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ABSTRACT

Neural network based approaches have recently produced
record-setting performances in natural language understand-
ing tasks such as word labeling. In the word labeling task,
a tagger is used to assign a label to each word in an input
sequence. Specifically, simple recurrent neural networks
(RNNs) and convolutional neural networks (CNNs) have
shown to significantly outperform the previous state-of-the-
art — conditional random fields (CRFs). This paper inves-
tigates using long short-term memory (LSTM) neural net-
works, which contain input, output and forgetting gates and
are more advanced than simple RNN, for the word labeling
task. To explicitly model output-label dependence, we pro-
pose a regression model on top of the LSTM un-normalized
scores. We also propose to apply deep LSTM to the task.
We investigated the relative importance of each gate in the
LSTM by setting other gates to a constant and only learning
particular gates. Experiments on the ATIS dataset validated
the effectiveness of the proposed models.

Index Terms— Recurrent neural networks, long short-
term memory, language understanding

1. INTRODUCTION

In recent years, neural network based approaches have
demonstrated outstanding performance in a variety of natural
language processing tasks [1-8]. In particular, recurrent neu-
ral networks (RNNs) [9, 10] have attracted much attention be-
cause of their superior performance in language modeling [1]
and understanding [5, 6] tasks. In common with feed-forward
neural networks [11-14], an RNN maintains a representa-
tion for each word as a high-dimensional real-valued vector.
Critically, similar words tend to be close with each other in
this continuous vector space [15]. Thus, adjusting the model
parameters to increase the objective function for a particular
training example tends to improve performance for similar
words in the similar contexts.

In this paper we focus on spoken language understanding
(SLU), in particular, word labeling with semantic informa-
tion [16-22]. For example, for the sentence “I want to fly
from Seattle to Paris,” the goal is to label the word “Seattle”
and ‘Paris” as the departure and arrival cities of a trip, re-

978-1-4799-7129-9/14/$31.00 ©2014 IEEE

189

spectively. The previous state-of-the-art model that is widely
used for this task [20, 23, 24] is the conditional random field
(CRF) [25], which produces a single, globally most likely la-
bel sequence for each sentence. Another popular discrimina-
tive model for this task is the support vector machine [26,27].

Recently, RNNs [5,6] and convoluational neural networks
(CNNs) [7] have been applied to SLU. The Elman [9] ar-
chitecture adopted in [5] uses past hidden activities, together
with the observations, as the input to the same hidden layer,
which in turn applies a nonlinear transformation to convert
the inputs to activities. The Jordan [10] architecture exploited
in [6] uses past predictions at the output layer instead of the
past hidden activities as additional inputs to the hidden layer.
In [7] CNNs are used similar to that in [28] to extract features
through convolving and pooling operations. CNNs achieved
comparable performances to RNNs on SLU tasks.

The RNNs in [5, 6] are trained to optimize the frame
cross-entropy criterion. More recently, sequence discrimi-
native training is used to train RNNs [29]. Similar work is
conducted in [7] for CNNs. The main motivation of using
sequence discriminative training is to overcome the label
biasness [25] problem that is addressed by CRFs. It incorpo-
rates dependence between output tags and adds a knowledge
source for performance improvements.

In this paper we apply long short-term memory (LSTM)
neural networks to the SLU tasks. LSTM [30, 31] has some
advanced properties compared to the simple RNN. It consists
of a layer of inputs connected to a set of hidden memory cells,
a connected set of recurrent connections amongst the hidden
memory cells, and a set of output nodes. Importantly, input
to and output of the memory cells are modulated in a context-
sensitive way. To avoid the gradient diminishing and explod-
ing problem, the memory cells are linearly activated and prop-
agated between different time steps.

We further extend the basic LSTM architecture to include
a regression model that explicitly models the dependencies
between semantic labels. To avoid label biasness problem,
this model uses un-normalized scores before softmax. In an-
other extension, we apply deep LSTM, which consists of mul-
tiple layers of LSTMs, to the task. To assess which gates in
the LSTM models are important for SLU tasks we simplify
the LSTM models by keeping only particular gates and com-
pare the performance of the simplified models with that of the
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complete LSTM.

