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Abstract 
This paper is a natural extension of our previous work on 
gender-independent speaker verification systems [1]. In a 
previous paper, we presented a solution to avoid using gender 
information in the Probabilistic Linear Discriminant Analysis 
(PLDA) without any loss of accuracy compared with a gender-
dependent base-line implementation. In this work, we propose 
two solutions to make a speaker verification system based on 
Cosine similarity independent of speaker gender. Our choice 
of the Cosine similarity is motivated by the fact that it is 
proved itself as a second state-of-the art - in parallel with 
PLDA- of i-vector based speaker verification systems. As 
measured by Equal Error Rate and min DCF’s, performance 
results on the extended telephone list coreext-coreext 
condition of SRE20101 show no performance decrease in 
gender-independent Cosine similarity system compared to 
gender-dependent one. Tests were also successful for gender-
independent propositions on a cross gender list as done in [1]. 
Index Terms: Speaker verification, Cosine similarity, gender-
independent, i-vector. 

1. Introduction 
Traditionally, NIST Speaker Recognition Evaluation (SRE) 
tasks [2] involve lists that contain: (i) no cross-gender trials, 
(ii) information about trial gender. In the real word 
applications, it is not obvious how one can obtains such 
information. This is the reason why it is important to design a 
robust speaker verification system that can overcome the lack 
of information mentioned above.   

The introduction of the low dimension representation, 
commonly called i-vector [3][4][5] greatly facilitated the task 
of the speaker recognition community. In fact, two principal 
methods emerged in speaker verification field with the arrival 
of i-vectors, namely Probabilistic Linear Discriminant 
Analysis (PLDA) with its two variants (i.e. Gaussian and 
heavy-tailed) [6] and Cosine similarity [4]. In our previous 
work we have successfully implemented a mixture of PLDA to 
deal with the total lack of gender information in enrollment 
and in test utterances. The main objective of this work is to 
propose solutions in order to implement a gender-independent 
Cosine similarity, which is the historic competitor of PLDA. 
Unlike to the mixture of Probabilistic Linear Discriminant 
Analysis proposed in [1], build a gender-independent system 
in the case of Cosine similarity is not straightforward. Indeed, 
the probabilistic nature of PLDA model allows building the 
gender-independent system by introducing a simple 
                                                                    
 
1 http://www.itl.nist.gov/iad/mig//tests/sre/ 2010/index.html 

modification of the gender-dependent scoring rule. 
Effectively, this modification follows probability rules and 
prevents the explicit use of a gender detector usually based on 
a hard decision. In addition, PLDA model doesn’t need score 
normalization, which facilitates the implementation of the 
mixture of PLDA. In this work we introduce new scoring rules 
in which we combine the Cosine similarity with a soft decision 
Gaussian gender detector in order to implement a gender-
independent speaker verification system. 

The rest of this paper is organized as follows. In the next 
section, we overview the standard gender-dependent Cosine 
similarity based speaker verification system. In Section 3 we 
present with more details our gender-independent speaker 
verification system based on Cosine similarity. In Section 4 
we describe our feature extraction and carried out experiments, 
we also discuss the results. The conclusion is in Section 5. 

2. Gender-dependent Cosine similarity 
(Gd)  

The remarkable capability of i-vectors to capture the most 
important information characterizing a speaker with a 
moderate dimensionality allows the use of multiple traditional 
methods of filtering and normalizing data in order to improve 
classification accuracy. In the following paragraphs we will 
show the steps needed to make Cosine similarity working for a 
speaker verification system [4]. 

Suppose we are given two i-vectors e and t (e and t stand 
for enrollment test i-vectors respectively) in a typical speaker 
verification system based on Cosine similarity. These i-vectors 
are subject to a Linear Discriminant Analysis (LDA) 
projection (e.g. from 800 dimensions to 200 dimensions). 
Usually, a shift of LDA projected data using a sample mean -
estimated on background utterances- followed by a rotation 
via the inverse of the Within Class Covariance (WCC) matrix 
are required in order to centralize data and to penalize axes 
that maximize within class variability. After these steps, a 
length (i.e. Euclidean norm) normalization of i-vectors [7] 
allows an accurate classification by a simple dot product.  

