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ABSTRACT

To evaluate state-of-the-art algorithms and draw new insights
regarding potential future research directions in distant speech
recognition, Kinoshita et al. [1] launched the REverberant Voice
Enhancement and Recognition Benchmark Challenge, commonly
known as the REVERB Challenge, intended to provide a test bed
for researchers to evaluate their methods based on common corpora
and evaluation metrics. In this work, we describe our system and
present our results on the 2014 REVERB Challenge (RC). Our sys-
tem is comprised of four primary components: an acoustic speaker
tracking system to determine the speaker’s position; this position
is used for beamforming to focus on the desired speech while sup-
pressing noise and reverberation; speaker clustering to determine
sets of utterances spoken by the same speaker; and a speech recog-
nition engine with speaker adaptation to extract word hypotheses
from the enhanced waveforms produced by the beamformer. On the
REAL RC evaluation data, our system obtained a word error rate of
39.9% with a single channel of the array, and 16.9% with the best
beamformed signal.

Index Terms— Robust Speech Recognition, Microphone arrays

1. INTRODUCTION

Distant speech recognition (DSR) has recently gained a great deal
of interest in the research community [2, 3, 4, 5, 6, 7, 8]. The RE-
VERB Challenge (RC) addresses a certain level of fundamental is-
sues in DSR. The RC data was comprised of two subcorpora: A
simulated corpus was obtained by linearly convolving data captured
with a close-talking microphone and adding noise; such a corpus
could have been created at any time in the past 20 years. The real
corpus was captured in a real meeting room with two circular, eight-
channel microphone arrays; that portion of the challenge data was
recorded at the University of Edinburgh by Lincoln et al. [9]. Re-
sults on portions of the corpus have long since been reported in the
literature [10, 11, 12]. Indeed, the sole novel aspect of the REVERB
Challenge is its requirement that speaker clustering be performed
automatically prior to any speaker adaptation for the primary condi-
tion. Nonetheless, the REVERB Challenge seems to be the first such
competition to have captured broad interest within the community,
which is certainly a laudable accomplishment.

In this work, we describe our system and present our results on
the REVERB Challenge 2014. Figure 1 presents a schematic dia-
gram of our overall system. In Section 2, we discuss our system
for speaker tracking. Our beamforming algorithms are presented in
Section 3. We take up speaker clustering in Section 4. Section 5
presents our system for speaker adaptation and speech recognition.
In Section 6, we provide evidence of the effectiveness of our system.
In the last section of work, we present our conclusions as well as a
prognosis for the future of the field.

2. SPEAKER TRACKING

In this section, we present our speaker tracking system, which,
briefly, has two components. First, time delays of arrival are esti-
mated between pairs of microphones with a known geometry. Sub-
sequently, a Kalman filter is used to combine these measurements
and infer the position of the speaker from them.

2.1. Time Delay of Arrival Estimation

Our speaker tracking system was based on estimation of time de-
lay of arrival (TDOA) of the speech signal on the direct path from
the speaker’s mouth to unique pairs of microphones in the eight-
element of array. TDOA estimation was performed with the well-
known phase transform (PHAT) [13]

ρmn(τ) ,
1

2π

∫ π

−π

Ym(ejωτ )Y ∗n (ejωτ )

|Ym(ejωτ )Y ∗n (ejωτ )| e
jωτ dω, (1)

where Yn(ejωτ ) denotes the short-time Fourier transform of the sig-
nal arriving at the nth sensor in the array [14]. The definition of
the PHAT in (1) follows directly from the frequency domain calcu-
lation of the cross-correlation of two sequences. The normalization
term

∣∣Ym(ejωτ )Y ∗n (ejωτ )
∣∣ in the denominator of the integrand is

intended to weight all frequencies equally. It has been shown that
such a weighting leads to more robust TDOA estimates in noisy and
reverberant environments [15]. Once ρmn(τ) has been calculated,
the TDOA estimate is obtained from

τ̂mn = max
τ

ρmn(τ). (2)
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Fig. 1. Block diagram of the distant speech recognition system.

