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Abstract

This report proposes a novel approach for Gaussian Mixture Model (GMM) weights decomposition

and adaptation. This modeling suggests a new low-dimensional utterance representation method, which

uses a simple factor analysis similar to that of the i-vector framework. The suggested approach is applied

to the Robust Automatic Transcription of Speech (RATS) language identification evaluation corpus,

where the speech recordings are from highly degraded communication channels. In our experiments,

after modeling each utterance using the proposed approach, a Deep Belief Networks (DBN) is utilized

to recognize the language of utterances. The assessment results show that the proposed method improves

conventional maximum likelihood weight adaptation. It is also shown that the absolute and relative

improvement obtained by the score-level fusion of the i-vector framework and the proposed method are

5% and 17% respectively.

I. INTRODUCTION

Recent studies show that the GMM weights carry complimentary information to GMM means [1]–[3].

Consequently, incorporating them in the recognition system may increase the overall accuracy. Assuming

the Universal Background Model (UBM) components represent the acoustic space in the training dataset,
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each element in the adapted GMM weights supervector of an utterance reflects the existence level of the

specific components (phonemes) in the utterance. Since each language is constructed from a specific set

of phonemes, GMM weights can be indicative for language identification. For example, in identification

of Farsi from Arabic we can use the fact that unlike in Farsi, phoneme /p/ does not exist in Arabic.

Therefore, if an utterance –regardless of its length– contains /p/, we can be sure that it is not Arabic.

The main purpose of this report is to develop an approach to use this information effectively.

In the field of speaker/language recognition and age estimation, recent advances using i-vectors have

increased the recognition accuracy considerably [4]–[6]. The i-vector framework, which provides a

compact representation of an utterance in the form of a low-dimensional feature vector, applies a simple

factor analysis on GMM means. Inspired from Joint Factor Analysis, Kockmann et al. introduced an

approach for Gaussian weight supervector decomposition for prosodic speaker verification [7]. The

same approach was also used to apply a channel compensation in the context of phonotactic Language

recognition [8]. Soufifar et al. applied the same approach to extract low-dimensional phonotactic features

for LRE and they named it “i-vector for phonotactic Language recognition” [9], [10]. Although this

method seems to be similar to the i-vector framework –as it is named in [9]– is has some important

differences. In the standard i-vector framework it is assumed that adapted means are the results of adding

the UBM mean and an offset vector. The additive relation of UBM and the offset is changed to a

multiplicative relation in this approach. Furthermore, no prior distribution is considered for the target

low dimensional vector. To overcome these problems, a new method for GMM weight decomposition is

suggested in this report.

II. BACKGROUND

A. Universal Background Model

Consider a Universal Background Model (UBM) with the following likelihood function of data X =

{x1, · · · ,xt, · · · ,xτ}.

p(X|λ) =

C∑
c=1

bcp(xt|µc,Σc)

λ = {bc, µc,Σc}, c = 1, · · ·C (1)

where xt is the acoustic vector at time t, bc is the mixture weight for the cth mixture component,

p(xt|µc,Σc) is a Gaussian probability density function with mean µc and covariance matrix Σc and C

is the total number of Gaussians in the mixture (in this work C is 2048).
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B. Multinomial Subspace Model [7]

Consider the following log-likelihood of data for a multinomial model with C discrete classes:

log p(X ) =

τ∑
t=1

C∑
c=1

γc,t logΦc (2)

where γc,t is the occupation count for class c and segment t. T denotes the total number of observations

and Φc are the probabilities of multinomial distribution defined as follows:

Φc =
exp(vc + Lcr)∑C
j=1 exp(vj + Ljr)

(3)

where vc is the cth element of the origin of the supervector subspace, Lc is the cth row of the subspace

matrix and r is a low dimensional vector representing speaker and channel.

In this method, in each iteration of the Expectation Maximization (EM) algorithm, a Newton-Raphson

approach is used to update Lc and r. Details of parameter reestimation can be found in [7]. As it can

be interpreted from the Multinomial Subspace Model, the adapted weights are obtained by multiplying

UBM weights supervector to an offset supervector Lr. However, this multiplicative relation, may lead

to inaccurate results specially for short utterances, where the adaptation data is sparse. Since no prior

distribution is assumed for r, it might be poorly estimated in the case of short utterances and multiplying

Lr to UBM weights supervector may result in inaccurately adapted weights. To tackle this problem an

i-vector like GMM weight supervector decomposition is elaborated in next section.

