 20.1 800 0 0 
Slovak 12.7 100 0 0 0 0 
Spanish 99.4 625 13.7 800 0 0 
Tamil 15.7 80 0 0 0 0 
Thai 1.6 20 8.7 661 0 0 
Turkish 0 0 16.6 747 0 0 
Ukrainian  0 0 6.1 249 0 0 
Urdu 1.7 22 14.3 800 0 0 

 

There were five languages (Arabic-Maghrebi, Czech, Punjabi, 

Polish, and Slovak) for which insufficient data was available 

to create well populated train, dev, and test partitions. 

Consequently, a cross-validation scheme was employed in 

which the data for these five languages was partitioned into 

five non-overlapping folds, with each fold using 80% of the 

segments for training and 20% for testing. The remaining 19 

well provisioned languages used a fixed train/test data 

partition across the folds. Furthermore, the backend was 

trained by cross-validation over the aggregated scores from the 

five folds. 

 

Late in the development cycle, data was obtained from the 

Special Broadcast Services (SBS) in Australia for 13 of the 

languages, including the five low-resource languages. A 

breakdown of the amount of data available in the extra training 

set is shown Table 2. Only one system (SVM-GSV) made use 

of the extra training data in the primary submission. Also, the 

availability of the extra data made it unnecessary to employ 

cross-validation for training the backend. Results with extra 

training and without cross-validation were obtained after the 

submission deadline and are discussed below. 

 

Table 2: Hours of speech and number of segments per 

language in extra training corpus 

 CTS BNBS 
 hrs #segs hrs #segs 

Begnali 0 0 1.7 157 
Czech 0 0 3.1 330 
Dari 0 0 1.2 65 
English-
American 

15.0 174 0 0 

English-
Indian 

7.4 88 0 0 

Hindi 6.1 72 3.8 259 
Lao 0 0 7.2 975 
Polish 0 0 2.8 165 
Punjabi 0 0 2.2 183 
Slovak 0 0 1.2 88 
Tamil 8.4 92 0.3 34 
Ukrainian 0 0 2.3 105 
Urdu 0 0 2.9 137 

 

3. Classifiers 

As in previous LREs, the Lincoln language recognition system 

consisted of the fusion of spectral and token based classifiers. 

For LRE11 we introduced two i-vector system.  In this section 

we briefly describe the core classifiers and the 

fusion/calibration system.  

3.1. Spectral Classifiers 

Four systems were used for spectral based recognition: two 

discriminately trained classifiers (GMM-MMI, SVM-GSV) 

and two generative i-vector systems. 

3.1.1. Features  

The spectral based systems used a common set of features and 

processing. The main processing chain consisted of: 
 Speech windowing of 20 ms length and 10 ms shift. 

The windowed signal mean is subtracted and a low 

energy dither is added to the signal to avoid runs of 

digital zeros. 

 Mel-scale filterbank analysis over the band 0-4000 Hz 

producing 24 log-filterbank energies. Per-file vocal 

tract length normalization (VTLN) warps are applied to 

the filterbank centers and the first filterbank energy is 

removed to reject out-of-band signaling. RASTA 

filtering is then applied to the log-energy filterbank 

trajectories. 
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 Conversion to cepstral coefficients via DCT. The first 

seven cepstral coefficients (c0-c6) are retained. 

 Shifted Delta Cepstra (SDC) features are extracted 

using the conventional 7-1-3-7 scheme. The static 

cepstra are appended producing a 56-dimensional 

feature vector. 

 Non-speech frames are gated out using speech activity 

detection marks derived from a GMM-based 

speech/non-speech detector. 

 Each feature element is normalized to zero mean, unit 

variance by subtracting the mean and dividing by the 

standard deviation computed from either a 3 s window 

of speech frames or from the entire file. 

 The features are then compensated using feature 

domain Nuisance Attribute Projection (fNAP) inspired 

by the work in [2]. 

3.1.2. GMM-MMI 

The GMM-MMI system [3] used for the 2011 LRE is similar 

to the system that was used by Lincoln in recent evaluations 

[4]. For each language, weights, means and variances for a 

2048 order Gaussian mixture model are trained to maximize 

the likelihood on its training data starting from a common, 

language-independent background model. Next, means and 

variances for the set of models are jointly updated to optimize 

the maximum mutual information criterion on all the training 

data. 