2.2. Kalman Filtering

Speaker tracking based on the maximum likelihood criterion [16]
seeks to determine the speaker’s position x by minimizing the error
function

ε(x) =

S2−1∑
s=0

[τ̂s − Ts(x)]2

σ2
s

, (3)

where σ2
s denotes the error covariance associated with this observa-

tion, τ̂s is the observed TDOA as in (1) and (2), and Ts(x) denotes
the TDOAs predicted based on geometric considerations.

Although (3) implies that we should find x minimizing the in-
stantaneous error criterion, we would be better advised to minimize
such an error criterion over a series of time instants. In so doing,
we exploit the fact that the speaker’s position cannot change instan-
taneously; thus, both the present and past TDOA estimates are po-
tentially useful in estimating a speaker’s current position. Klee et
al. [17] proposed to recursively minimize the least square error po-
sition estimation criterion (3) with a variant of the extended Kalman
filter (EKF). This was achieved by first associating the state xk of the
EKF with the speaker’s position at time k, and the kth observation
with a vector of TDOAs. In keeping with the formalism of the EKF,
Klee et al. [17] then postulated a state and observation equation,

xk = Fk|k−1xk−1 + uk−1, and (4)
yk = Hk|k−1(xk) + vk, (5)

respectively, where Fk|k−1 denotes the transition matrix, uk−1 de-
notes the process noise, Hk|k−1(x) denotes the vector-valued obser-

+
+

-
yk +Gk

Fk|k-1 z-1I

sk xk|k

Hk

ˆ

yk|k-1ˆ

xk|k-1ˆ

xk-1|k-1ˆ

Fig. 2. Predictor-corrector structure of the Kalman filter.

vation function, and vk denotes the observation noise. The process
uk and observation vk noises are unknown, but both have zero-mean
Gaussian pdfs and known covariance matrices, Uk and Vk, respec-
tively. Associating Hk|k−1(x) with the TDOA function Ts(x) with
one component per microphone pair, it is straightforward to calculate
the appropriate linearization about the current state estimate required
by the EKF [2, §10.2],

H̄k(x) , ∇xHk|k−1(x). (6)

By assumption Fk|k−1 is known, and the predicted state esti-
mate is given by x̂k|k−1 = Fk|k−1x̂k−1|k−1, where x̂k−1|k−1 is
the state estimate from the prior time step. The innovation is defined
as

sk , yk −Hk|k−1

(
x̂k|k−1

)
.

The new filtered state estimate is obtained from

x̂k|k = x̂k|k−1 + Gk sk, (7)

where Gk denotes the Kalman gain [2, §4.3]. A block diagram il-
lustrating the prediction and correction steps in the state estimate
update of a conventional Kalman filter is shown in Figure 2.

The primary free parameters in our speaker tracking system are
Uk and Vk, the known covariances matrices of the process and ob-
servation noises, uk and vk, respectively. In our system, we set
Uk = σ2

uI and Vk = σ2
vI, and then tuned σ2

u and σ2
v to provide the

lowest tracking error, which required a multi-channel speech corpus
with ground truth speaker positions; this requirement was admirably
met by the corpus collected by Lathoud et al. [18].

Shown in Figure 3 is a plot of radial tracking error in radians
as a function of σ2

u and σ2
v . This study led us to choose the final

parameters of σ2
u = 0.1 and σ2

v = 1× 10−8 for our RC submission.

3. BEAMFORMING

The array processing component of our primary system was based on
the super-directive maximum negentropy (SDMN) beamformer [19,
20], which incorporates the super-Gaussianity of speech into adap-
tive beamforming. It has been demonstrated through DSR experi-
ments on the real array data in [12] that beamforming with the max-
imum negentropy (MN) criterion is more robust than conventional
techniques against reverberation. This is due to the fact that MN
beamforming strengthens the target signal by using reflected speech;
hence MN beamforming is not susceptible to signal cancellation.

