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Abstract

In this paper, we attempt to quantify the amount of labeled data
necessary to build a state-of-the-art speaker recognition system.
We begin by using i-vectors and the cosine similarity metric to
represent an unlabeled set of utterances, then obtain labels from
a noiseless oracle in the form of pairwise queries. Finally, we
use the resulting speaker clusters to train a PLDA scoring func-
tion, which is assessed on the 2010 NIST Speaker Recognition
Evaluation. After presenting the initial results of an algorithm
that sorts queries based on nearest-neighbor pairs, we develop
techniques that further minimize the number of queries needed
to obtain state-of-the-art performance. We show the general-
izability of our methods in anecdotal fashion by applying our
methods to two different distributions of utterances-per-speaker
and, ultimately, find that the actual number of pairwise labels
needed to obtain state-of-the-art results may be a mere fraction
of the queries required to fully label the entire set of utterances.
Index Terms: speaker recognition, i-vectors, active learning

1. Introduction

Over the past 5 years, the i-vector approach has proven to be the
best performing system as demonstrated in NIST speaker recog-
nition evaluations (SRE) [1]. One of the keys to this success is
a framework that easily allows the use of large amounts of pre-
viously collected and labeled audio to characterize and exploit
speaker and channel variability. In the SRE scenario, data from
thousands of speakers each making over 10 calls from at least
2 different handsets, collected in a consistent manner, has been
readily available from previous years. However, it is unrealistic
to expect a large set of labeled data from matched conditions
when applying such a system to a new domain [2].

To that end, our previous work explored domain adapta-
tion techniques that utilized, in an unsupervised manner, a set
of matched, but unlabeled, data to supplement an existing sys-
tem trained from labeled, but mismatched, data [2, 3]. Related
work has also explored domain adaptation in the fully super-
vised sense [4]. While both scenarios are relevant, the actual
deployment of a speaker recognition system into the real world
is unlikely to warrant such extreme circumstances.

Obtaining a complete and exhaustive labeling of a set of N
unlabeled utterances would require, in the worst case, N-(N-1)
pairwise comparisons, but rather than deprive ourselves of any
labels whatsoever as in the fully unsupervised case, perhaps we
can obtain useful information from the expert labeling of some
small fraction of these utterances. In this paper, we attempt
to quantify how many labels are actually necessary to obtain
state-of-the-art performance. We consider a scenario similar to
the one considered in [2, 3, 4] in which we are provided with
a vast quantity of matched, but completely unlabeled, data and
are asked to build a speaker recognition system for subsequent
audio.
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To focus solely on the effect of limited labels, we remove
the notion of mismatched domains — as in the domain adaptation
problem previously explored — and assume that the unlabeled
data at our disposal sufficiently matches the conditions in which
we evaluate our speaker recognition system. Indeed, the exis-
tence of a previous system should only further reduce the num-
ber of expert labels required to obtain optimal performance, but
we hope to keep things simple and not belabor this paper with
the implementation details of previous work on domain adap-
tation. Finally, to incorporate expert labeling, we simply query
an oracle for the answers to pairwise comparisons, such as, “Do
utterances A and B contain the same speaker?”

2. Related Work

The setup of this problem moves us into the realm of semi-
supervised and, more specifically, active learning, in which the
system we build is allowed to ask for input and supervision on
a limited number of specific examples [5]. We design our ora-
cle setup to operate like humans might; in particular, a human
asked to separate /N utterances into homogeneous speaker clus-
ters would likely break the problem down into a set of pairwise
comparisons. This setup also provides a framework for a po-
tentially crowd-supervised [6, 7] speaker recognition system,
which we plan to pursue as future work.

For now, we consider a set of N unlabeled utterances and
allow our system to ask for additional information in the form
of pairwise comparisons. These comparisons yield a set of pair-
wise constraints that can be used to help in our process of active,
semi-supervised clustering, which was formally developed into
a variant of the general K -means algorithm in [8]. Our work uti-
lizes a much more primitive connected-components algorithm
that does not require an estimate of the number of clusters, K.