 

For LRE11, the MMI training time was significantly decreased 

by approximating the log-likelihood computation using a fixed 

set of sufficient statistics derived from a common background 

model. With this decrease in computation, the number of 

training iterations was increased from 20 to 40, which 

improved performance. For recognition, standard frame-by-

frame scoring was used. Although experiments on 

development data found that there was no decrease in accuracy 

in using sufficient statistics training, some decrease in 

accuracy on the evaluation data was observed. 

3.1.3. SVM-GSV 

The SVM-GSV system [5] was also similar to that used in 

previous evaluations. Maximum a posteriori (MAP) adapted 

GMMs derived for each file were used as input observations to 

train a Support Vector Machine (SVM) classifier. The 

configuration for this system is as follows: 

 GMMs for each segment are adapted from a 1024 

mixture UBM. 

 GMM means and variances are adapted with a 

relevance factor of 0.001. 

 SVM input vectors are the stacked mean and 

variance supervectors from the adapted GMMs. 

 SVM training is accomplished using a KL 

divergence-based kernel and a one-versus-rest 

strategy. 

 SVM models are converted (“pushed”) into GMMs 

by normalizing the support vectors by the sum of the 

support vector weights resulting in two models 

(target and non-target) per language. Earlier work 

had shown that the conversion to GMMs improved 

language recognition performance. 

 Scoring is performed by computing the log 

likelihood ratio between a language’s pushed 

models. The SVM-GSV system used features 

processed with fNAP and VTLN compensation. 

The submitted SVM-GSV system contained a bug that 

resulted in a mismatch between the scores generated for 

development and the NIST evaluation set. This discrepancy 

was corrected in the post-evaluation version of the system. 

3.1.4. I-vector systems 

The i-vector framework has become very popular in speaker 

recognition and language identification [6][7]. This approach, 

based on factor analysis, is an elegant way to capture the 

majority of useful variabilities between GMM supervectors in 

low dimensional space. In the i-vector formulation, each 

speech utterance has a corresponding GMM supervector that is 

assumed to be generated as follows: 

 

 M m Tw   (2) 

 
where m is the speaker independent and channel independent 

supervector (which can be taken to be the UBM supervector), 

T is a rectangular matrix of low rank, and w is a random vector 

having a prior standard normal distribution N(0, I). Analysis of 

this generation model, along with several assumptions, leads 

to a maximum a posteriori estimator of the i-vector, w, using 

the Baum-Welch statistics for a given utterance. The T matrix 

is estimated using statistics from development data via 

iterative EM training or principle component analysis (PCA). 

We developed two i-vector systems for LRE11. 

3.1.4.1 First I-vector system (IVEC1) 

The first i-vector system (IVEC1) uses linear discriminant 

analysis (LDA) and cosine scoring following the setup used 

for speaker verification [6]. LDA consists of finding the basis 

that maximizes the between-language variability while 

minimizing the intra-language variability. The LDA axes are 

then defined by a projection matrix A, which is trained using 

the training data from all languages. In speaker recognition, 

within-class covariance normalization (WCCN) is also used, 

but it was found in development experiments that it provided 

no performance gain over LDA for the IVEC1 system.  

 

It is well known that cosine scoring is based only on i-vector 

directions, discarding vector lengths. Using directional 

statistics, we can formalize this further by assuming the 

languages are modeled by a Von-Mises-Fisher distribution 

(which is the analog of a Gaussian distribution on the unit 

sphere). The Von-Mises-Fisher distribution operates on unit 

norm vectors and is defined as  

 

 ˆ ˆ( | , ) ( ) exp( )T

d df w m C m w    (3) 

 

where m is the mean,  is the spread parameter, d is the vector 

dimension, and C() is a normalization constant. The maximum 

likelihood estimate of the mean for a language is given as  
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where, Nl  is the number of utterances for each language l and 

the unit norm LDA i-vectors are  
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The spread parameter  can also be estimated, but during 

development experiments we found that using a fixed spread 

parameter for all languages worked best. A constant  has no 

effect on the final decision and thus its exact value is 

irrelevant. We also note that we experimented with mixtures 

of Von-Mises-Fisher distributions per language, but found that 

a single distribution always performed best.  

