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Abstract

One-shot learning – the human ability to learn a new concept
from just one or a few examples – poses a challenge to tradi-
tional learning algorithms, although approaches based on Hi-
erarchical Bayesian models and compositional representations
have been making headway. This paper investigates how chil-
dren and adults readily learn the spoken form of new words
from one example – recognizing arbitrary instances of a novel
phonological sequence, and excluding non-instances, regard-
less of speaker identity and acoustic variability. This is an es-
sential step on the way to learning a word’s meaning and learn-
ing to use it, and we develop a Hierarchical Bayesian acoustic
model that can learn spoken words from one example, utiliz-
ing compositions of phoneme-like units that are the product
of unsupervised learning. We compare people and computa-
tional models on one-shot classification and generation tasks
with novel Japanese words, finding that the learned units play
an important role in achieving good performance.
Keywords: one-shot learning; speech recognition; category
learning; exemplar generation

Introduction
People can learn a new concept from just one or a few ex-
amples, making meaningful generalizations that go far be-
yond the observed data. Replicating this ability in machines
has been challenging, since standard learning algorithms re-
quire tens, hundreds, or thousands of examples before reach-
ing a high level of classification performance. Nonetheless,
recent interest from cognitive science and machine learning
has advanced our computational understanding of “one-shot
learning,” and several key themes have emerged. Proba-
bilistic generative models can predict how people general-
ize from just one or a few examples, as shown for data ly-
ing in a low-dimensional space (Shepard, 1987; Tenenbaum
& Griffiths, 2001). Another theme has developed around
learning-to-learn, the idea that one-shot learning itself de-
velops from previous learning with related concepts, and Hi-
erarchical Bayesian (HB) models can learn-to-learn by high-
lighting the dimensions or features that are most important
for generalization (Fei-Fei, Fergus, & Perona, 2006; Kemp,
Perfors, & Tenenbaum, 2007; Salakhutdinov, Tenenbaum, &
Torralba, 2012).

In this paper, we study the problem of learning new spoken
words, an essential ingredient for language development. By
one estimate, children learn an average of ten new words per
day from the age of one to the end of high school (Bloom,
2000). For learning to proceed at such an astounding rate,
children must be learning new words from very little data.
Previous computational work has focused on the problem of
learning the meaning of words from a few examples; for in-
stance, upon hearing the word “elephant” paired with an ex-
emplar, the child must decide which objects belong to the
set of “elephants” and which do not (e.g., Xu & Tenenbaum,

2007). Related computational work has investigated other
factors that contribute to learning word meaning, including
learning-to-learn which features are important (Colunga &
Smith, 2005; Kemp et al., 2007) and cross-situational word
learning (Smith & Yu, 2008; Frank, Goodman, & Tenen-
baum, 2009). But by any account, the acquisition of mean-
ing is only possible because the child can also learn the spo-
ken word as a category, mapping all instances (and exclud-
ing non-instances) of a word like “elephant” to the same
phonological representation, regardless of speaker identify
and other sources of acoustic variability. This is the focus
of the current paper. Previous work has shown that chil-
dren can do one-shot spoken word learning (Carey & Bartlett,
1978). When children (ages 3-4) were asked to bring over a
“chromium” colored object, they seemed to flag the sound as
a new word; some even later produced their own approxima-
tion of the word “chromium.” Furthermore, acquiring new
spoken words remains an important problem well into adult-
hood whether its learning a second language, a new name, or
a new vocabulary word.

The goal of our work is twofold: to develop one-shot learn-
ing tasks that can compare people and models side-by-side,
and to develop a computational model that performs well on
these tasks. Since the tasks must contain novel words for both
people and algorithms, we tested English speakers on their
ability to learn Japanese words. This language pairing also
offers an interesting test case for learning-to-learn through
the transfer of phonetic structure, since the Japanese analogs
to English phonemes fall roughly within a subset of English
phonemes (Ohata, 2004).