2. RECURRENT NEURAL NETWORKS

2.1. LSTM

RNNs incorporate discrete-time dynamics. The long short-
term memory (LSTM) [30,32] RNN has been shown to per-
form better at finding and exploiting long range dependen-
cies in the data than the simple RNN [9, 10]. One difference
from simple RNN is that the LSTM uses a memory cell with
linear activation function to store information. Note that the
gradient-based error propagation scales errors by the deriva-
tive of the unit’s activation function times the weight that the
forward signal weight through. Using linear activation func-
tions allows the LSTM to preserve the value of errors because
its derivative with regard to the error is one. This to some
extent avoids the error exploding and diminishing problems
as the linear memory cells maintains unscaled activation and
error derivatives across arbitrary time lags.

We implemented the version of LSTM [33] described by
the following composition function:

ir = o(Waize + Whihe—1 + Weici—1 + by), (D
fi = oWapme + Whphe1 + Wepe—1 + by), 2
e = 3
Jt © ci1 4 iy © tanh(Weexs + Whehi—1 +be),
o0 = 0(Waomt + Whohi—1 + Weoer + o), 4)
hy = o¢®tanh(c), 5)

where o is the logistic sigmoid function. i, f, o and c are re-
spectively the input gate, forget gate, output gate, and mem-
ory cell activation vectors, all of which have the same size
as the hidden vector h. ® denotes the element-wise product
of the vectors. The weight matrices from the cell to gate vec-
tors (e.g., W,;) are diagonal, so element m in each gate vector
only receives input from element m of the cell vector. How-
ever, the weight matrices from input, hidden, and outputs are
not diagonal.

2.2. Output regression

For language understanding tasks, it is beneficial to incor-
porate dependency of output labels [29, 34]. For example,
the maximum entropy feature in the RNNLM [34] uses word
hashing of the past observations as additional input to the out-
put layer. However, for SLU, there is no such word hashing
that can be applied because the output layers generate pre-
dictions of the semantic tags for the input and these semantic
tags are not observed. Yet, it is still beneficial to incorporate
the past predictions as additional input to the output layer.
The following model exploits LSTM outputs and performs
regression on the predictions. Specifically, we adopted the

190

Fig. 1. Graphical structure of the LSTM and its moving av-
erage extension unrolled at time ¢ — 1 and . ;s represent
inputs; p;s are the excitations before softmax; ;s are the ac-
tivities after softmax; c;s are the memory cell activities; f,
i¢, and o, are forget, input, and output gate respectively; and
h; is the output from LSTM. Small dot node means element
wise product. Bold arrows connect nodes with full matrices.
Thin arrows connect nodes with diagonal matrices.

moving-average model plotted in Figure 1. For clarity, it is
unrolled and includes two time instances ¢ — 1 and ¢.

Importantly, the dependence between output labels is
modeled using the values before the softmax operation,
which are not locally normalized, to avoid label biasness
problem [25,29]. This regression model can be described
mathematically as

bt = Whpht; (6)
M

@ = Z Wyipt—i + bg, @)
i=0

yi = softmax(q), ®

where the matrix W}, transforms h; into a vector that has the
same dimension as the output y;. Matrices W), are the regres-
sion matrices on the predictions p;_; fori = {0,--- , M} and
M is the order of the moving average. W, is initialized to a
diagonal matrix with diagonal components set to 1. For other
Wps they are initialized to zero matrices.

We may also apply auto regression on the predictions. In
this case, Eq. (7) is replaced with

M

Z Wpipt—i + Whpht7
i=1

softmaz(py + by),

Pt (&)

Yt (10)



where b, is a bias vector.

Our initial experiments show that this extension reduces
training entropy but doesn’t result in improved F1 scores. In
addition, the auto-regression model is not as easy to train as
the moving average model, we therefore only consider the
moving average model in this paper.

2.3. Deep LSTM

The deep LSTM is created by stacking multiple LSTMs on
top of each other. The output sequence of the lower LSTM
forms the input sequence for the upper LSTM. Specifically,
input x; of the upper LSTM takes h; from the lower LSTM.
A matrix is applied on the h; to transform it to x;; the matrix
can be constructed so that the lower and upper LSTMs have
different hidden layer dimensions. This paper evaluates deep
LSTMs with two layers.

2.4. LSTM simplification

The process in LSTM includes three gating functions. Each
memory cell ¢; has its net input modulated by the activity of
an input gate, and has its output modulated by the activity
of an output gate. These input and output gates provide a
context-sensitive way to update the contents of a memory cell.
The forget gate modulates amount of activation of memory
cell kept from the previous time step, providing a method to
quickly erase the contents of memory cells [35].

It is interesting to know which gating functions are im-
portant for SLU tasks. To answer this question, we simplify
LSTM networks by activating only particular gates.