Recently in [8], a further normalization followed LDA, 
sample mean, WCC, and length normalization of i-vectors 
using the mean and covariance matrix of some background 
cohorts was proposed. This proposal is to simulate the score 
normalization, which is an essential step for improving Cosine 
scoring performances. The above process of i-vector 
normalizing is depicted in Figure 1. 

2.1. Raw Cosine scoring 

Without loss of generality we can suppose that e and t were 
already subject to the sequence of transformations (except of 
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score normalization step) depicted in Figure 1, namely LDA 
projection, mean shifting normalization, WCC rotation. In this 
case, the Cosine scoring reduced to a dot product as follows: 

  raw_ score_Gd(e, t) = e* ⋅ t  (1) 

where e and t are normalized as we cited previously and their 
lengths are normalized as follow: 

  

e =
e

e

t =
t

t

 (2) 

Note that the exponent star in all our mathematic formulas 
will refer to the transpose operator and ⋅ is the Euclidean 
norm of a given vector. 

2.2. Score normalization  

Normalization of scores is an essential step to produce an 
efficient speaker verification system based on Cosine 
similarity. Traditionally, Cosine similarity scoring works well 
with zt-norm score normalization method.  In this work we 
will use a proxy of zt-norm proposed in [8]. Due to the 
symmetric propriety of Cosine scoring, the zt-norm like 
scoring has a great advantage, as one could estimate all needed 
parameters (namely a mean vector and covariance matrix of a 
cohort set) from a set of background i-vectors in an offline 
way. The zt-norm like scoring is given by the following 
formula: 

 
zt _ score_Gd(e, t) =

(e−μimp )* ⋅ (t −μimp )

Cimp ⋅e ⋅ Cimp ⋅ t

                               =
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 (4) 

where μimp andCimp are respectively the mean and the 
Cholesky decomposition of covariance matrix of some cohort 
background i-vectors normalized with the same sequence of 
operations as e and t. In fact, if we suppose independence 
constraint, we can takeCimp as the square root of the diagonal 
of impostor covariance matrix. Observing zt-norm formula we 
can realize that we are able to apply score normalization 
separately on enrollment and test i-vectors.  

3. Gender-Independent Cosine similarity  
We use a discrete hidden variable g that takes its values in the 
set {F,M} for female and male genders respectively. Before 
going into details of the proposed gender-independent system, 
we first describe the gaussian gender-detector based on the 
WCC’s covariance matrix.    

3.1. Gaussian gender detector  

Despite the fact that it is possible to build a gender detector 
simply by training a two-class classifier, we propose to 
explore a simple idea of modeling each gender with a multi-
dimensional gaussian distribution in the i-vector space. The 
originality of our idea is the use of the gender-dependent 
sample mean μ  and the within class covariance matrix (see 
Figure 1) respectively as mean vector and covariance matrix of 
the gender-dependent gaussian model. Proceeding as proposed 
we need no extra training procedures for the gender detector. 
When we test this gender detector on SRE 2010 telephone data 
(det5 utterances) we get ~1.9% of error of identification (see 
Table 1 for more results).  

Table 1 Performance of the gaussian gender-detector on a 
subset of SRE 2010 telephone data (set5 data) as measured by 
error of identification (Error shown in %); the number of test 
observations is also provided (#Obs). 