III. GMM WEIGHT SUPERVECTOR DECOMPOSITION

The basic assumption of this framework is that the cth Gaussian weight of the adapted GMM (wc)

can be decomposed as follows.

wc = bc + Lcr (4)

where bc is the UBM weight of corresponding component. Lc denotes the cth row of the matrix L, which

is a matrix of dimension C× ρ spanning a low-dimensional subspace. r is a low dimensional vector that

best describe the utterance-dependent weight offset Lr. The subspace matrix L is estimated via factor

analysis to represent the directions that best separate different speech recordings in a large development

data set.

Like in the i-vector framework, the procedure of calculating L and r involves the Expectation-

Maximization (E-M) algorithm. In the Expectation-step, L is assumed to be known and we try to update

r. Similarly in the Maximization-step, r is assumed to be known and we try to update L. Each step is

elaborated as follows.
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A. Updating vector r

In the Expectation-step, vector r is estimated as follows.

1) Constrained optimization problem: Consider the following log-likelihood of data X

log p(X ) =

τ∑
t=1

C∑
c=1

γc,t logwc (5)

substituting wc by bc + Lcr results in

log p(X ) =

τ∑
t=1

C∑
c=1

γc,t log (bc + Lcr) (6)

or

log p(X ) = γ̄′(X ) log (b+ Lr) (7)

where the log operates element-wise, ′ denotes transpose and γ̄(X ) is

γ̄(X ) =
∑
t

[
γ1,t · · · γC,t

]′
(8)

Given an utterance X , a maximum likelihood estimation of r can be found by solving the following

constrained optimization problem.

max f(r) (9)

Subject to

g(b+ Lr) = 1 Equality constraint

b+ Lr > 0 Inequality constraint

where f(r) = γ̄′(X ) log (b+ Lr) and g is a row vector of dimension C with all elements equal to 1.

This constrained optimization problem has an analytical solution for a square full-rank L (The proof for

this relation is given in Appendix A).

r(X ) = L−1

[
1

τ
γ̄(X )− b

]
(10)

For a skinny L, where the number of rows is more than the number of columns, solving this constrained

optimization problem involves using iterative optimization approaches. There are different tools to solve

this large-scale constrained maximization problem in a reasonable time for each utterance, such as L-

BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno) [11]. However, using these methods for a

large number of utterances can be too time-consuming. To decrease the computation time, we relax the

constraints and convert the problem to an unconstrained optimization by the following simple techniques.
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2) Relaxing the equality constraint: The equality constraint is

gb+ gLr = 1 (11)

We know that UBM weights sum up to 1 or gb = 1. Hence

gLr = 0 (12)

If g is orthogonal to all columns of L, i.e., gL = 0 , the constraint 12 holds for any possible r. In

maximization-step, L is calculated such that gL = 0 holds.

3) Relaxing the inequality constraint: As can be seen in Equation 9 there are C inequality constraints. If

any inequality constraints is violated, the cost function of 9 cannot be evaluated. In numerical optimization,

if we start from a feasible point, there will be a wall over which we cannot climb as the cost function

becomes infinite at the boundary. Therefore, by controlling the steps of the maximization approach,

violating the inequality constraint can be easily avoided. Exception is when any component of γ̄′(X ) is

zero. To avoid this problem, we replace zero elements of γ̄′(X ) by very small positive values.

4) Maximization using gradient ascent: By simplifying the problem to an unconstrained maximization,

different optimization techniques can be applied to obtain the maximum likelihood estimate of r in a

reasonable time. In this report, we use a simple gradient ascent method with the following updating

formula.

ri = ri−1 + αE 5 f(ri−1) (13)

5f(r) = L′
[γ̄′(X )]

[b+ Lr(X )]
(14)

where [A]
[B] denotes the element-wise division of matrix A and matrix B, subscript i is the index for

gradient ascent iteration, αE is the learning rate and 5 denotes gradient. In this algorithm, αE is reduced

at each unsuccessful step (e.g. halved). Unsuccessful is when f(r) decreases or any of the inequality

constraints are violated.

5) Initialization: Like in many optimization problems a bad initialization leads to a bad result. In this

section, we try to obtain a reasonable initial point to be used in the iterative optimization algorithm.