 

Scoring is then simply the log-likelihood of a test i-vector after 

LDA and unit normalization. Discarding constants, this is 

merely a dot product with the language model mean 

 ˆ T

l test lscore w m  (6) 

Note that this scoring differs from cosine scoring only in that 

the language mean is estimated using unit normalized i-

vectors.  

 

The IVEC1 system used a 2048 order GMM UBM and i-

vectors of dimension 600. In the submission to NIST, VTLN 

and fNAP compensation was not applied to the raw features 

prior to i-vector extraction. Following the submission 

deadline, an updated version of this system was created that 

used the extended training set and VTLN+fNAP feature 

compensation, and eliminated a bug in the cosine scoring. 

3.1.4.2 Second I-vector system (IVEC2) 

The second i-vector system (IVEC2) used Gaussian scoring in 

the i-vector space, as in [8]. Training a language model is then 

simply a matter of computing the mean of the training vectors, 

and testing involves a Gaussian likelihood evaluation using the 

shared within-class covariance: 

1

1 lN

l j

jl

m w
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Raw scores were normalized to a UBM in the Gaussian space, 

i.e. a mean of zero: 

 
1 11

2

T T

l test w l l w lscore w m m m      (8) 

During development, experiments were conducted with LDA 

and discriminative training of the Gaussians using MMI, but 

no significant performance improvements from these 

enhancements were obtained so they were not used in the 

IVEC2 system. The initial version of this system did not use 

VTLN or fNAP and also had a defective SAD algorithm, and 

so was not used in the primary system submission.  Following 

the submission deadline, an updated version of this system 

was created that used the same SAD algorithm and 

fNAP+VTLN feature compensation as used by the other 

spectral systems. 

 

In addition to modeling and scoring, IVEC1 and IVEC2 also 

differ in how the T matrix was estimated. IVEC1 used iterative 

EM estimation with minimum divergence steps and updates to 

the UBM covariance matrix, while IVEC2 used PCA 

estimation. 

3.2. Token Classifier 

3.2.1. TRAPS/NN Tokenizer 

Tokenization of speech was performed using a system based 

on the Brno University (BUT) TRAPS/NN design [9]. The 

tokenizer used three-state left-to-right HMMs with a null 

grammar and consisted of two key components for generating 

HMM state posteriors: TRAPS, which are long time-span 

time-frequency features, and feedforward artificial neural nets. 

The tokenizer was trained on approximately 10 hours of 

English Switchboard2 Cell data. The data was phonetically 

segmented using an STT system, and the resulting system used 

49 monophones including silence. 

3.2.2. SVM N-gram Language Modeling 

The SVM token system [10] used a bag-of-N-grams. For a 

sequence of tokens, (joint) probabilities of the unique N-grams 

on a per conversation basis are calculated and weighted by a 

token dependent scale factor Dj. The general weighted 

probability vector is then combined to form a kernel between 

two token sequences. For two token sequences, W and V, the 

kernel is 

 

      2 ˆ ˆ, , | , |j j j j j

j

K W V D p w w W p w w V  (9) 

SVM training and scoring require a method of kernel 

evaluation between two objects that produces positive definite 

kernel matrices (the Mercer condition). We use the package 

SVMTorch and a one-versus-rest strategy for training. 

 

A 4-gram system was used in the 2011 LRE (4GR-SVM). 

Using the full set of 4-grams from the English tokenizer is 

impracticable due to the large number of 4-grams (as many as 

494). Instead, a subset of the 4-grams was selected using the 

alternating filter-wrapper feature selection method [11]. This 

approach starts by selecting a fixed number of 3-grams that 

have the highest and lowest SVM weights from the SVM 

model, and extending them at front or back by each token in 

the tokenizer’s lexicon. The new subset of 4-grams is then 

used to train the SVM. 

3.3. Fusion/Calibration 

The backend processing consisted of per-system calibration 

and duration normalization followed by linear fusion with a 

zero offset. Calibration used a discriminatively-trained (MMI) 

Gaussian with shared covariance for each system, followed by 

a multiclass logistic regression across systems for the final 

score. The backend was trained on the development data set 

and then applied to the evaluation data. 

 

Two types of backends were developed: a single closed-set 

multiclass backend and  pairwise backends. 