Can the recent progress on models of one-shot learning be
leveraged for learning new spoken words from raw speech?
How could a generative model of a word be learned from just
one example? Recent behavioral and computational work
suggests that compositionality, combined with Hierarchical
Bayesian modeling, can be a powerful way to build a “gen-
erative model for generative models” that supports one-shot
learning (Lake, Salakhutdinov, & Tenenbaum, 2012; Lake et
al., 2013). This idea was applied to the one-shot learning
of handwritten characters, a similarly high-dimensional do-
main of natural concepts, using an “analysis-by-synthesis”
approach. Given a raw image of a novel character, the model
learns to represent it by a latent dynamic causal process, com-
posed of pen strokes and their spatial relations (Fig. 1a). The
sharing of stochastic motor primitives across concepts (Fig.
1a-i) provides a means of synthesizing new generative mod-
els out of pieces of existing ones (Fig. 1a-iii).

Compositional generative models are well-suited for the
problem of spoken word acquisition, as they relate to classic
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Figure 1: Hierarchical Bayesian modeling as applied to handwritten characters (Lake et al., 2013) and speech (this paper). Color coding
highlights the re-use of primitive structure across different objects. The speech primitives are shown as spectrograms.

analysis-by-synthesis theories of speech recognition (Halle &
Stevens, 1962; Liberman, Cooper, Shankweiler, & Studdert-
Kennedy, 1967) and more standard Hidden Markov models
(HMMs) for Automatic Speech Recognition (ASR) (Juang
& Rabiner, 1991). We extend the model of Lee and Glass
(2012), which uses completely unsupervised learning to ac-
quire a sequence of “phone-like” units (Fig. 1b), and test it
on one-shot learning. Compared to the standard supervised
training procedures in ASR, this more closely resembles the
problem faced by an infant learning the speech sounds of their
native language from raw speech, without any segmentation
or phonetic labels. Once the units are learned, they can be
combined together in new ways to define a generative model
for a new word (Fig. 1b-iii). We compare people and the
model on both the one-shot classification and one-shot gener-
ation of new Japanese words.

Model
Modern ASR systems usually consist of three components: 1)
the language model, which specifies the distribution of word
sequences, 2) the pronunciation lexicon, which bridges the
gap between the written form and the spoken form, and 3)
the acoustic model, which captures the acoustic realization
of each phonetic unit in the feature space (Juang & Rabiner,
1991). The acoustic model is the only relevant component
for this paper, and we represent it as a Hierarchical Hidden
Markov model (HHMM) with two levels of compositional
structure (Fine, Singer, & Tishby, 1998). At the top level,
the phonetic units in a language (primitives in Fig. 1b-i) are
the states of a Hidden Markov Model (HMM), where the state
transition probabilities correspond to the bigram statistics of
the units. At the lower level, each phonetic unit is further
modeled as a 3-state HMM (Fig. 1b-ii), where the 3 sub-
units (or sub-states) correspond to the beginning, middle, and
end of a phonetic unit (Jelinek, 1976). These 3-state HMMs
can be concatenated recursively to form a larger HMM that
represents a word (Fig. 1b-iii).

Our HHMM model induces the set of phone-like acous-
tic units directly from the raw unsegmented speech data in
a completely unsupervised manner, like an infant trying to
learn the speech units of his or her native language. This
contrasts with the standard supervised training procedure in
ASR, requiring a parallel corpus of raw speech with word or
phone transcripts. Similarly, existing cognitive models of un-
supervised phoneme acquisition typically require known pho-
netic boundaries, where the speech sounds are represented in
a low-dimensional space such as the first and second formant
(Vallabha, McClelland, Pons, Werker, & Amano, 2007; Feld-
man, Griffiths, Goldwater, & Morgan, 2013).

Our model only receives raw unsegmented speech data,
and as illustrated in Fig. 2, it must solve a joint inference
problem that involves dividing the raw speech x into seg-
ments (vertical red lines in Fig. 2), identifying segments that
should be clustered together with inferred labels zs (color
coded horizontal bars), and, most importantly, learning a set
of phone-like acoustic units θi for that language, where the
inferred labels zs assign segments to acoustic units. Some
of the other learned HHMM parameters are shown in Fig. 2,
including the probability πi of using any unit i as the initial
state and the probability φi,j of transitioning from the ith to
the jth acoustic unit. As is standard for acoustic models in
ASR, each phone-like acoustic unit 1≤ i≤K is modeled as
a 3-state HMM with parameters θi. The emission distribution
of each sub-state is modeled by a 16-component Gaussian
Mixture Model (GMM). These 3-state HMMs then generate
the observed speech features xs,1 . . .xs,ds in each variable
length segment, which are the standard Mel-Frequency Cep-
stral Coefficients (MFCCs) (Davis & Mermelstein, 1980).1

The duration of each segment ds is determined by the num-
ber of steps needed to traverse from the beginning to the end
of the 3-state HMM that the segment is assigned to.