As mentioned, the constrained optimization problem has an analytical solution in the case of a square

full-rank L given in Relation 10. For a skinny L, the constrained optimization problem has no analytical

solution. However, we can use the left pseudo-inverse instead of the inverse to obtain a vector of the

same dimension as r.

runfeasible = L†
[

1

τ
γ̄(X )− b

]
(15)
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where † is the sign for left pseudo-inverse. runfeasible is an optimal solution for minimizing the Euclidean

distance between 1
τ γ̄ and b+Lr. However, this solution (runfeasible) may violate the inequality constraints

of the problem and hence be unfeasible. Since wc = bc+Lcr and bc is non-negative, a r with sufficiently

small elements satisfies the inequality constraints. Therefore, by multiplying a small value θ to runfeasible

we obtain a feasible initial point as follows.

r0 = θrunfeasible (16)

We can start from θ = 1 and reduce it (half) it till reaching a feasible initial point On our data, θ = 0.1

is small enough to obtain a feasible initial point.

6) Prior Distribution of r: By assuming a prior distribution on r the objective function of the above

optimization problem changes to

v(r) = eγ̄
′(X ) log (b+Lr) × g(r) (17)

where g(r) is the prior distribution of r. Now we have to apply Maximum-a-Posteriori (MAP) estimation

to calculate the corresponding r for each utterance. Since the mean of the distribution of w is b and in

this method w = b+Lr, the mean of the distribution of r is zero. On the other hand, for short utterances

we expect that the adapted weights be similar to UBM weights b. Therefore, assuming that the prior of

r is Gaussian or Laplacian with a small variance to keep w non-negative seems to be appropriate. For

simplicity the prior distribution of r is assumed to be Gaussian in this report. Therefore the objective

function and its gradient change to

f(r) = γ̄′(X ) log (b+ Lr)− 1

2δ2
r′r (18)

5f(r) = L′
[γ̄′(X )]

[b+ Lr(X )]
− r

δ2
(19)

As it can be understood from this equation, the prior distribution forces r to have small elements and

the standard deviation δ of prior distribution controls the balance between the two parts of the objective

function.

June 12, 2013 DRAFT



7

B. Updating matrix L

In the Maximization-step, assuming r is known for all utterances in the training database, matrix L

can be obtained by solving the following constrained optimization problem.

max h(L) (20)

Subject to

g(b+ Lr(X (s))) = 1 Equality constraint

b+ Lr(X (s)) > 0 Inequality constraint

s = 1, · · ·S

where

h(L) =
∑
s

γ̄′(X (s)) log [b+ Lr(X (s))] (21)

This constrained optimization problem has no analytical solution. Therefore, iterative optimization ap-

proaches are required.

As mentioned in Section III-A3, violating the inequality constraints can be avoided easily in numerical

optimization by starting from a feasible initial point and controlling the steps size.

All equality constraints can be simplified to a single constraint gL = 0 using the same trick mentioned

in Section III-A2. To solve the resulting optimization problem with equality constraint gL = 0, we apply

projected gradient algorithm [12].

Li = Li−1 + αMP 5 h(Li−1) (22)

5 h(L) =
∑
s

[γ̄(X (s))]

[b+ Lr(X (s))]
r′(X (s)) (23)

P = I − 1

C
g′g (24)

where subscript i is the index for gradient ascent iterations, αM is the learning rate, I is an identity

matrix of size C. In this algorithm, αM is reduced at each unsuccessful step (e.g. halved) and increased

in each successful step (multiplied by 1.5). Unsuccessful is when h(L) decreases or any of the inequality

constraints are violated.

1) Initialization: We use Principle Component Analysis (PCA) for initialization of L. In other words,

we first form matrix W from the maximum likelihood estimations of GMM weights for all training

utterances as follows.

W =

[
γ̄(X (1))

τ(1)
, · · · , γ̄(X (s))

τ(s)
, · · · , γ̄(X (S))

τ(S)

]
(25)
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Then, the first ρ principle components of W are used as initial point of L for maximization of h(L).