The movement towards requiring less labeled data to build
a speaker recognition system has been explored in the past. The
saga of work in [9, 10] managed to obtain solid results without
the use of any labeled data. Based on previous work in speaker
diarization, they utilize an unsupervised clustering technique re-
sembling a K-means algorithm that also estimates the number
of clusters via a heuristic that re-assigns the elements of small
clusters to larger ones. As we continue to explore their meth-
ods, we reserve for future work a more in-depth consideration
of unsupervised methods for speaker recognition. In this paper,
we continue to allow the use of labels, albeit as few as possible.

The rest of this paper is organized as follows. Section 3
presents an overview of our system setup. Then Section 4 both
outlines a naive initial algorithm that queries pairwise labels
based on a nearest-neighbor approach and discusses its initial
results. We propose techniques to further minimize the number
of queries needed in Section 5, and finally, Section 6 concludes
with a discussion of potential avenues for future work.
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3. System Setup

We follow a similar setup to those presented in [2, 3, 4]
and extract i-vectors [1] from a total variability matrix 7T°
of rank 600 and a gender-independent Universal Background
Model containing 2048 Gaussian mixtures of acoustic features
(MFCC+deltas). A more detailed background on how these
hyper-parameters are obtained is beyond the scope of this pa-
per but can be found in [1, 11, 12].

We use the data from the NIST Speaker Recognition Evalu-
ations (SRE) of previous years (2004-2008) to train these hyper-
parameters. These telephone calls contain roughly 3800 unique
speakers (1100 male, 2700 female) and 33,000 phone calls. The
average number of calls per speaker is roughly 8.7, and each
speaker is represented by 2.8 different phone numbers. Our
performance evaluation is conducted on the one conversation
(1c) telephone data from condition 5 (normal vocal effort) of
the SRE 2010 (SRE10) [13, 14].!

The training of these hyper-parameters does not require any
labels; these initial i-vectors contain both speaker and channel
(i.e., nuisance) information. Labels are not made available a
priori, but if they were provided — or estimated via some clus-
tering method — then we could obtain a within-class (WC) ma-
trix, characterizing how i-vectors from a single speaker vary,
and an across-class (AC) matrix, characterizing how i-vectors
between different speakers vary [2]. The scoring function that
has obtained state-of-the-art results is Probabilistic Linear Dis-
criminant Analysis (PLDA) and is described in [15].

Our setup begins with a set of IV utterances from the SRE
data — the SRE10 data is not included here — represented as
N i-vectors. We are allowed to ask some noiseless oracle for
input in the form of pairwise labels; that is, “Are i-vectors ¢
and j from the same speaker or different speakers?” The next
section discusses a simple algorithm that makes use of these
oracle queries to obtain respective WC and AC matrices, from
which we can derive an appropriate PLDA scoring function and
assess speaker recognition performance on SRE10.

4. Naively Labeling Nearest-Neighbor Pairs

In this section, we propose a naive algorithm based on querying
nearest-neighbor pairs to a noiseless oracle to obtain speaker
clusters from which we can obtain WC and AC matrices for
PLDA training and subsequent evaluation.

4.1. The Algorithm

(a) Obtain pairwise cosine similarities in the form of an
affinity matrix, A, where each entry A;; represents the
cosine similarity between i-vectors ¢ and j. The co-
sine similarity (i.e., a length-normalized dot product) has
been shown to be both a reasonable and fast metric for
comparisons between i-vectors [1, 16, 17].

(b) Sort each row of A in descending order to obtain an or-
dered list of each node’s nearest neighbors and their sim-
ilarities. Specifically, row A(3, :) is the sorted list of co-
sine similarity scores produced by i-vector ¢. Accompa-

nying A is a matrix I such that I(, :) is the correspond-

'We also applied the methods discussed in this paper to various mi-
crophone conditions (1,2 — int-mic vs. int-mic; 4 — int-mic vs. room-
mic) of the SRE10 and obtained trends similar to those reported on con-
dition 5 (tel vs. tel) in this paper. In order to stay consistent with our
previous work [2, 3, 4], we will continue reporting our performance
based on the 1c telephone results from SRE10.
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ing list of i-vector indices with whom i-vector ¢ produced
each of the scores in A(, :).