MALE FEMALE Mean / Total 
Error (%) #Obs Error (%) #Obs Error (%) #Obs 

1.56 2294 2.29 2740 1.92 5034 

3.2. Naïve Gender-independent scoring (NGi)  

If we prefer a simplest (naïve) way to implement a gender 
independent scoring using Cosine similarity, one can estimate 
gender-dependent parameters depicted in Figure 1 (i.e. WCC, 
sample mean μ and parameters of score normalization) in a 
gender-independent manner by pooling all male and female 
data. Indeed, in this case we will not need any gender-detector 
to perform gender-independent scoring.  

In fact, from our previous work [1] and the theoretical 
point of view we will explain later in the section 3.4, that is a 
hard task to get the naïve gender independent working 
especially in the presence of score normalization step. 
Although this proposal does not seem mature enough to deal 
with this problem we believe that it should serve as a 
benchmark.      

Input: raw i-vector  

Projection: LDA projection 
& dimensionality reduction 

Shift &Rotation:  
& WCC 

Length 
normalization 

Score normalization: 
Background cohorts 

Figure 1: Block diagram describing the extraction procedure 
of normalized gender-dependent i-vector ig from a given raw i-
vector. The index g is a discrete hidden variable indicates the
gender of the i-vector. 

Output: 
 ig gender-dependent 

normalized of i-vector i  

G
ender 

Independent 
G

ender dependent 
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3.3. Gender-independent scoring (Gi) 

Without loss of generality, let us suppose that we can derive 
two gender-dependent normalized i-vectors ( eF,eM  and 

tF, tM ) of each of enrollment i-vectors e and test i-vector t by 
applying the full procedure illustrated in Figure 1. In the 
context of NIST SRE in which the gender of trials is 
controlled (i.e. there are only same gender trials), a simple sum 
of male and female scores weighted with combined gender 
detector outputs λFF and λMM allows the calculation of the 
gender-independent (Gi) score: 

 
zt _ score_Gi(e, t) = p(e | F) ⋅eF

* ⋅ p(t | F) ⋅ tF( )+
                                p(e |M ) ⋅eM

* ⋅ p(t |M ) ⋅ tM( )
                             = λFF ⋅ (eF

* ⋅ tF )( )+ λMM ⋅ (eM
* ⋅ tM )( )

 (4) 

where eF,eM , tF and tM are male and female normalized i-
vectors of enrolment and test raw i-vectors extracted 
respectively. Weight coefficients are calculated by combining 
gender detector outputs as follows: 

  λFF = p(e | F) ⋅ p(t | F)  (5) 
 λMM = p(e |M ) ⋅ p(t |M )  (6) 

We observe in the first line of gender-independent (Gi) 
score that each normalized enrollment or test i-vectors is 
weighted with the probability that its raw i-vector is either 
male or female gender (i.e. P(. | g) ). These probabilities are 
the outputs of the gaussian gender-detector and are normalized 
in order to sum to one.  

3.4. Cross Gender-independent scoring (CGi) 

So far, we have proposed a gender-independent Cosine scoring 
suitable in situations where we will never be exposed to a 
cross gender trial (i.e. male for enrollment and female for test 
or vice versa). At first glance, this problem seems easy 
because the discrimination of two speakers from different 
genders is easier than if they were from the same gender. 
Indeed, this is not entirely right since one can imagine a 
situation of a traditional gender-dependent GMM/UBM 
system with t-norm scoring based on a hard decision of a 
gender detector to select the gender of the model and the 
cohorts to be used. In a given non-target verification trial, we 
compare a female speaker model with a test speaker who 
happens to be female, but our gender detector suggests us to 
use a male model. So we select the male impostor cohorts for 
t-normalization and find that the test segment score is very 
high. Thus, our system will wrongly conclude that the trial in 
question is a target trial.  