The simplest modification would ignore all gating func-
tions. In this case, the memory cells accumulate a history of
inputs without discarding past memories. Inputs to and out-
puts of the memory cells are not modulated. More advanced
networks learn one of the gates and keep other gates fixed to
one.

In the case of learning forget and input gates, the simpli-
fied model can be described as

fi o(Wasxe + Whphe—1 + Wepe1 + by), (1)
iv = o(Waize + Whihe—1 + Weici—1 + b;), (12)
Ct = (13)
ft © i1+ e © tanh(Weewr + Whehi—1 +be),
hy = tanh(ct). (14)

The bias of the gates, e.g., by, are tuned to have a large
value initially to memorize past activations. If a large negative
bias value is used instead, the memory cell will forget its past
activities.
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2.5. Implementation details

We implemented the LSTM architectures using the compu-
tational network toolkit (CNTK) [36]. To support arbitrary
recurrent neural networks, CNTK introduces a specific com-
putation node that does delay operation. In this node, the
forward computation does time-shift operation on input z;
as y; = x¢_n, Which is the past activity of its input at time
t — n. The errors from its output are propagated backward
as dry_,+ = Jy;. This delay node enables constructing
dynamic networks with long context. CNTK includes other
generic computation nodes such as times, element times, plus,
tanh, and sigmoid. Each node implements its forward com-
putation and error back-propagation.

To connect these nodes into a network, CNTK first runs an
algorithm that detects strongly-connected-components [37]
and represents these strongly connected components with
their unique numbers. Since every directed graph is a directed
acyclic graph (DAG) of its strongly connected components,
we can use depth first search to arrange these components,
together with other computation nodes, into a tree. Forward
computation of the constructed tree followed the topolog-
ical order of this DAG. If a node in a strongly-connected-
component is reached and is not yet computed, all the nodes
in this strongly-connected-component are evaluated time-
synchronously.

We use truncated back-propagation-through-time (BPTT)
to update the model parameters [38]. The depth of BPTT
is equivalent to the minibatch size. Therefore, a sentence is
broken into several minibatches. For recurrent neural net-
works including simple RNNs and LSTMs, the activities of
delay node is set to a default value only at the beginning
of a sentence; its activities are carried over to the follow-
ing minibatches. We also compute multiple sequences with
the same length in parallel. This allows efficient computa-
tion in recurrent neural networks because multiple sentences
can be processed simultaneously using matrix-matrix oper-
ations. In practice, using same-length sentences in batches
reduces training time without sacrificing performances. We
implemented both momentum- and AdaGrad-based [39] gra-
dient update techniques. CNTK can run on both GPU and
CPU. For SLU tasks, which are small, we run experiments on
CPUs.

3. EXPERIMENTS

3.1. Dataset

We evaluated the standard LSTM and our extensions on the
ATIS database [16,23,40]. We also include results of simple
RNN and CNN for comparison. This dataset focuses on the
air travel domain, and consists of audio recordings of peo-
ple making travel reservations, and semantic interpretations
of the sentences. In this database, the words in each sentence
are labeled with their value with respect to certain seman-



Table 1. F1 scores (in %) on ATIS with different modeling
techniques. LSTM-ma(3) denotes using moving average of
order 3. Deep denotes deep LSTM.

CRF
92.94

RNN
94.11

CNN
94.35

LSTM
94.85

LSTM-ma(3)
94.92

Deep
95.08

tic frames. The training data consists of 4978 sentences and
56590 words, selected from the ATIS-2 and ATIS-3 corpora.
Test data consists of 893 sentences and 9198 words, selected
from the ATIS-3 Nov93 and Nov94 datasets. The number
of distinct slot labels is 127, including the common null la-
bel; there are a total of 25509 non-null slot occurrences in
the training and testing data respectively. Based on the num-
ber of words in the dataset and assuming independent errors,
changes of approximately 0.6% in F1 measure are significant
at the 95% level.

ATIS dataset also has the named-entity feature, which
contains strong information of semantic tags. For exam-
ple, a sentence of from Boston at would have named en-
tity tag of from B-city_name at and semantic tag of O B-
fromloc.city_-name O. Clearly, named entity provides strong
cue for semantic tags. We believe results with lexicon fea-
tures only would make model comparison more meaningful.
Therefore, in the following, we only report experiments with
lexicon feature!.