The full generative model for a stream of raw speech can

1Speech data are converted to 25 ms 13-dimensional MFCCs and
their first and second order time derivatives at a 10 ms analysis rate.
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Figure 2: The model jointly segments the speech, clusters the seg-
ments (zs), discovers a set of units (θi), and learns the transition
probability between the units (φi,j ). Note that only speech data (x)
was given to the model; the text a cat, a kite and the pronunciation
are only for illustration.

be written as follows. For ease of explanation, we assume that
the number of segments N is known. However, during learn-
ing, its value is unknown and can be learned by the inference
method described below. The generative model is

π ∼Dir(η)
β ∼Dir(γ)
φi ∼Dir(αβ) i= 1, . . . ,K (1)
θi ∼H
z1 ∼ π
zs ∼ φzs−1 s= 2, . . . ,N

xs,1, . . .xs,ds
∼ θzs ,

where η, γ, and α are fixed hyper-parameters and variables
π, β, and φi are all K-dim vectors with Dirichlet priors. The
variable β can be viewed as the overall probability of observ-
ing each acoustic unit in the data, and it ties all the priors
on transition probability vectors φi together. We impose a
generic prior H on θi, where the details can be found in Sec.
5 and Sec. 6 of Lee and Glass (2012).

Inference has two main stages. First, the set of acoustic
units is learned from a corpus by performing inference in the
full generative model described above. Second, the learned
model (π,β,φ,θ) is fixed, and then individual word represen-
tations can be inferred as described in Experiment 1. Here we
describe how the acoustic units are learned using Gibbs sam-
pling. To sample from the posterior on units zs for the corpus,
we need to integrate over the unknown segmentation, which
includes the number of segments N and their locations. We
employ the message-passing algorithm described in Johnson
and Willsky (2013) to achieve this.2 Once the samples of zs

are obtained, the conditional posterior distribution of φi, β
and π can be derived based on the counts of zs. Also, we
can then block-sample the state and Gaussian mixture assign-
ment for each feature vector within a speech segment given
the associated 3-state HMM. With the state and mixture as-
signment of each feature vector, we can update the parameters
of the unit HMMs θi. Finally, we ran the Gibbs sampler for
10,000 iterations to learn the models reported in Experiment
1 and 2.

2We slightly modify the algorithm by ignoring the duration dis-
tribution of the hidden semi-Markov model.

Our model is an extension of the unsupervised acoustic unit
discovery model presented in Lee and Glass (2012). How-
ever, unlike Lee and Glass (2012), which only captures the
unigram distribution of the acoustic units, our model also
learns bigram transition probabilities between units through a
hierarchical Bayesian prior. We fixed the number of units, or
states, at K = 100; however, we can easily extend the model
to be non-parametric by imposing a hierarchical Dirichlet
process prior on the states representing the phonetic units.

Experiment 1: Classification
Human subjects and several algorithms tried to classify novel
Japanese words from just one example. Evaluation consisted
of a set of tasks, where each task used 20 new Japanese words
matched for word length in Japanese characters. Tasks re-
quired that the human or algorithm listen to 20 words (train-
ing) and then match a new word (test), spoken by a different
talker, to one of the 20. Each task had 20 test trials, with
one for each word. Since generalizing to speakers of differ-
ent genders can be challenging in ASR, we had two condi-
tions, where one required generalizing across genders while
the other did not.

Stimuli. Japanese speech was extracted from the Japanese
News Article Sentences (JNAS) corpus of speakers reading
news articles (Itou et al., 1999). There were ten same-gender
tasks, five with male talkers (word lengths 3 to 7) and five
with female talkers (same word lengths). There were also ten
different-gender tasks with word lengths from 3 to 12.