In the previous paragraph we explained the importance of 
addressing the issue of cross gender with caution. Now, we 
present a Cosine scoring that takes care of cross gender trials 
by combining all scoring possibilities as follows: 

           
zt _ score_CGi(e, t) = λFF ⋅ (eF

* ⋅ tF )( )+ λFM ⋅ (eF
* ⋅ tM )( )+

                                   λMF ⋅ (eM
* ⋅ tF )( )+ λMM ⋅ (eM

* ⋅ tM )( )
 (7) 

where λFM and λMF are cross gender weights calculated as in 
formulas (3) and (4): 

  λFM = p(e | F) ⋅ p(t |M )  (8) 
 λMF = p(e |M ) ⋅ p(t | F)  (9) 

Weights are normalized by their sum in order to sum-up to 
one. 

In the subsequent section we will present experiential 
results which confirm that Gi and CGi propositions provide a 
nice solution for making Cosine similarity scoring independent 
from speakers gender.  

4. Experimental setup 

4.1. Feature extraction and normalization 

4.1.1. MFCC extraction 

Each 10ms, 60 Mel Frequency Cepstral Coefficients (MFCC) 
were extracted within a 25ms hamming window (19 MFC 
Coefficients + Energy + first & second Deltas) from speech 
signal. These features were normalized with a short time 
Gaussianization. 

4.1.2. Universal Background Model (UBM) 

We use a gender-independent GMM UBM containing 2048 
Gaussians. This UBM is trained with the LDC releases of 
Switchboard II, Phases 2 and 3; Switchboard Cellular, Parts 1 
and 2; and NIST 2004–2005 SRE. 

4.1.3. i-vector extractor 

We use a gender-independent i-vector extractor of dimension 
800. Its parameters are estimated on the following data: LDC 
releases of Switchboard II, Phases 2 and 3; Switchboard 
Cellular, Parts 1 and 2; Fisher data and NIST 2004 and 2005 
SRE (i.e. telephone speech) and all NIST microphone data (i.e. 
NIST 2005, 2006 and 2008 interview development 
microphone data). 

4.1.4. Linear Discriminant Analysis 

We use a gender-independent LDA to reduce i-vector 
dimensionality from 800 to 200. Its parameters are estimated 
on the following data: LDC releases of Switchboard II, Phases 
2 and 3; Switchboard Cellular, Parts 1 and 2; NIST 2004 and 
2005 SRE (i.e. telephone speech) and all NIST microphone 
data (i.e. NIST 2005, 2006 and 2008 interview development 
microphone data). 

4.1.5. WCC and the sample mean 

Unlike from UBM, i-vector extractor and LDA are gender-
dependent within class covariance matrix and sample meanμ . 
These two parameters are estimated using the 200-dimensional 
i-vectors of NIST 2004, 2005 and 2006 telephone data. 
Moreover, we estimate a gender-independent WCC by pooling 
male and female data.   

4.1.6. Score normalization parameters 

The score normalization parameters, namely μimp  and Cimp , 
are estimated on NIST 2004, 2005 and 2006 telephone data. 
Before estimating μimp  and Cimp

background i-vectors are 
subject to a sequence of transformations as depicted in Figure 
1, namely LDA projection, mean subtraction, WCC rotation 
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and length normalization. Note that we used exactly the same 
i-vector extractor as used in our previous paper [1]. 

4.2. Experiments and discussions 

4.2.1. Test on NIST (det5) list 

In this section we present results for the three gender-
independent Cosine scorings and compare them with the 
gender-dependent Cosine scoring. In addition, we present our 
results of the mixture of PLDA published in [1] in order to 
carry out further comparisons. 

Table 2. Performance of gender-dependent (Gd), Naïve 
gender-independent (NGi), gender independent (Gi), cross 
gender-independent (CGi) and the mixture of PLDA 
(MixPLDA) test on NIST det5 (telephone) list. 