The primary submission used the single closed-set backend 

followed by a simple application of Bayes’ rule to extract the 

 pair-wise likelihood ratios. For backend 

identification likelihoods Ci, identification posteriors are given 

by 
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and pairwise likelihood ratios by 
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Experiments were run on the development and evaluation data 

for LRE09 using the pairwise backends, but performance was 

inferior to that obtained using the multiclass backend. 

Therefore, the submitted system used the single multiclass 

backend and applied Equation 11 to compute pairwise scores.  

4. Results and Discussion 

This section presents the results for the primary system 

submitted for NIST LRE11 and the final post-evaluation 

system which contained a number of bug fixes and 

enhancements. 

4.1. Official NIST Submission 

Results for the submitted system, along with a breakout by 

classifier, are shown in Figure 1. The leftmost two bars for 

each system show the new NIST LRE11 metric – the 

minimum average pair detection cost (minAPD) of the 24 

worst pairs and the actual average pair detection cost (actAPD) 

of those pairs. For individual classifiers, the actAPD ranges 

from 0.114 (IVEC1) to 0.134 (GMM-MMI), and 0.079 for 

fusion. Note that due to the nature of the new metric, the 

language pairs used for each system’s results may be different 

since the worst pairs are system dependent. It is apparent that 

there are calibration issues for these pairs as evidenced by the 

disparities between the actAPD and minAPD values, which 

are likely due to uncompensated mismatches between the 

development and evaluation data.  

 

For reference, the rightmost two bars show performance based 

on the standard multiclass detection performance metric used 

by NIST for evaluations prior to LRE11. With the standard 

metric, performance for systems is computed over the same 

languages and data. The new and standard metrics track 

closely, with the actual DCF for the primary submission 

(FUSE) being 0.0382. 

 

 

Figure 1: Performance of submitted system 

(“primary’) and its component classifiers on the 

30 s LRE11 task. 

Figure 2 shows the actual DCF for the worst pairs of the 

submitted system as ordered by Equation 1. Not surprisingly, 

the pairs with the highest DCF tend to be languages spoken in 

countries that are geographically and culturally quite close 

(e.g., Lao in Laos and Thai in Thailand). Somewhat 

unexpected is the fact that Pashto, Punjabi, and Bengali are 

confused across a wide range of other languages, behavior that 

was common to many systems submitted to NIST for LRE11 

[12]. 

 

 

Figure 2: Actual DCF (Eq. 1) for worst pairs in the 

primary submission. 

Due to time pressures and system implementation issues, the 

submission to NIST was handicapped in several ways, all of 

which were corrected in the subsequent post-evaluation 

system: 

 A complete IVEC2 i-vector system was not 

available in time for submission. Consequently, the 

submitted system was a fusion of the IVEC1, GSV, 

4GR-SVM, and GMM-MMI core classifiers. 

 The GSV system contained a bug due a mismatch in 

models used for scoring the development and 

evaluation sets. 

 The IVEC1 i-vector system inadvertently excluded 

test vector normalization. The system also did not 

include VTLN+fNAP feature compensation. 

 None of the systems, except for SVM-GSV, was 

trained using the extra training data. 

 All systems used cross-validation to generate 

backend training data. 

4.2. Post-evaluation System 

This section presents results for the final post-evaluation 

system, which was not completed in time for submission to 

NIST for LRE11. The system has the following 

characteristics: 

 All classifiers were trained with the full complement 

of training data. 

 All spectral classifiers used the full feature 

extraction and normalization sequence outlined in 

Section 3.1.1. 

 Bugs that were identified in the primary submission 

were corrected. 

 With the addition of IVEC2, a total of five 

classifiers were included. 

 The backend was trained using the full development 

set rather than with cross-validation. 
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Results for the post-evaluation system, along with a breakout 

by classifier, are shown in Figure 3. In general, performance 

has improved with the inclusion of the extra training data, the 

elimination of cross-validation, and the removal of known 

bugs. The leftmost two bars for each system show the NIST 

LRE11 metric (actAPD) based on the 24 worst pairs as 

determined by the minimum closed set pairwise costs, and the 

average minimum cost of those pairs. For individual 

classifiers, the actAPD now ranges from 0.089 (IVEC1) to 

0.125 (SVM-4GR), and 0.070 for 5-way fusion. Again, 

calibration issues are apparent in the disparities between the 

actAPD and minAPD values. For reference, the rightmost two 

bars show performance based on NIST’s standard metric 

based on multiclass detection performance, with the two 

metrics again tracking well. The actual DCF for the post-

evaluation fusion system is 0.033. DET plots for the post-

evaluation fusion system are shown in Figure 4. 

