Estimating Word-Stability During Incremental Speech Recognition

lan McGraw', Alexander Gruenstein®

'Massachusetts Institute of Technology
2Google

imcgraw@mit.edu,

Abstract

Many speech user interfaces can be improved by incrementally
displaying or interpreting a speech recognizer’s current best
path as a user speaks. This gives rise to a problem of instability,
whereby the best path may change frequently, particularly with
respect to the words most recently spoken. Introducing a lag
between the audio most recently processed and the portion of
the best path shown to the user can lead to more usable incre-
mental results. In the ideal case, the lag introduced would vary
to recover exactly the longest stable prefix of the best path. In
this paper, we introduce a framework for estimating a stability
statistic for each word, and explore the tradeoft of stability and
lag by thresholding stability statistics estimated using a variety
of features.

1. Introduction

Incremental speech recognition, in which partial recognition
results are streamed from a speech recognizer while the user
is talking, has been of interest in the speech community for
decades [1]. In general, incremental results have been shown to
make a spoken language system feel more natural and respon-
sive to the user [2]. Unlike systems that wait for silence to re-
turn a result, incremental recognition trails the audio as closely
as possible, much like closed captions on television. Indeed,
automatic video captioning is one of incremental speech recog-
nition’s many applications [3].

The use of incremental speech recognition results has been
explored in academia, e.g. [4], and is now appearing in com-
mercial applications. Since version 2.2, Android has included a
type-by-voice feature. In version 4.0, Android’s latest release,
incremental results allow users to watch the recognition un-
fold as they are speaking. Incremental results have also proven
useful outside of speech recognition. For instance, Google In-
stant Search, which searches with every keystroke as users type,
saves on average 2 seconds per search [5]. Incremental speech
recognition could result in similar time savings in some tasks.
The user could see words, and they could be interpreted, before
the end-pointer has even fired.

With incremental speech recognition results, however, a
new issue of stability arises. Simply put, the recognizer can
“change its mind” about which words it thinks have been spo-
ken, causing the streamed incremental results to contradict one
another, especially with respect to the most recently decoded
portions of the utterance. One can stabilize incremental results
either by choosing when to emit them, or by emitting just a
prefix deemed stable. Selfridge er. al describe three methods
of choosing when to emit incremental recognition results and

This work was performed while the first author was at Google.

alexgru@google.com

use logistic regression to predict the stability of the entire incre-
mental result [6]. Baumann et. al explicitly modify incremen-
tal recognition results according to duration-related features [7]
and assess the stability of the newly formed incremental result
(often prefixes of the best path in the decoder).

In contrast to previous research, we take inspiration from
the practice of assigning confidence statistics to each word in a
hypothesis. Instead of estimating the probability that a word is
correct, however, the stability statistic estimates the probability
that every word in an incremental hypothesis up to and includ-
ing that word will remain the same in all future incremental
hypotheses. Although certainly related, these two measures are
clearly different. It is easy to imagine a word in a partial ut-
terance that would receive a low confidence score, but is very
stable due, perhaps, to subsequent portions of the lattice.

Our approach to stability estimation uses logistic regression
to compute a statistic for each prefix of an incremental result.
This can be viewed as a combining the strengths of [6] and [7]
into a framework that allows a client of the recognizer to retain
fine grained control over the handling of instability. In partic-
ular, since every prefix of an incremental recognition result is
labeled with a stability statistic at the word level, a dictation
application, for example, might employ a simple threshold to
display only the portion of the result deemed stable.

In the remainder of this paper, we explicitly define the sta-
bility problem and discuss features, such as right-context, age,
and word-posteriors that might be used to estimate a stability
statistic. We then compare three feature sets on both Voice
Search and Voice Input data from Android phones. We analyze
the tradeoff each application might make between the stability
of a prefix and the amount it lags behind the decoder. We see
that, for Voice Search, a combination outperforms a single fea-
ture alone.

2. Stability

We illustrate the stability problem using a contrived example
shown in Figure 1. Here we are showing the distinct incremen-
tal results which appear at particular frames (shown in paren-
theses). In actuality, we sample the best path from the decoder
more frequently, however, in our example this would just pro-
duce a continuous stream of identical incremental results be-
tween the distinct ones shown.