Humans. In this paper, all participants were recruited via
Amazon’s Mechanical Turk from adults in the USA. Analyses
were restricted to native English speakers that do not know
any Japanese. Before the experiment, participants passed an
instructions quiz (Crump, McDonnell, & Gureckis, 2013),
and there was a practice trial with English words for clarity.

Fifty-nine participants classified new Japanese words in a
sequence of displays designed to minimize memory demands.
Pressing a button played a sound clip, so words could be
heard more than once. Participants were assigned to one of
two conditions with same (5 trials) or different (10 trials) gen-
der generalizations. To ensure that learning was indeed one-
shot, participants never heard the same word twice and com-
pleted only one randomly selected test trial from each task.
Responses were not accepted until all buttons had been tried.
Corrective feedback was shown after each response. Eight
participants were removed for technical difficulties, knowing
Japanese, or selecting a language other than English as their
native language.

Hierarchical Bayesian models. Two HHMMs were
trained for the classification task. One model was trained
on a 10-hour subset of the Wall Street Journal corpus (WSJ)
(Garofalo, Graff, Paul, & Pallett, 1993) to simulate an En-
glish talker. The other model was trained on a 10-hour subset
of the JNAS corpus with all occurrences of the training and
test words excluded. The second model can be viewed as a
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Japanese speaking child learning words from his/her parents;
therefore, we allowed the talkers of the training and test
words to overlap those in the 10-hours of Japanese speech.

As in the human experiment, for every trial, the model se-
lects one of the 20 training words that best matches the test
word. The Bayesian classification rule is approximated as

argmax
c=1...20

P (X(t)|X(c)) = argmax
c=1...20

∫
Z

P (X(t)|Z)P (Z|X(c)) dZ

≈ argmax
c=1...20

L∑
l=1

P (X(t)|Z(c)[l]) P (X(c)|Z(c)[l])P (Z(c)[l])∑L
j=1P (X(c)|Z(c)[j])P (Z(c)[j])

,

(2)

where X(t) and X(c) are sequences of features that denote
the test word and training words respectively. Words are de-
fined by a unique sequence of acoustic units, such that Z(c) =
{z(c)

1 , . . . ,z
(c)
s } are the units the model uses to parse X(c).

Since it is computationally expensive to compute the integral,
we approximate it with just the L = 10 most likely acoustic
unit sequences Z(c)[1], . . . ,Z(c)[L] that the model generates
for X(c) (Eq. 2). It is straightforward to apply the inferred
model parameters π and φi to compute P (Z(c)[l]). To com-
pute P (X(c)|Z(c)[l]), we form the concatenated HMM for
Z(c)[l] and use the forward-backward algorithm to sum over
all possible unit boundaries and hidden sub-state labels.

Following Lake et al. (2013), we find marginally better per-
formance by using the classification rule in Eq. 3 instead of
Eq. 2,

argmax
c=1...20

P (X(t)|X(c)) = argmax
c=1...20

P (X(t)|X(c))P (X(c)|X(t))
P (X(c))

,

(3)
where P (X(t)|X(c)) and P (X(c)|X(t)) are approximated as
in Eq. 2, and, specifically, P (X(c)|X(t)) is computed by
swapping the roles of X(c) and X(t). Both sides of Eq. 3
are equivalent if inference is exact, but due to the approxi-
mations, we include the similarity terms (conditional prob-
abilities) in both directions. We also use the approximation
P (X(c))≈

∑L
l=1P (X(c)|Z(c)[l])P (Z(c)[l]).

Lesioned models. To more directly study the role of the
learned units, we included three kinds of lesioned HHMMs.
Two “unit-replacement” models, at the 25% or 50% levels,
took the inferred units Z and perturbed them by randomly
replacing a subset with other units. After the first unit was re-
placed, additional units were also replaced until 25% or 50%
of the speech frames xi,j now belonged to a different unit.
Both the English and Japanese trained models were lesioned
in these ways. An additional “one-unit” HHMM model was
trained on Japanese with only one acoustic unit, providing a
rather limited notion of compositionality.

Dynamic Time Warping (DTW) We compare against the
classic Dynamic Time Warp (DTW) algorithm that measures
similarity between two sequences of speech features, requir-
ing no learning (Sakoe & Chiba, 1978). The DTW distance
between two sequences is defined as the average distance be-
tween features of the aligned sequences, after computing an

optimal non-linear alignment.