 

Figure 3: Performance of the final post-evaluation 

system and its component classifiers on the 30 s 

LRE11 task. 

 

Figure 4: DET plots for the fused post-evaluation 

system for test durations 30 s (black), 10 s (blue), and 

3 s (red). 

4.3. Comparison of Multiclass and Pairwise Fusion 

As discussed in Section 3.3, two types of backends were 

evaluated for generating pairwise scores, the first being a 

single closed-set multiclass backend from which scores were 

derived via Bayes’ rule, and the second a set of N*(N-1)/2 

=276 individual pairwise closed-set backends. Results shown 

in Figure 5 indicate that multiclass class training provides 

better performance, as well as being much simpler to manage. 

 

Figure 5: Performance of fusion using a jointly trained 

multiclass backend and pair-specific backends. 

4.4. Confusion Matrix 

One of the aims of the new metric introduced for LRE11 was 

to focus on confusable pairs of languages. As shown in the 

results in previous sections, the standard metrics are adequate 

for measuring relative performance of systems in a consistent 

manner with more difficult language pairs present. Here we 

show that the information contained in the multiclass 

confusion matrix adequately focuses on confusable language 

sets.  A bubble plot1 of the confusion matrix from the final 

MITLL system is shown in Figure 6. From this plot it is easy 

to find the “hot spots” of confusable languages. In fact the 

confusion plot shows more information than artificial pair-

wise scores since it is easier to see input languages which 

cause problems over multiple models or models which false 

alarm over multiple input languages.  

 

 

Figure 6: Bubble plot of confusion matrix from final 

MITLL system. 

                                                           
1
 Thanks to Dave Farris for providing the code for producing the 

bubble plot from a confusion matrix. 
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4.5. Classifier Fusions 

In this section we report on different system combinations 

using core systems from the post-evaluation core classifiers. 

Table 3 shows multiclass pooled minimum and actual decision 

cost function values for some interesting combinations. The 

first line is for fusion of all classifiers in the post-evaluation 

system. The second line shows that the best classifier 

combination, which used the n-gram and both i-vector 

classifiers. In the combination sweep, it was found that the top 

combinations always included the n-gram classifier, which is 

consistent with previous experience that language recognition 

systems benefit by combining spectral and phonotactic based 

information. The third line shows results when using a single 

i-vector classifier with the other classifiers. In the fourth line 

we show the best combination not using the n-gram classifier. 

Finally, rows five and six show results for the best pair and 

single combinations.  

 

While these results indicate limited value in fusion of the 

GMM-MMI and SVM-GSV systems, this was not observed 

during development and further experimentation is required to 

verify this conclusion.  

Table 3: Standard multi-class detection cost function 

results for different system combinations 

 min DCF act DCF 

fuse 5 0.0312 0.0327 
4gr+ivec1+ivec2 0.0286 0.0301 
4gr+gsv+mmi+ivec1 0.0312 0.0331 
gsv+ivec1+ivec2 0.0336 0.0361 
4gr+ivec1 0.0286 0.0307 
ivec1 0.0371 0.0415 

5. Conclusion 

In this paper we have described the MITLL submission to the 

2011 NIST Language Recognition Evaluation. The submission 

consisted of spectral, token, generative, and discriminative 

classifiers fused using a joint backend. The i-vector systems 

introduced this year provided very good performance alone 

and fused well with other systems. We found that using 

standard pooled class detection metrics for system 

optimization and a single multiclass backend was sufficient for 

addressing the new pair metric introduced in LRE11. 

 

For a historical perspective, Figure 7 shows performance 

(EER %) of Lincoln Laboratory systems on the NIST LRE test 

data beginning in 1996 and continuing to LRE11. It is 

apparent that the task has increased in difficulty since LRE09, 

most likely due to the deliberate choice of confusable 

languages and perhaps also because of the wider range of 

broadcast sources used for the evaluation utterances. 

 

 

Figure 7: Performance trends of MITLL language 

recognition systems on NIST evaluation corpora at 

three durations. Dates on the horizontal axis indicate 

the system vintage. 
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