As shown in Figure 4, the SDMN beamformer has the gen-
eralized sidelobe canceller (GSC) architecture. The processing of
SDMN beamforming can be divided into an upper branch and a
lower branch. In the upper branch, the super-directive (SD) beam-
former is used for the quiescent vector wSD. The process in the
lower branch involves multiplication of the block matrix B and ac-
tive weight vector wa. The beamformer’s output for the array input
vector X at frame k is obtained in the subband frequency domain as

Y (k, ω) = (wSD(k, ω)−B(k, ω)wa(k, ω))H X(k, ω),

2
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Fig. 3. Speaker tracking error vs. process and observation noise pa-
rameters. The ‘x’ mark denotes our resulting choice of the parameter
values.

where ω is the angular frequency.
Let us define the cross-correlation coefficient between the inputs

of the mth and nth sensors as

ρmn(ω) ,
E{Xm(ω)X∗n(ω)}√

E{|Xm(ω)|2} E{|Xn(ω)|2}
, (8)

where E{·} indicates the expectation operator. The super-directive
design is then obtained by replacing the spatial spectral matrix [2,
§13.4] with the coherence matrix ΓN corresponding to a diffuse
noise field. The m,nth component of the latter can be expressed
as

ΓN,m,n(ω) = sinc
(
ω dm,n
c

)
= ρmn(ω), (9)

where dm,n is the distance between the mth and nth elements of the
array. Given the array manifold vector d computed with the position
estimate, the weight of the SD beamformer can be expressed as

wSD =
(ΓN + σdI)−1 d

dH (ΓN + σdI)−1 d
, (10)

where σd is an amount of diagonal loading and set to 0.01 for ex-
periments. Notice that the frequency and time indicies ω and k are
omitted here for the sake of simplicity. The SD beamformer has been
proven to be more suitable than delay-and-sum (DS) and minimum

B (k,ω)

X(k,ω) Y(k,ω)-

w
a
(k,ω)HH

Maximizing Negentropy

w
SD

(k,ω)H

Fig. 4. Configuration of the super-directive maximum negentropy
(SDMN) beamformer.

variance distortionless response (MVDR) beamformers in meeting
room conditions [5, 9, 12].

Once the SD beamformer is fixed in the upper branch, the
blocking matrix is constructed to satisfy the orthogonal condi-
tion BHwSD = 0. Such a blocking matrix can be, for example,
obtained with the modified Gram-Schmidt [21]. This orthogonality
implies that the distortionless constraint for the direction of inter-
est will be maintained for any choice of the active weight vector.
In contrast to normal practice, the SD-MN beamformer seeks the
active weight vector that maximizes the negentropy of the beam-
former’s output. Assuming that the speech subband samples can
be modeled with the generalized Gaussian distribution (GGD) with
shape parameter f , we can express the beamformer’s negentropy as

J(Y ) = log(πσ2
Y ) + 1

−
[
log{2πΓ(2/f)B2

f σ̂Y /f}+ 2/f
]
,

(11)

where
σ2
Y = E{|Y |2},

σ̂Y =
1

Bf

(
f

2

)1/f

E
{
|Y |f

}1/f

,

Bf =
√

Γ(2/f)/Γ(4/f),

and Γ(·) is the gamma function.
In this work, the shape parameter of the GGD is trained with the

clean WSJCAM0 data of the clean training set based on the maxi-
mum likelihood criterion as described in [20].

In order to avoid large weights, we apply the regularization term
to the optimization criterion. The modified optimization criterion
can be written as

J (Y ) = J(Y )− α|wa|2. (12)

where α is set to 0.01 for the experiments.
Due to the absence of a closed-form solution with respect to wa,

we have to resort to the gradient-based numerical optimization algo-
rithm. Upon taking the partial deviation of (12) with respect to wa,
we can obtain gradient information required for such a numerical
optimization algorithm:

∂J (Y )

∂wa∗
= E

[{
1

σ2
Y

− f |Y |f−2

2 (Bf σ̂Y )f

}
BHXY ∗ − αwa

]
(13)

In this work, we use the Polak-Ribière conjugate gradient algorithm
to find the solution.

3.1. Post-filtering

The post-filter used in our RC systems is a variant of the Wiener
post-filter. One of the earliest and best-known proposals for estimat-
ing these quantities was by Zelinski [22]. A good survey of current
techniques is given by Simmer et al. [23].

4. UNSUPERVISED SPEAKER CLUSTERING

In this section, we present our approach for grouping single-speaker
speech utterances into speaker-specific clusters.