 EER (%) MinDCF_08 MinDCF_10 

M
A

L
E

 

Gd 1.67 0.091 0.415 
NGi 2.60 0.167 0.699 
Gi 1.66 0.090 0.402 

CGi 1.67 0.091 0.405 
MixPLDA 1.81 0.096 0.322 

FE
M

A
L

E
 

Gd 2.60 0.151 0.583 
NGi 3.69 0.250 0.687 
Gi 2.59 0.149 0.550 

CGi 2.61 0.148 0.545 
MixPLDA 2.46 0.124 0.388 

 
Table 2 shows results of our gender-independent 

propositions (i.e. Gi and CGi) that maintain the same 
performance of a gender-dependent (Gd) system. In addition, 
we can also see that the cross gender-independent (CGi) 
scoring outperforms all others for female data. Finally, as 
expected, naïve gender-independent system performances 
were the worst for both genders. We can also observe that 
Cosine similarity results are similar with PLDA ones (see grey 
highlighted row in Table 2), given that we did a perfect back-
to-back comparison.  

In order to provide a more general demonstration of results 
on different operating points, we produce a DET plot depicted 
in Figure 2.  In fact, the effectiveness of our proposals, namely 
gender-independent Gi and cross-gender independent CGi, is 
clear from observing Figure 2, in which we can note the 
superposition of Gi and CGi curves with the gender-dependent 
Gd curve.   

4.2.2. Test on cross gender list 

To carry out cross-gender tests we proceeded as follows. 
Firstly, we score the cross-gender list that we have created by 
replacing the non-target trials in the NIST extended list by the 
cross gender trials [1]. Finally, we use θ08 and θ10 to refer to 
thresholds used to obtain respectively 2008 and 2010 
minimum of NIST DCFs already calculated on the scored det5 
list of NIST (pooled males and females) using Gi or CGi 
scorings. The idea is to use θ08 and θ10 to calculate actual 
DCFs of the cross-gender list scores. Since, both lists share the 
same target trials, and have the same number of non-target 
trials, we expect that these actual DCFs should be at least 
equal to or less than the minimum DCFs calculated on the 
NIST list. Note that, the error rates in these circumstances will 
depend on the proportions of cross-gender trials to same-

gender trials among the non-target trials. Therefore, the 
minimum of DCF is not really meaningful. 

Table 3. NIST list vs. cross-gender list for gender independent 
(Gi), cross gender-independent (CGi) and the mixture of 
PLDA (MixPLDA). Results are for pooled gender scores. 

 EER (%) Actual 
DCF_08 

Actual 
DCF_10 

NIST list 
Gi 2.18 0.125 0.522 

CGi 2.19 0.124 0.509 
MixPLDA 2.24 0.119 0.381 

Cross-
gender list 

Gi 0.89 0.071 0.412 
CGi 1.03 0.071 0.394 

MixPLDA 0.40 0.078 0.349 
 

As expected there is a net gain in the actual DCFs in the 
cross-gender list compared to NIST list (see Table 3). 
Furthermore, we observe that EER for gender-independent 
(Gi) proposal outperforms cross-gender independent (CGi) 
one in both lists. However, DCF_10 of CGi is slightly better 
than Gi one.  

 

Figure 2: Det curves for different systems. Note that these 
curves are obtained by pooling male and female scores. 

5. Conclusions 
This paper is an extension of our pervious one [1] in which we 
succeeded to implement a gender-independent speaker 
verification system based on mixture of PLDA. We show how 
to build a gender-independent speaker verification system 
based on Cosine similarity. Using, two proposals, namely 
gender-independent Gi and cross-gender independent CGi, to 
combine Cosine scoring, enable us to get good results on 
extended det5 of SRE 2010 without taking advantage of 
gender information. In this work, our main contribution was 
twofold. In one hand, we have designed an efficient Gaussian 
gender-detector based on WCC as covariance matrix, which 
has spared us efforts of training extra parameters of an 
independent gender-detector. In the other hand, we used the 
outputs of this gender-detector to weight the sum of gender-
dependent Cosine similarity in order to build the gender-
independent system. Finally, in a back-to-back comparison, 
Cosine results were comparable with mixture of PLDA results 
obtained in the previous work using the same i-vectors. 
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