IV. GMM WEIGHT SUBSPACE FOR LANGUAGE RECOGNITION

A. Classifier

A multilayer perceptron (MLP) is a supervised, feedforward neural networks, which is widely applied

to regression and classification problems [13]. An MLP usually utilizes a derivative-based optimization

algorithm such as backpropagation for training the network. The main deficiency of MLPs is that their

objective function is non-convex and a derivative-based optimization algorithm may get stuck in a local

minimum. This is more challenging in the case of a high dimensional input space or when more hidden

layers are used. DBNs try to solve this problem by proper initialization of the network. This initialization

is performed for each layer independently in a greedy approach. For initializing each layer, the hidden

variables of the previous layer are considered as observed variables. This approach has found many

applications in image recognition and speech technology [14], [15]. In this research, we applied a four-

layer DBN where the input layer has 1000 neurons (dimension of the input space), the first hidden layer

consists of 1000 neurons, the second hidden layer consists of 200 neurons and the output layer has 6

neurons (the number of language categories).

B. Training and Testing

The principle of the proposed language recognition approach is illustrated in Figure 1. As it can be

interpreted from this figure, in the training phase, each utterance in the train data set is converted to

a vector using the aforementioned utterance modeling approach. Then, the obtained vectors along with

their corresponding language label are used to train a DBN.

In the testing phase, the proposed utterance modeling approach is applied to extract the feature vector

from the utterance of an unseen speaker. Then the trained classifier uses the extracted vector to recognize

the language of the test speaker.

V. EXPERIMENTAL SETUP

A. Database

RATS P1 evaluation corpus is partially sourced from some existing databases including

•Fisher Levantine conversational telephone speech (CTS).

•Callfriend Farsi CTS.

•NIST LRE Data - Dari, Farsi, Pashto, Urdu and non-target languages.
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New data, namely RATS Farsi, Urdu, Pashto, Levantine CTS, was also collected and added to the

database. All recordings were retransmitted through eight different communication channels. The goal is

to categorize test set speech recordings into six different groups including five target languages, namely

Dari (Dar), Arabic Levantine (Arle), Urdu (Urd), Pashto (Pas), Farsi (Far), and one non-target category

which can be from 10 unknown languages the RATS P1 evaluation corpus is divided into three disjoint

databases namely training, development and evaluation. Table I lists the number of utterances in each

category for training, development and evaluation data sets. The duration of all utterances in the training

and development datasets is 120 seconds (s). Therefore, shorter duration speech signals have been created

by cutting the original utterances after speech activity detection. The evaluation set speech signals has

four different durations 120s, 30s, 10s and 3s.

B. Performance Measure

The effectiveness of the proposed method is evaluated using the percentage of correctly classified

utterances (Pcc) and Confusion Matrix. Pcc is a simple performance measure which can be calculated

Fig. 1: The block diagram of the language recognition systems in training and testing phases.
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TABLE I: The number of utterances for each category in Training, Development and Evaluation

databases.

Language Training Development Evaluation

Dar 3305 2733 184

Arle 46760 4023 1085

Urd 22775 4019 908

Pas 29605 4007 1032

Far 9006 3999 947

Non-Target 29208 9723 2518

Total 140659 28504 6674

using the following relation.

Pcc =
Ncc

NT
× 100 (26)

where Ncc and NT denote the number of correctly classified utterances and the total number of utterances

in the test data set respectively.

VI. RESULTS

In this section, the performance of the proposed method is investigated using some preliminary exper-

iments. The feature extraction stage used in this work is based on a Shifted Delta cepstral representation.

Speech is windowed at 20ms with a 10ms frame shift filtered through a mel-scale filter bank. Each vector

is then converted into a 56-dimensional vector following a shifted delta cepstral parameterization using

a 7-1-3-7 scheme and concatenation to the static cepstral coefficients. Speech activity detection based on

a Brno university of technology neural network implementation is then applied to remove the silence.

Table II lists the Pcc for three utterance modeling approaches. In the first one, labeled as GWS, each

utterance is modeled by its corresponding GMM weight supervector obtained using the conventional

maximum-likelihood method. The second utterance modeling method is standard i-vector framework and

the third method, labeled as r-vector, is the proposed approach. r-vectors are obtained after six E-M

iterations. The number of successful gradient descent iterations in the E-step and the M-step are 8 and 5

respectively. The Table II shows that the proposed weight supervector decomposition improves the results

of GWS by more than 4%. However, as expected, the accuracy of the introduced method is lower than

the i-vector based system.
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TABLE II: Comparison of i-vector, r-vector and GWS in language identification. The results are given

in Pcc.