A core feature of our approach lies in the approximation of
speaker-conditional statistics, and training the LDA parameters for
finding the optimal discriminative subspace. Figure 5 shows the
block diagram of the speaker clustering system.

3
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Fig. 5. Block diagram of the speaker clustering algorithm.

We start by computing supervectors. Next i-vectors are ob-
tained by factor analysis. We then train an Linear Discriminant
Analysis (LDA) matrix based projection from the i-vectors to a
speaker-discriminant subspace. Speaker clusters are generated by
recursively grouping the LDA feature vectors into the binary classes
based on the Euclidean distance. Each cluster is recursively split
until a Bayesian information criterion (BIC) converges to the pre-
defined threshold. Thus, our binary tree clustering algorithmis
performed in the fully automatic manner.

4.1. Supervectors for Speakers

For each utterance, a Gaussian Mixture Model (GMM) [24] with
512 mixtures is adapted, given appropriate front-end features (39-
dimensional MFCC [25] features). We denote the GMM mean com-
ponents, which are speaker-dependent, as supervectors M. The Uni-
versal Background Model (UBM) [24] is a large GMM trained over
all utterances to represent the speaker-independent distribution of
features. We denote the UBM mean components, which are speaker-
independent, as UBM vector m.

4.2. Factor Analysis and i-Vectors

According to Total Variability Factor Analysis [26], given an utter-
ance, the supervector M can be rewritten as follows:

M = m + Tw (14)

The key assumption in factor analysis is that the GMM supervector
of the speaker- and channel-dependent M for a given utterance can
be broken down into the sum of two supervectors where supervector
m is the speaker- and session-independent supervector taken from a
UBM, T is a rectangular matrix of low rank that defines the variabil-
ity space and w is a low-dimensional (90-dimensional in our system)
random vector with a normally distributed prior N (0, 1). We refer
to these new vectors w as identity vectors or i-vectors for short.

4.3. Linear Discriminant Analysis

The i-vectors w obtained from factor analysis contain both speaker
and channel dependent information. To extract the speaker-discriminant

subspace, LDA is applied to map the i-vectors to a 10-dimensional
subspace.

The LDA criterion requires class labels to calculate class means
as well as class covariance matrices, and must thus be supervised.
We trained our LDA projection on the simulated training data and
applied the projection matrix on the evaluation set to perform unsu-
pervised dimensionality reduction.

4.4. Binary Tree Clustering Algorithm

After LDA, the binary tree clustering algorithm is performed on the
subspace vectors in order to find speaker clusters. We first split the
observations into two clusters based on the the Euclidean distance
between the LDA feature vectors. Each cluster is further split into
two clusters. Every time the binary class is generated, we check
the BIC which indicates a degree of fitness of the model. Under
the assumption that the model errors are independent and identically
distributed according to a normal distribution, such a criterion can
be expressed as

BIC = N ln
(
σ2

e
)

+K ln (N) (15)

where σ2
e is the error variance of the class, K is the number of the

parameters and N is the number of utterances. Binary clustering is
recursively performed until the difference of the BIC becomes below
the threshold. In preliminary experiments on the development set,
we chose 100.0 as the BIC threshold. Notice that our clustering
algorithm does not require any prior information about a number of
speakers and acoustic conditions.

5. SPEAKER ADAPTATION AND SPEECH RECOGNITION

The final component of our system is an engine for performing unsu-
pervised speaker adaptation and speech recogntion. In this section,
we describe the training and operation of these component.

5.1. Feature Extraction

The feature extraction of our ASR system was based on cepstral fea-
tures estimated with a warped minimum variance distortionless re-
sponse [27] (MVDR) spectral envelope of model order 30. Due to
the properties of the warped MVDR, neither the Mel-filterbank nor
any other filterbank was needed. The warped MVDR provides an in-
creased resolution in low–frequency regions relative to the conven-
tional Mel-filterbank. The MVDR also models spectral peaks more
accurately than spectral valleys, which leads to improved robustness
in the presence of noise. Front-end analysis involved extracting 20
cepstral coefficients per frame of speech and performing global cep-
stral mean subtraction (CMS) with variance normalization. The fi-
nal features were obtained by concatenating 15 consecutive frames
of cepstral features together, then performing the LDA to obtain a
feature of length 42.