If we suppose the purpose of an incremental result is to
inform the user as early as possible of the words in the final
speech recognition hypothesis, then it becomes apparent from
this example, that some incremental results are better than oth-
ers. The hypotheses at frames (10) and (20) are entirely mis-
leading, while the one at frame (230) is mostly correct except
for the final word.

The finer details of the definition of stability for a particular



Figure 1: Unstable incremental results, with the best possible
prefixes lightly outlined.

prefix of an incremental result is a matter of choice. One might
prefer a definition which compares the prefix only to the next
distinct incremental result, or perhaps only to the final result.
In our work, however, we define a prefix to be stable only if all
future incremental results have the same prefix. Thus, the word
“a” does not end a stable prefix at frame (230), whereas the
word “peter” at (60) does. Although typically sub-word prefixes
are not considered under our definition of stability, we make an
exception when an entire word is a prefix of another word in the
subsequent incremental result. Thus, the word “pick” at (120)
also ends a stable prefix (in this case the entire incremental re-
sult.)

Given a set of incremental results, like those shown in the
example, it is possible to compute ideal prefixes with respect to
our stability criterion. In Figure 1, these prefixes are lightly out-
lined. Immediately apparent is the fact that, even with ideally
prefixed incremental results, there is likely to be some degree
of lag between the time the word was actually spoken and when
it becomes stable on the decoder’s best path (assuming it was
recognized correctly.)

Of course, the ideal prefixes are not known a priori. We
therefore resort to estimating a stability statistic, which can be
used to recover prefixes that are likely to be stable from each in-
cremental result. A reasonable stability estimate for each prefix
would allow a client of the recognizer to operate on longer pre-
fixes when instability can be tolerated and shorter prefixes when
high stability is required. A shorter prefix, however, would in-
cur a longer lag. This tradeoff between the lag behind the de-
coder and the stability of the incremental results becomes the
center of our analysis in later sections.

3. Features

Similar to word confidence modules, our word stability module
can handle arbitrary features extracted during decoding. Given
a word w; occurring in an incremental result in our training
corpus, we extract features from the relevant utterance up to
time ¢ to predict the stability of the prefix ending in w;. The
feature vector we create, f(w:), can be as small as a single
feature, or contain thousands of features. In this section, we
describe some of the features we have explored.

We begin with two duration-related features, similar to
those examined in [7]. The right-context, c,,, of a word w
measures how close (in seconds) to the end of the incremental
result the word resides in an alignment of the incremental result.
A slightly more subtle duration-based feature is that of age, a.,,
which we define to be the amount of time that a prefix has sur-
vived on the best path without changing as more audio has been

(1)

(10) tea

(20) tea for

(40) Dpeter:

(60) peteripie

(80) peter

(100) peter“éiﬁéf """"""""""

(120) peter piper pick

(150) peter piper pickedé

(230) peter piper pickedéa stack
(250) peter piper pickedé he speck of
(300) peter piper picked a peck of pickled peppers

Data Set WER #Utts. Words
Training 17.2 27,327 6.4
Voice Input 132 49,649 5.6
Voice Search 17.1 27,273 3.2

Table 1: Word error rate, number of utterances, and words per
utterance for the training and test sets.

decoded. Unlike the related “message smoothing” feature de-
scribed in [7], our framework does not allow the incremental
results to conflict with the decoder’s best path.

In addition to duration-based features, one can draw fea-
tures from the the word lattice built during decoding. In this
paper, we experiment with word-level posteriors. Often such
posteriors are used in confidence modules [8], however, here
we must compute word posteriors for partial results. The prob-
ability that a word is correct, p.,, given the evidence seen so far
can be computed from a lattice representing current hypotheses
and scores up to the last frame decoded. Ultimately any number
of features can be drawn from this lattice and incorporated into
our framework to predict stability.