(¢) The ¢" column of I and A specifies the respective in-
dices and scores for the ¢™ nearest neighbor of each

of our N i-vectors. As ¢ = 1,2,..., query the pair
(i, f(i, c)) foreach: = 1, ..., N. The number of unique

pairs that are actually queried for each column Q. < N,
as each i-vector’s ranking of its respective nearest neigh-
bors will differ.” Operate on all i-vectors for a given col-
umn (i.e., ¢ nearest neighbor) before moving on.

Let G be an N-by-N binary matrix such that G;; =
1 if i-vectors ¢ and j originate from the same speaker,
and G;; = 0 otherwise. Initialize G as a matrix of all
zeros, implying a completely disconnected graph, and
when given a query that returns a same-speaker result,
update GG and its affected cliques. That is, if i-vectors ¢
and j are a same-speaker pair (i.e., G;; = 1), and 7 €
I = {41,42,...} while j € J = {j1, j2, ...} for cliques
I and J, then this clique-update step automatically
connects every element in I with every element in J.
Because we assume that our oracle is noiseless, this is
easy and saves us from making superfluous queries.

(@

As G becomes more and more connected as a result of
querying the oracle, the size of the cliques in G will in-
crease. Since these cliques correspond to perfectly pure
speaker clusters, use the non-singletons to obtain WC
and AC matrices for PLDA scoring. In the next section,
we present our initial results as a function of the number
of labels actively queried from the oracle.

(e)

In (c), the choice to operate on each column separately instead
of simply querying the pairs corresponding to the highest global
similarity scores, i.e., global score sort, is in an effort
to maximize coverage of the i-vector space [18, 19]. In our un-
known manifold, the highest similarity scores may simply cor-
respond to parts of the manifold that are most densely packed.
By requiring that each column be treated separately, we enforce
amore uniform coverage of the i-vector space. This en-
sures that every node (i-vector) in our graph (dataset) is con-
sidered at least once every [N queries. In the next section, the
results of our initial experiments justify this hypothesis.

Along the lines of (d), we can further reduce the number of
unnecessary queries by making use of information about differ-
ent pairs that were previously encountered. For example, sup-
pose the oracle returns (4, j) as a different-speaker pair, where
1 € X4 and j € Y, for separate cliques X, and Y, in our graph
G4, where the subscript ¢ denotes the state of the graph after ¢
queries. Then for every subsequent query ¢’ > ¢, if z € X/
and y € Y/, we already know without querying the oracle that
(z,y) must be a different-speaker pair.

4.2. Initial Results

We visualize the results of our naive algorithm as a function
of different subsets of the SRE data. Figure 1 shows the his-
tograms of two different distributions of utterances-per-speaker
in our sampled subset of SRE i-vectors. The subset represented
in the plot at the top, vanilla, consists of all the utterances
from 1000 speakers chosen uniformly at random, while the dis-
tribution displayed in the lower plot allows no more than five
utterances per speaker, max—5.

2That is, without loss of generality, i-vector j may be i-vector i’s ¢!

nearest neighbor, but 4 may be j’s ¢™ nearest neighbor, for some ¢ < c.
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Figure 1: Distributions of utterances per speaker in sampled

subsets of SRE data: (top) vanilla— all utterances from 1000
randomly chosen speakers; (bottom) max—5—no more than five
utterances from every speaker in the SRE data.

It is helpful to consider how many queries are needed to
verify a perfect cluster-labeling of all of the utterances in each
of our SRE subsets considered. Note that we are not clustering
from scratch, which would be O(N?), but simply verifying the
validity of some hypothesized partition, H, of IV i-vectors from
M speakers. This can be done using (N — M) + w
queries. The first term, (N — M), comes from verifying the
purity of each cluster — i.e., a speaker cluster of size |C| would
require (|C| — 1) queries to verify its purity — while the second
term comes from verifying that each of the M clusters is indeed
different from the rest. Verifying a clustering of the vanilla
distribution requires 500,000 queries, while exhaustively check-
ing a partition of the max—5 distribution requires 7.2 million
queries. We also show this information as part of the x-axis
label at the bottom of Figures 2 and 3.