5.2. System Training

Our best RC system was based on two acoustic models. The first
model was trained on the clean WSJCAM0 [28] and WSJ0 corpora.
Training consisted of conventional HMM training, with three passes
of forward-backward training followed by Gaussian splitting and
more training [29]; this was followed by speaker-adapted training
(SAT) [2, §8.1.3].

To train the second acoustic model, we first took the WSJ0 and
WSJCAM0 corpora and “dirtied” them up through convolution with

4
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the multi-channel room impulse responses and addition of the multi-
channel noise provided with the RC data. These dirty multi-channel
streams were then used first for speaker tracking then for beamform-
ing. Once we had produced the final processed single stream of data,
they were once more used first for conventional HMM training and
then for speaker-adapted training.

5.3. Recognition and Adaptation Passes

We performed four decoding passes on the waveforms obtained
from the beamforming algorithm described in Section 3. Each pass
of decoding used a different acoustic model or speaker adaptation
scheme. For all passes save the first unadapted pass, speaker adap-
tation parameters were estimated using the word lattices generated
during the prior pass, as in [30]. A description of the four decoding
passes follows:

1. Decode with the unadapted, conventional ML acoustic model.
2. Estimate vocal tract length normalization (VTLN) [31] pa-

rameters and constrained maximum likelihood linear regres-
sion parameters (CMLLR) [32] for each speaker, then rede-
code with the conventional ML acoustic model.

3. Estimate VTLN, CMLLR, and maximum likelihood linear re-
gression (MLLR) [33] parameters for each speaker, then re-
decode with the conventional model.

4. Estimate VTLN, CMLLR, MLLR parameters for each
speaker, then redecode with the ML-SAT model.

All passes used the full trigram LM for the 5,000 word WSJ task,
which was made possible through the fast-on-the-fly composition
algorithm described in [34].

For the primary system, the true speaker identity for each utter-
ance was replaced by the cluster index obtained through the cluster-
ing algorithm described in Section 4. The contrast system used the
true speaker identities for speaker adaptation.

6. RESULTS

Table 1 shows the word error rates (WERs) obtained with our sys-
tems on the RC data. The results obtained with a single array chan-
nel (SAC) and close-talking microphone (CTM) are also presented
in Table 1 as a contrast condition. All of our RC systems were based
on full batch processing, although we anticipate that practical imple-
mentations could use frame-by-frame processing with little degrada-
tion in accuracy. All systems used the Millennium speech recogni-
tion engine, which is based on weighted finite-state transducers [35].

Primary System
In our primary system, the speaker tracking, speaker clustering,
beamforming, feature extraction, speech recognition and speaker
adaptation components were all developed as described in Sec-
tions 2 through 5. The array processing components of the system—
speaker tracking and beamforming—both used eight channels of
audio data from the circular arrays. Unsupervised speaker clustering
was performed based on the i-vectors as described in Section 4.

For the first pass of the primary system, we trained the acoustic
model with noisy speech processed with SD beamforming, described
in Section 5.2. For the adapted passes, we used acoustic models
trained based on clean WSJ0 and WSJCAM0 corpora as described
in Section 5.2. Our final primary system employs the noisy acoustic
model in the first pass and then switches to the clean acoustic model
in the adapted passes.

Secondary System
We used the secondary system for our first result submission. A main
difference between the primary and secondary systems is that the
secondary system uses the K-mean clustering algorithm for speaker
clustering. The number of clusters K is determined in preliminary
experiments. Another difference is that the secondary system uses
the clean acoustic model only. 40 and 20 clusters are used for Sim-
Data and RealData experiments. Although the K-mean clustering
algorithm provides the better result, this could potentially violates
one of the RV regulations.