Another property of our search space we may wish to cap-
ture is its size. For example, the immortal nodes described and
explored in [1] and [6] indicate points in the lattice where all
paths converge. In systems with high-perplexity, a more gen-
eral notion of search-space size might be useful. With cost effi-
ciency of primary concern, we take a simple measurement, S,
of our search space size at the exact moment w appears in terms
of the number of arcs currently active divided by the maximum
number of arcs seen so far in the decoding process. This fea-
ture attempts to capture roughly how large our search space is
relative to how large it has been in the past.

With enough data, we can split our feature space by the very
words we are trying to compute stability over. More generally,
we can have indicator functions signify when a word w is found
in one of K categories, 1w, (w). The choice of how to define
the sets W}, can be made in a number of ways. In this work,
we give each of the 1000 most common words in our training
set its own category, and thus indicator function, allowing the
remainder to fall into a set of less frequently seen words. This
catch-all set consisted of words seen fewer than 54 times, and
represented about one quarter of our training set.

We have, of course, left many possible features unexplored,
however, we turn now to a few interaction terms. For each
of the word indicators above, we have defined a feature repre-
senting its age a,, X lw, (w). Including both the interaction
term and the indicator function for each set gives us 2002 word-
related features. We also incorporate a., X pw and a., X Sy, into
our most ambitious model.

4. Stability Estimation

Since transcriptions are not required to ascertain true stability,
we can potentially use an arbitrarily large amount of training
data. We preferred, however, to use a training set with well
understood properties and so we chose a set of transcribed ut-
terances in English sampled from anonymized logs of Voice
Search and from the Voice Input capability on Android phones.
Voice Input [9] utterances consist primarily of short message
dictation, e.g. SMS messages. Voice Search [10] utterances
typically contain spoken queries, and tend to be shorter. Our
test sets consisted of utterances from anonymized logs of the
same two applications, sampled from a different time period.
We report results on Voice Search and Voice Input utterances



1 =
0.95+ 1
2
Tﬁu —— PAWS Features
= 085 = Age 1
n = = = Right Context
@® No Stabilization
¢ Oracle Stability
0.7

0 0.2 0.4 0.6 0.8
Average Lag (seconds)

Figure 2: Stability/Lag tradeoft for Voice Search.

separately, given the differences between two applications. Ta-
ble 1 provides details about the datasets, such as word error rate
(WER) and average utterance length.

The incremental recognition results generated by our train-
ing set contained 444,328 individual words (where a word is
considered the same across partial results if it appears in the
same position). We decoded using a 4-gram language model
with a vocabulary of approximately 1 million words, and a tied-
state triphone GMM-based HMM acoustic model trained us-
ing ML and boosted-MMI objective functions. We use PLP-
cepstral coefficients and LDA.

We use a regression to estimate the probability that a pre-
fix of an incremental result is stable given features associated
with its final word. Due to the ubiquity of its training software
and the simplicity of its parametrization, we present results here
using logistic regression. Given data of the form (ws, y:), we
populate a feature vector, f(w;), of size M to train a set of
parameters 3 € R™. A single frame was randomly sampled
from each of the 444,328 hypothesized words in the incremen-
tal results of our training set, and features f(w:) were com-
puted at that frame. The binary response y: was recorded to
represent the true stability of the prefix ending in w;. With
our parameters trained, we can predict our stability statistic

s = logit™" (Bf (wt)).

5. Analysis

We perform our analysis from the perspective of a client of the
speech recognizer. We believe that a simple threshold, whereby
the client makes use of the longest prefix with a stability of at
least ¢ € [0,1], will be one of the more common operations
performed on stability. One caveat with thresholding the raw
statistic, however, is that spurious deletions may occur if a sta-
bility happens to oscillate around the threshold. Also, given our
definition of stability, it makes sense to ensure that stabilities
decrease from left to right in a given incremental result. We
analyze stability under both of these monotonicity constraints.

Regardless of how they are chosen, it is clear that using
prefixes of incremental results will introduce a lag between the
current frame being processed by the decoder and the last frame
represented in the prefix. In a dictation application, for example,
this manifests itself in the delay between speaking a word and
seeing it onscreen. It is this tradeoff between lag and stability,
that we wish to analyze here.