We plot our results as a function of the number of labels
queried from the oracle (x-axis). While this includes queries
of different-speaker pairs, this does not include the edges that
are automatically created as a result of the clique—update
step, only those in which the oracle is actively accessed. After
every 1000 queries, we use the resulting cliques to define the
speaker clusters, which are then applied to train a PLDA scoring
function, and then run speaker recognition on the SRE10.

In Figure 2, we consider a number of different metrics. On
the top plot, we show the number of different-speaker pairs en-
countered by the oracle (blue), the number of automatic con-
nections made (green), and the resulting number of edges in our
graph G (red). The middle plot compares the number of clusters
found with the number of actual speakers, and the bottom plot
shows both our subsequent results on SRE10 — in the form of an
equal error rate (EER) — using the labels queried as well as the
results using all possible labels. In these lower plots, we also
justify our algorithmic choice in (c¢) of Section 4.1 by showing
the difference in results obtained using our chosen uniform
coverage approach (blue), which queries all pairs corre-
sponding to each i-vector’s respective K nearest neighbor be-
fore moving to the (K + 1)™, as well as the global score
sort approach (green), which sorts all possible pairs in order
of decreasing similarity score.> While both have similar asymp-
totic performance as expected, the uniform coverage ap-
proach obtains a better EER with fewer pairs queried.

A relatively small number of queries already produces re-
sults comparable to those obtained using all corpus labels. In
fact, the vanilla distribution yields the same EER using

3Furthermore, when pairs were queried in a completely random or-
der, obtaining results comparable to those shown required an unreason-
ably large number of oracle queries.
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Figure 2: Initial results obtained on the vanilla distribution
of utterances per speaker.

just about 9000 pairwise queries, which is far fewer than the
500,000 queries required to simply verify a perfect speaker clus-
tering. On the other hand, using fewer than 5000 queries is
worse than simply using the cosine similarity metric to evaluate
on SRE10, which yields a 6.61% EER. This is because there are
not enough edges on the graph to form reliable cliques that can
faithfully model the WC and AC matrices for PLDA.* In light
of this, detecting when we have enough queries to sufficiently
represent our speaker space would be an interesting direction
for future work. Conversely, the rate of change in the number
of cliques detected (middle plot) may be a reasonable indicator
for when we have utilized enough queries from our data.

The plot at the top of Figure 2 shows a rapid increase in the
number of automatic connections made after 8000 queries. This
is approximately where we begin querying pairs corresponding
to second nearest neighbors. Once these connections are made,
we start to see both the number of clusters found and the EER
leveling off. The sudden spike in interconnected-ness makes
sense given the vanilla distribution of utterances per speaker
in our set of i-vectors; however, such a trend should not be ex-
pected for all such distributions, as can be seen for the max—5
distribution in the top plot of Figure 3.

The two lower plots in Figure 3 show the rest of the re-
sults obtained on the max—->5 distribution, namely the number
of clusters found (middle) as well as the resulting SRE10 EER
(bottom) as a function of the number of pairs queried (x-axis).
For now, note that the uniform coverage approach (blue)
exhibits similar trends on both the vanilla and max-5 dis-
tributions; the other approaches will be discussed in Section 5.

5. Refinements

So far, we have demonstrated the ability to obtain a good
speaker recognition system using a mere fraction of the number
of pairwise queries that would be required to label an entire cor-
pus. Furthermore, these queries were chosen naively based on

“In fact, with just 1000 queries using global score sort,
these covariance matrices were not even of sufficient rank to complete
PLDA training; we chose not to pursue workarounds.
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Figure 3: Results obtained on the max-5 distribution of utter-

ances per speaker: (top) graph edge properties as a function of

pairs queried; (middle & bottom) estimated number of speak-
ers and resulting SRE10 EER for the uniform coverage
approach as well as techniques discussed in Section 5.

nearest neighbors according to a cosine distance metric. Hav-
ing set an initial baseline, our interests turn to minimizing the
number of active queries needed to obtain similar results.