Results and discussion. The one-shot classification results
are shown in Table 1. Human subjects made fewer than 3%
errors. For the same gender task, the HHMM trained on
Japanese achieved an error rate of 7.5%, beating both the
same model trained on English and DTW. All models per-
formed worse on the different gender task, which was ex-
pected given the simple MFCC feature representation that
was used. The gap between human and machine perfor-
mance is much larger for the HHMM trained on English
than the model trained on Japanese. This difference could
be the product of many factors, including differences in the
languages, speakers, and recording conditions. While the
English-trained model may be more representative of the hu-
man participants, the Japanese-trained model is more repre-
sentative of everyday word learning scenarios, like a child
learning words spoken by a familiar figure.

The superior performance of the HHMM over DTW sup-
ports the hypothesis that learning-to-learn and composition-
ality are an important facilitator of one-shot learning. The
dismal performance of the lesioned HHMM models, which
never achieved did better than 88% errors regardless of train-
ing language, further suggests that learning-to-learn alone,
without a rich notion of compositionality, is not powerful
enough to achieve good results.

Table 1: One-shot classification error rates

Learner Same gender Different gender
Humans 2.6% 2.9%
HHMM (Japanese) 7.5% 21.8%
HHMM (English) 16.8% 34.5%
DTW 19.8% 43%
Lesioned HHMM ≥ 88.5% ≥ 88.8%

Experiment 2: Generation
Humans generalize in many other ways beyond classification.
Can English talkers generate compelling new examples of
Japanese words? Here we test human subjects and several
models on one-shot generation. Performance was measured
by asking other humans (judges) to classify the generated ex-
amples into the intended class, which is an indicator of exem-
plar quality. This test is not as strong as the “auditory Turing
test” (Lake et al., 2013), but the HHMM cannot yet produce
computerized voices that are confusable with human voices.

Humans. Ten participants spoke Japanese words after lis-
tening to a recording from a male voice. Each participant was
assigned a different word length (3 to 12) and then completed
twenty trials of recording using a computer microphone. Par-
ticipants could re-record until they were satisfied with the
quality. This procedure collected one sample per stimulus
used in the previous experiment’s different gender condition.

Hierarchical Bayesian models. All of the full and lesioned
HHMM models from Experiment 1 listened to the same new
Japanese words as participants and then synthesized new ex-

806



amples. To generate speech, the models first parsed each
word into a sequence of acoustic units, Z, and generated
MFCC features from the associated 3-state HMMs. While
it is easy to forward sample new features, we adopted the
procedure used by most HMM-based speech synthesis sys-
tems (Tokuda et al., 2013) and generated the mean vector
of the most weighted Gaussian mixture for each HMM state.
Furthermore, HMM-based synthesis systems have an explicit
duration model for each acoustic unit in addition to the tran-
sition probability (Yoshimura, Tokuda, Masuko, Kobayashi,
& Kitamura, 1998). Since this information is missing from
our model, we forced the generated speech to have the same
duration as the given Japanese word. More specifically, for
each inferred acoustic unit zi in Z = {z1, . . . ,zs}, we count
the number of frames di in the given word sample that are
mapped to zi and generate di feature vectors evenly from
the 3 sub-states of θzi . Finally, to improve the quality of the
speech, we extracted the fundamental frequency information
from the given word sample by using Speech Signal Pro-
cessing Toolkit (SPTK) (2013). This was combined with the
generated MFCCs and the features were then inverted to au-
dio (Ellis, 2005).

Evaluation procedure. Using a within-subjects design, 30
participants classified a mix of synthesized examples from
both people and the comparison models. The trials appeared
as they did in Experiment 1, where instead of an origi-
nal Japanese recording, the top button played a synthesized
test example instead. The 20 training clips played original
Japanese recordings, matched for word length within a trial as
in Experiment 1. Since the synthesized examples were based
on male clips, only the female clips were used as training ex-
amples. There was one practice trial (in English) followed by
50 trials with the synthesized example drawn uniformly from
the set of all synthesized samples across conditions. Since the
example sounds vary in quality and some are hardly speech-
like, participants were warned that the sound quality varies,
may be very poor, or may sound machine generated. Also,
the instructions and practice trial were changed from Exper-
iment 1 to include a degraded rather than a clear target word
clip. All clips were normalized for volume.