System Evaluation Dataset

Configuration 120s 30s 10s 3s

GWS 86 68 51 38

r-vector 89 73 57 39

i-vector 90 78 61 48

Fusion 90 81 68 55

A. Fusion of the i-vector and r-vector systems

Score level fusion has been carried out to boost the recognition accuracy. The fusion is performed by

training a two hidden layer DBN (layer one and two have 100 and 20 neurons respectively) on the outputs

of DBNs on the development dataset. The last row of Table II shows the results of the fusion. As it can

be interpreted from this table, fusion of r-vector with i-vector increases the recognition accuracy by 5%

(the relative improvement is 17%) . The improvement is more evident in the case of short utterances.

VII. FUTURE WORK

The standard i-vector modeling is based on adapting only the GMM mean components. We believe

that the subspace weight adaption we proposed could be integrated in the classical i-vector extraction in

several ways. One possible combination is to extract an i-vector, which will be based on GMM supervector

modeling, in two steps. In the fist step, we will start by adapting the weights of the universal background

model to the given speech utterance. Then in the second step we will extract the new i-vector based

on these new weights. This new regime of extracting the i-vector representation can be very useful for

speaker as well as language recognition. Other combinations between the two subspace techniques can

also be explored.

We also would like to apply the subspace techniques to speech recognition in a low resource language

scenario using semi-continuous Hidden Markov Models. By exploiting the weight and mean subspaces

learned from the phoneme inventory of multiple languages, we should be able to more reliably adapt the

model for a new target language.

Another intended application is using the proposed method in updating weights for rapid speaker

adaptation of large vocabulary speech recognition systems instead of common non-negative matrix fac-

torization (NMF) based schemes.
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APPENDIX A

The function to be maximized is

f(r) = γ̄′(X ) log (b+ Lr) (27)

The equality constraint is

g (b+ Lr) = 1 (28)

By introducing a Lagrange multiplier we reach

z(x) = γ̄′(X ) log (b+ Lr) + β [1− g(b+ Lr)] (29)

By differentiating 29 with respect to r and setting the result to 0 we reach

[γ̄(X )]′

[b+ Lr(X )]′
L = βgL (30)

Since L is a full rank matrix, we can drop it from both sides of Equation 30.

[γ̄(X )]′

[b+ Lr(X )]′
= βg (31)

hence

γ̄(X ) = β (b+ Lr(X )) (32)

Considering the constraint mentioned in relation 28 and multiplying with g on both sides of relation 32

gγ̄(X ) = βg (b+ Lr(X )) (33)

or

τ = β (34)

Therefore,

γ̄(X ) = τ (b+ Lr(X )) (35)

from which the relation 10 is obtained.

Note that since τ and all elements of γ̄(X ) in relation 35 are non-negative, the result of 10 keeps all

elements of b+ Lr(X ) non-negative as well.
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mial models with intersession compensation,” in Eleventh Annual Conference of the International Speech Communication

Association, 2010.

[8] O. Glembek, P. Matejka, L. Burget, and T. Mikolov, “Advances in phonotactic language recognition,” Interspeech08, pp.

743–746, 2008.

[9] M. Soufifar, M. Kockmann, L. Burget, O. Plchot, O. Glembek, and T. Svendsen, “ivector approach to phonotactic language

recognition,” in Proc. of Interspeech, 2011, pp. 2913–2916.

[10] M. Soufifar, S. Cumani, L. Burget, J. Cernocky et al., “Discriminative classifiers for phonotactic language recognition with

ivectors,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012,

pp. 4853–4856.

[11] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM

Journal on Scientific Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[12] J. A. Snyman, Practical mathematical optimization: an introduction to basic optimization theory and classical and new

gradient-based algorithms. Springer Science+ Business Media, 2005, vol. 97.

[13] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classification,” IEEE Transactions on Neural Networks,

vol. 3, no. 5, pp. 683–697, 1992.

[14] H. Lee, Y. Largman, P. Pham, and A. Y. Ng, “Unsupervised feature learning for audio classification using convolutional

deep belief networks,” Advances in neural information processing systems, vol. 22, pp. 1096–1104, 2009.

[15] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area v2,” Advances in neural information

processing systems, vol. 20, pp. 873–880, 2008.

June 12, 2013 DRAFT