5.1. Data Re-representation

One way to make use of the additional information obtained via
pairwise queries would be to re-represent the data using a new
pairwise affinity matrix A’. Instead of the cosine similarity, we
could let Agj be the log-likelihood ratio (LLR) that i-vectors
¢ and j belong to the same speaker; this can be computed via
PLDA, whose AC and WC matrices can be determined by the
cliques in our graph G, after g queries. The mechanics of this
are straightforward; the more interesting problem is determin-
ing when such a re-representation is appropriate. That is, we
would like to know when the scoring function we are currently
using to compare i-vectors — whether it is a cosine similarity or
a PLDA LLR - is no longer suitable.

We consider a “blacklisting” approach, where each i-vector
i is queried against its successively more distant neighbors,
{j1,j2,j3, ...}, until the oracle returns a different-speaker pair
(i.e., (4, ja) € D for some d > 1). Once that occurs, we know
that either our scoring function is no longer reliable or, ideally,
that all the utterances involving the speaker in i-vector ¢ have
been found. As such, we add ¢ to the blacklist and ignore sub-
sequent comparisons involving it. This method greedily finds,
with respect to the scoring function at hand, all of the same-
speaker neighbors in the local neighborhood of ¢, thus acceler-
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ating the growth of speaker cliques. Once all — or some prede-
termined percentage — of the nodes have been blacklisted, we
know that either all the speaker clusters in our data have been
found or a re-representation of the data is necessary.

5.2. Greedy Manifold Sampling and Clique-Growing

Another potential way to reduce the number of queries is to be
more selective about the order in which we pose them. For a
given set of ¢ nearest-neighbor pairs, our initial algorithm saw
no difference between asking in a random order or in order of
decreasing similarity score, but perhaps we can do better by
modifying the “blacklisting” approach to also sample the entire
i-vector space as quickly and uniformly as possible.

Suppose we start at node ¢ and query its nearest neighbors,
{41, 72, J3, ...}, in order of decreasing similarity until the oracle
returns a different-speaker pair for (7, j4). Then we pick a node
k that is as far away (i.e., dissimilar) from {z, j1, ..., ja} as pos-
sible.> As before, we query the neighbors of % until a different-
speaker pair is returned, and so on. The hope is that this method
will sample all corners of the manifold in as few queries as pos-
sible and, at the same time, grow as large of speaker clusters as
possible with every node visitation.

The result of these refinements is shown in Figure 3, which
compares the uniform coverage algorithm (blue) from
Section 4.1 to the methods described previously. Without even
needing to re-represent the data, the “blacklisting” approach
(green) immediately yields a significant improvement on the
SRE10 EER using just 2000 pairwise queries. This shows the
effectiveness of greedily growing speaker cliques. Finally, the
impact of the greedy cover approach (black) can be seen
starting at 4000 queries, thus demonstrating that maximal cov-
erage of the i-vector manifold can indeed help maximize per-
formance in speaker recognition.

6. Conclusion

In this paper, we quantify the amount of labeled data needed to
build a speaker recognition system. Beginning with unlabeled
i-vectors and the cosine similarity metric, we query a noiseless
oracle with nearest-neighbor pairs. Following promising initial
results, we refine our techniques to maximize both cluster size
and manifold coverage while minimizing both the number of
queries needed and the resulting EER. Ultimately, we find that
the actual number of pairwise labels needed to obtain state-of-
the-art results is a mere fraction of the queries required to fully
label an entire development set of utterances.

We have left open a number of avenues for future work. As
a way to minimize the number of queries needed, we have not
yet considered the idea of adding edges automatically and how
to handle such potentially noisy labels; this may warrant the use
of soft graph edge weights (i.e., [0, 1]) over hard assignments
({0,1}). We should apply the developments of our previous
work on domain adaptation and verify that knowledge gained
from previously labeled data, albeit from a mismatched domain,
can improve our initial representation of the data in the form of
a better pairwise affinity matrix, A. Lastly, our work so far has
been based on the existence of a noiseless oracle, but previous
work has shown that both naive and expert human listeners can
be imperfect [7]. In order to make our story more realistic, we
plan to bridge the gap between our noiseless oracle and a crowd-
sourced system for speaker recognition.

SThis is easily done by averaging the corresponding rows of A and
picking the i-vector corresponding to the minimum average similarity.
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