Results and discussion. Samples of the machine generated
speech are available online.3 Several participants commented
that the task was too long or too difficult, and two partic-
ipants were removed for guessing.4 The results are shown
in Fig. 3, where a higher “score” (classification accuracy
from the judges) suggests that generated examples were more
compelling. English speakers achieved an average score of

3http://web.mit.edu/brenden/www/speech.html
4Participants spent from 19 to 87 minutes on the task, and there

was correlation between accuracy and time (R=0.58, p<0.001). In
a conservative attempt to eliminate guessing, two participants were
removed for listening to the “target word” fewer than twice on aver-
age per trial (6 times was the experiment average). This made little
difference to the pattern of results.

76.8%, and the best HHMM was trained on Japanese and
achieved a score of 57.6%. The one-unit model set the base-
line at 17%, and performance in the HHMM models de-
creased towards this baseline as more units were randomly
replaced. As with Experiment 1, the Japanese training was
superior to English training for the HHMM.

The high performance from human participants suggests
that even naive learners can generate compelling new ex-
amples of a foreign word successfully, at least in the case
of Japanese where the phoneme structure is related. The
full HHMMs did not perform as well as humans. However,
given the fact that the one-unit and unit-replacement models
only differed from the full HHMMs by their impoverished
unit structure, the better results achieved by the full HHMM
models still highlight the importance of learning-to-learn and
compositionality in the one-shot generation task.
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Figure 3: Percent of synthesized examples that human judges clas-
sified into the correct spoken word category. Parentheses indicate
the language the model was trained on. Error bars are 95% binomial
proportion confidence intervals based on the normal approximation.

Replication. As mentioned, a number of participants com-
mented on the task difficulty. Since human and machine
voices were intermixed, it is possible that some participants
gave up on trying to interpret any of the machine speech. We
investigated this possibility by running a related between sub-
jects design without the degraded models. Forty-five partici-
pants were assigned to one of three conditions: speech gener-
ated by humans, by the HHMM trained on Japanese, or by the
HHMM trained on English. Three participants were removed
for knowing some Japanese, and three more were removed by
the earlier guessing criterion. The results largely confirmed
the previous numbers. The human-generated speech scored
80.8% on average. The HHMM trained on Japanese and on
English scored 60% and 27.3%. All pair-wise t-tests between
these groups were statistically significant (p<.001). The pre-
vious numbers were 76.8%, 57.6%, and 34.1%, respectively.

General Discussion
We compared humans and a HHMM model on one-shot
learning of new Japanese words, evaluating both classifi-
cation and exemplar generation. Humans were very accu-
rate classifiers, and they produced acceptable examples of
Japanese words even with no experience speaking the lan-
guage. These successes are consistent with the rapid rate in
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which children acquire new vocabulary, and our model aimed
to provide insight into how this is possible. The HHMM
trained on Japanese, when acquiring new words in its “na-
tive” language, comes within 5% of human performance on
classification. The lower performance of the HHMM trained
on English could have resulted from many factors, and in
the future, we plan to investigate whether the trouble lies
in generalizing across speakers, across data sets, or across
languages. The lesioned models and Dynamic Time Warp
demonstrated inferior performance on the classification and
generation tasks, adding to previous evidence that compo-
sitionality and learning-to-learn are important for one-shot
learning (Kemp et al., 2007; Salakhutdinov et al., 2012; Lake
et al., 2013).

Far from the final word, we consider our investigation to
be a first step towards understanding how adults and chil-
dren learn new phonological sequences from just one expo-
sure. We see a more realistic analysis-by-synthesis approach
as a promising avenue for further research (Bever & Poep-
pel, 2010). Influential theories of speech perception have ar-
gued for explicit modeling of the articulatory process (Halle
& Stevens, 1962; Liberman et al., 1967), and in our model,
aspects of production are only implicitly represented through
the learned acoustic units. Despite the inherent challenges
in representing and inverting a complex generative process,
could one-shot learning be improved by more faithfully fol-
lowing the analysis-by-synthesis program, and could this lead
to general improvements in automatic speech recognition?
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