Numerous metrics to analyze the tradeoff between stability
and lag have been thoroughly explored in [7]. We have opted
for the somewhat simpler approach of comparing a single met-
ric of stability to a single metric of lag. To compute the average

1 P T T
95
=
3 —— PAWS Features
T g5 == Age ]
w = = =Right Context
@® No Stabilization
5/ Oracle Stability
.75

0 0.2 0.4 0.6 0.8
Average Lag (seconds)

Figure 3: Stability/Lag tradeoff for Voice Input.

number of seconds of audio ignored by a given stability thresh-
old, we examine a partial alignment at every frame, and sum
together the time corresponding to words that do not meet the
threshold. We then divide by the duration of the corpus to re-
trieve the average amount of lag the threshold introduces.

It is important to remember that ¢ defines the minimum sta-
bility that the client finds acceptable, so the stability felt by the
end user may actually be significantly higher. To obtain a notion
of stability at a given threshold, we therefore compute the frac-
tion of frames which contain a stable prefix when thresholded
using . We can then use ¢ as an operating parameter and sweep
out a plot of the average lag experienced against the fraction of
the time a stable prefix is active. Under this corpus-level notion
of stability both our test sets were already around 75% stable
when the entire best path is always used. It should be noted
that analyzing distinct results would not look as rosy. Our met-
rics examine every frame, however, to provide a fair comparison
across all our feature sets.

In Figures 2 and 3, we show the stability improvement on
Voice Search and Voice Input data as a function of lag. The or-
acle point represents the stability and lag of the ideal set of pre-
fixes of the incremental results in the test set. The three curves
represent stability threshold sweeps on regressions learned from
three different feature sets. The first feature set is simply cu),
the right-context of a word. The second is again a single fea-
ture a.,, age. It should be noted that we allowed intercept terms
for the regression on each of these single-feature sets. Clearly,
age is more indicative of stability than right-context. This result
is intuitive, however, in that even if a word has a large amount
of right-context, a young age implies that it has changed in the
recent past and may change again.

Given that age was such a strong feature, we decided to
combine it with the other features in our final set. In addition
to the interaction terms a., X pw and a. X S, we include the
2002 word-based features, mentioned in the previous section.
We refer to this choice of features as the PAWS feature set since
it includes features based on posteriors, age, words, and a search
statistic.

On the Voice Search test set, this configuration achieves op-
erating points closest to the oracle. On the Voice Input set, how-
ever, the gains are reduced to almost nothing. We believe the
differences are largely due to utterance length. We have chosen
features that target a single word to predict the stability of an
entire prefix. While the monotonicity constraints we impose do
propagate low stabilities within a partial, we believe that fea-
tures geared towards explicitly capturing longer dependencies
would be worth exploring to improve performance on long ut-
terances. We could introduce language model scores or other



Visualizing the Fit of Estimated Stability

1r " w n
'
0.87
>06f
%
004 — Estimated Stability
+ Voice Input
0.2 = Voice Search
O 1 1 1 1 J
0 2 A4 6 8 1.0

Aé:;e (seconds survived on best bath)

Figure 4: A sigmoid learned for the age feature accompanied
by the actual fraction of stable utterances in a set of evenly dis-
tributed bins.

cross-word statistics easily into the logistic regression frame-
work.

While the tradeoff analysis provides a clean picture of how
the stability of a corpus of thresholded prefixes relates to the lag
introduced, it does not explicitly show how accurate the stabili-
ties themselves are. To visualize this, we have chosen to plot the
regression learned using the age feature against the true distri-
bution of the data in the test sets in Figure 4. Prefixes from the
test sets, sampled in the same manner as the training set, were
binned according to their age. The mean age of each evenly
spaced bin was plotted against the fraction of prefixes that were
stable in that bin. We can see from the binned test data that
the learned curve does a reasonable, though not perfect, job of
fitting the true data. It appears that we are slightly underestimat-
ing probabilities below about .9, but then the estimates become
more accurate.

One way to achieve a more accurate estimate would be to
bin the feature-space itself. Indeed, there are numerous feature
representations that we have yet to explore. Fortunately, the lo-
gistic regression framework can flexibly handle a large number
of features while robustly handling data sparsity issues should
they occur. Finally, the framework can be trained efficiently
with distributed techniques, making it possible to handle ex-
tremely large datasets [11].