Contrast System
The only difference between the primary and contrast systems was
that the unsupervised speaker clustering used in the former was re-
placed by the true speaker labels in the latter, as determined by the
names of the audio files, for the purpose of speaker adaptation. We
built two contrast systems with SD-MN beamforming (Contrast A)
and conventional SD beamforming (Contrast B). The results in Ta-
ble 1 suggests that the beamforming method with the maximum ne-
gentropy criterion is more robust against reverberation. This is due
to the facto that MN beamforming enhances the target signal by ma-
nipulating its weights so as to delay and add the reflections [12].

6.1. Comparison of Different Speaker Clustering Strategies

K-means clustering [36] is perhaps one of the most straightforward
speaker clustering methods for unsupervised adaptation. Namely,
given a set of N observation samples in RD and the number of clus-
ters K, the objective of the K-means algorithm is to determine a
set of K points in RD and the means so as to minimize the mean
squared distance from each data point to its nearest mean.

Table 2 shows WERs obtained with our binary tree clustering
and K-means clustering algorithms under the same condition. Ta-
ble 2 also shows the WERs obtained with true speaker identities as
a reference. In the K-mean clustering algorithm, we used 40 and 20
clusters for SimData and RealData experiments respectively. It is
clear from Table 2 that the K-mean clustering algorithm can provide
the better speech recognition performance.

It is also clear from Table 2 that the use of the true speaker labels
yielded a reduction in error rate of approximately 1.0% absolute for
the simulated data; the reduction was larger, approximately 4.5%
absolute for the real data. This difference in behavior is ascribed
to the fact that the simulated WSJCAM0 training data, which was
used to estimate the LDA transformation on the i-vectors prior toK-
means clustering, matched the simulated evaluation set much better
than the real evaluation set. Hence, the separation of speaker classes
was better for the simulated data than for the real data.

However, speaker clustering based on the K-means algorithm
typically requires a good estimation of K which is associated with
the number of speakers. In contrast, binary tree clustering with the
BIC does not require any knowledge about the number of speakers.
The number of clusters is determined solely based on the BIC, a
indicator of a degree of over-fitting for the given adaptation data. In
the case that the number of clusters is close to the actual number of
speakers or fewer than that, the BIC tends to converge.

7. CONCLUSIONS

The 2014 REVERB Challenge is the first single speaker challenge to
address DSR with speech material captured from real human speak-

5
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Simulated Data Real Data
Room 1 Room 2 Room 3 Room 1

System Speaker Clustering Near Far Near Far Near Far Ave. Near Far Ave.
Primary Binary tree with BIC 12.89 14.71 14.09 19.38 16.62 31.45 18.19 17.18 20.16 18.73

Secondary K-means 8.44 8.91 9.99 13.19 10.77 20.17 11.91 16.74 19.51 18.13
Contrast A (MN BF) Ground truth 7.74 8.68 9 .33 12.81 9.54 19.74 11.31 13.41 15.06 14.50
Contrast B (SD BF) Ground truth 8.17 9.23 10.10 15.00 15.00 29.04 14.42 16.7 17.93 17.31

SAC Ground truth 8.4 10.27 14.1 30.54 17.11 44.65 20.85 38.38 41.41 39.9
CTM Ground truth 6.81 6.81 7.59 7.59 7.08 7.08 7.16 7.98 7.36 7.67

Table 1. Word error rate results of REVERB Challenge 2014 for primary and contrast conditions.

Simulated Data Real Data
Room 1 Room 2 Room 3 Room 1

Clustering algorithm Near Far Near Far Near Far Ave. Near Far Ave.
Binary tree clustering with BIC 12.89 14.71 14.09 19.38 16.62 31.45 18.19 17.18 20.16 18.73

K-means clustering 8.44 8.91 9.99 13.19 10.77 20.17 11.91 15.97 18.67 17.33
Ground truth 7.74 8.68 9 .33 12.81 9.54 19.74 11.31 13.41 15.06 14.50

Table 2. Comparison of word error rates for different clustering methods.

ers in real acoustic environments with actual microphone arrays.
In this work, we have described our system for the 2014 RE-

VERB Challenge and presented our results. On the REAL RC eval-
uation data, our system obtained a word error rate of 39.9% with a
single channel of the array, and 18.7% with the best beamformed
signal. In a contrast system using the true speaker identities, we ob-
tained an error rate of 14.5%. We look forward to 2015 and beyond.
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