3.2. Results with LSTM, output regression, and deep
LSTM

The input x; in the LSTM consists of the current input word
and the next two words in a context window of size 3. Its
hidden-layer dimension is 300 and minibatch size is 30. The
LSTM extension described in Sec 2.2 in addition uses mov-
ing average regression on three predictions p;, p;—1 and p;_s.
The result is denoted as LSTM-ma(3) in Table 1. Regression
matrices e.g. W,,;s are full.

We described in Sec. 2.3 the deep LSTM architecture. In
this experiment, we use 200 hidden layer dimension for the
lower LSTM and 300 hidden layer dimension for the upper
LSTM. Learning rate was 0.1 per sample. Minibatch size was
10.

Table 1 also lists performances in F1 score achieved by
RNN [5] and CNN [7]. Performance by CRF [25] is 92.94%
on this task. Their results are optimal in the respective sys-
tems. RNN in [5] is able to improve F1 score from 92.94%
by CRF to 94.11%. CNN [7] also significantly improves
F1 score over CRF. LSTMs further improve F1 scores to

UIf using lexicon and named entity feature, LSTM obtained 96.60% F1
score and simple RNN obtained 96.57% F1 score [5]. As mentioned in the
dataset description in Sec. 3.1, we believe comparing models trained only on
lexicon feature would be more meaningful. Therefore, we didn’t do further
experiments using named entity features.
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Fig. 2. F1 score versus training iterations by simplified LSTM
with forget gate fixed to 1.0 in round-marked curve, input gate
fixed to 1.0 in triangle-marked curve, and output gate fixed to
1.0 in real curve.

94.92% and 94.85% with and without using the moving aver-
age, respectively. Deep LSTM achieves the highest F1 score
of 95.08%. These improvements are significant compared
against simple RNNs and CNNss.

We observed that the moving average extension has small
but consistent improvements over LSTMs. For example, if
the hidden layer dimension is reduced to 100, LSTM achieves
a 94.62% F1 score while LSTM-ma(3) obtains a 94.86% F1
score. The similar observations were made on internal pro-
duction datasets.

3.3. Results with simplifications

As described in Sec. 2.4, LSTM models can be simplified
by fixing one of the gates to 1.0, and learning the other two
gates. We have shown in Eqgs. (11-14) the case in which the
output gate is set to 1.0 while the input and forget gates are
learned. Figure 2 plots F1 scores with this simplified LSTM
as a function of training iterations. The hidden layer dimen-
sion of this network is 100. The minibatch size is set to 8, and
the learning rate is 0.01. The result is shown in real curve. For
comparison, we also plot the simplified network with forget
gate fixed to 1.0 while learning other two gates. This result
is represented in round-marked curve. Results with the input
gate fixed to 1.0 is plotted in triangle-marked curve.

All of the simplified networks are able to converge in ten
iterations. It is clear that the F1 score of 93.02% without
learning forget gate is lower than that obtained with the other
two configurations. The best F1 score of 94.14% is achieved
with both forget and input gates learned, represented in Eqgs.
(11-14). This result is close to that of using all gates in the
standard LSTM, which achieves 94.25% with the same hid-
den layer dimension and minibatch size. Therefore, if two
gates are to be included in the simplified LSTM, one of the



gates should be the forget gate.

We further applied moving average regression extension
in Sec. 2.2 on the outputs from the simplified LSTMs. With
moving average order of 3, F1 score is improved to 94.28%
from 94.14%. This score is on par with 94.25% by the stan-
dard LSTM.

The importance of gates is different when only one gate is
to be learned, i.e., the other two gates are fixed to 1.0. Under
this condition, the best F1 score is 90.16% with output gate
learned. Learning other gates has lower F1 scores. For in-
stance, learning only forget gate obtains a F1 score of 73.64%.
We plan to conduct further analysis to understand dynamics
and importance of gating in the LSTM networks.

4. CONCLUSIONS AND DISCUSSIONS

We have presented an application of LSTMs to spoken lan-
guage understanding. The LSTMs achieved state-of-the-art
results on the ATIS database. We further made extensions
of LSTM by performing regressions on the output of LSTMs
and building stacks of LSTMs. We observed that these exten-
sions slightly yet consistently improve performances on this
dataset. We investigated the importance of gates in LSTMs
and observed that the forget gate is essential in the LSTM
network if two or more gates are learned.

There are many possible extensions of the work. For in-
stance, we may extend the LSTM gating to work directly on
the weights instead of activation similar to [41]. We may also
investigate using other architectures of neural networks [8,
42-44] and employ sequence discriminative training to the
LSTM for SLU [29].

We plan to conduct error analysis on ATIS and other
datasets to understand and validate this modeling technique
and its extensions.
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