6. Conclusions

We have presented a framework for the computation of stabil-
ity of incremental speech recognition results modeled after the
word confidence module typical in speech recognition systems.
Rather than computing a statistic regarding word correctness,
however, the stability statistic measures the likelihood that a
word ends a prefix which remains stable through the remain-
ing incremental results. Note that while we have focused on
assigning stabilities to prefixes delineated by word boundaries,
the methodology developed in this paper could be applied to
sub-word units as well, opening up the possibility of displaying
words themselves incrementally as they are spoken.

We use logistic regression to model stability, reducing the
problem to one of feature selection, and present two single-
feature models and one multi-feature model. Perhaps surpris-
ingly, the simple “age” feature, indicating the length of time an

incremental result has been on the best path, performs remark-
ably well. We show further gains using a feature set that incor-
porates thousands of word-related features. While more explo-
ration needs to be done to translate these gains to dictation-like
test sets, the framework makes it straightforward to experiment
with arbitrary features.

The analysis we have performed in this paper examines lag
in terms of decoded frames of the incoming audio. While this
isolates stability-lag tradeoft, it ignores the effects that the net-
work or computational efficiency can have on lag. These con-
cerns might be addressed by revisiting either the features them-
selves or the rate at which they are sampled. We leave these
experiments, however, to future work.

It is our belief that faster, more stable incremental results
will translate into a more natural user experience. Indeed, the
improvements shown in this paper are easily noticeable at the
level of an individual utterance. When aggregated across a large
user-base, however, the impact of saving a few hundred mil-
liseconds becomes truly significant. Perhaps equally important
is the fact that our framework allows each spoken language ap-
plication to determine how best to make use of the incremental
speech recognition results.

7. Acknowledgements

We would like to thank Brian Strope for helping us configure
the data sets and making useful suggestions along the way.

8. References

[1] P. Brown, J. Spohrer, P. Hochschild, and J. Baker, “Partial Trace-
back and Dynamic Programming,” in Proc. of ICASSP, 1982.

[2] G. Aist, J. Allen, E. Campana, C. G. Gallo, S. Stoness, M. Swift,
and M. K. Tanenhaus, “Incremental dialogue system faster than
and preferred to its nonincremental counterpart,” in Proc. of the
29th Annual Meeting of the Cognitive Science Society, 2007.

[3] M. Saraclar, M. Riley, E. Bocchieri, and V. Goffin, “Towards au-
tomatic closed captioning: low latency real time broadcast news
transcription,” in Proc. of ICSLP, 2002.

[4] S. Kanthak, S. Molau, A. Sixtus, R. Schliiter, and H. Ney, “The
RWTH large vocabulary speech recognition system for sponta-
neous speech,” in Proc of the Konvens, 2000, pp. 249-254.

[5] About google instant. Accessed: March, 2012. [Online]. Avail-
able: http://www.google.com/insidesearch/instant-about.html

[6] E. Selfridge, I. Arizmendi, P. Heeman, and J. Williams, “Stabil-
ity and accuracy in incremental speech recognition,” in Proc. of
SIGDIAL, 2011.

[7] T. Baumann, M. Atterer, and D. Schlangen, “Assessing and Im-
proving the Performance of Speech Recognition for Incremental
Systems,” in Proc. of NAACL-HLT, 2009.

[8] G. Evermann and P. C. Woodland, “Large vocabulary decoding
and confidence estimation using word posterior probabilities,” in
Proc. of ICASSP, 2000.

[9] B. Ballinger, C. Allauzen, A. Gruenstein, and J. Schalkwyk, “On-
demand language model interpolation for mobile speech input,”
in Proc. of Interspeech, 2010.

[10] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba,
M. Cohen, M. Garrett, and B. Strope, “Google search by voice: A
case study,” in Advances in Speech Recognition: Mobile Environ-
ments, Call Centers, and Clinics. Springer, 2010.

[11] G. Mann, R. Mcdonald, M. Mohri, N. Silberman, and D. D.
Walker, “Efficient large-scale distributed training of conditional
maximum entropy models,” in In Advances in Neural Information
Processing Systems, 2009.



