2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

EXTRACTING DEEP NEURAL NETWORK BOTTLENECK FEATURES
USING LOW-RANK MATRIX FACTORIZATION

Yu Zhang, Ekapol Chuangsuwanich, James Glass*

MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, Massachusetts 02139, USA

{yzhang87, ekapolc, glass}@mit.edu

ABSTRACT

In this paper, we investigate the use of deep neural networks
(DNNs5) to generate a stacked bottleneck (SBN) feature rep-
resentation for low-resource speech recognition. We exam-
ine different SBN extraction architectures, and incorporate
low-rank matrix factorization in the final weight layer. Ex-
periments on several low-resource languages demonstrate the
effectiveness of the SBN configurations when compared to
state-of-the-art hybrid DNN approaches.

Index Terms— DNN, Bottleneck features

1. INTRODUCTION

Currently, there are two main approaches for incorporating
neural networks into hidden Markov models (HMM) for au-
tomatic speech recognition (ASR). The hybrid approach uses
a network to directly estimate HMM emission probabilities,
while the fandem approach uses a network to produce a fea-
ture vector that can be modeled by Gaussian mixture models
(GMMs). This is done by training a network to predict pho-
netic targets, and then either using the estimated target proba-
bilities [1] or the activations of a narrow hidden “bottleneck”
(BN) layer [2] as features for a standard GMM-HMM config-
uration. Recently, deep neural networks (DNNs) have been
used with great success in hybrid systems, achieving excellent
results on ASR tasks [3, 4, 5, 6]. While BN features have been
successfully used for ASR for many years, there has been less
work examining the use of DNNs for BN feature extraction.
In 2011, Yu and Seltzer applied a DNN for extracting BN
features, with the bottleneck being a small hidden layer placed
in the middle of the network [7]. They found that this method
for generating BN features increased ASR accuracy when us-
ing context-dependent (CD) targets for training. Currently

*Supported in part by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Department of Defense US Army Research Laboratory
contract number WO11NF-12-C-0013. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer: The views and conclu-
sions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE

185

however, tandem frameworks using BN features do not per-
form as well as the best DNN hybrid systems. Some have ar-
gued that by placing a BN layer in the middle of the DNN, the
frame accuracy of the output targets degrades [8, 9]. There-
fore, BN features trained this way cannot achieve the full ben-
efits of DNNs. To circumvent this, Sainath er al. trained the
DNN without a BN layer. Then, to reduce the dimensionality,
an auto-encoder neural network was trained on the MLP out-
puts with a BN layer [8]. Alternatively, Yan ef al. trained a
DNN and used PCA to do dimensionality reduction on the last
hidden layer [9]. There has also been work in another direc-
tion for improving BN features. In [10], researchers at Brno
University of Technology started using a stacked bottleneck
(SBN) architecture and linear activation function. In [11],
they investigated the SBN architecture using DNN architec-
tures. However, they used context-independent (CI) target
outputs, and did not compare the results with hybrid systems.

In [12], Sainath ef al. proposed a low-rank matrix fac-
torization method for the final weight layer of hybrid DNN
systems and demonstrated no significant loss in ASR accu-
racy compared to the ones without. In this work, we consider
this approach and apply it to BN feature extraction. Applying
this approach to BN feature extraction has two benefits. First,
the low-rank matrix factorization ensures that there is no sig-
nificant loss in terms of cross entropy during training. Sec-
ond, directly extracting BN features from the low-rank layer
allows for more information to be encoded, since there is no
non-linear sigmoid compression between the BN features and
the activation output. In this research, we combine this low-
rank framework and the SBN configuration of [11] to improve
BN feature extraction for tandem ASR. Results on several lan-
guages from the Babel project show over 10% relative gains
over standard PLP features, and comparable results to hybrid
DNN systems while having much shorter training time.

The rest of this paper is organized as follows. In Section 2,
we present the details of our new approach. We describe our
experimental setup in Section 3. In Section 4, we report our
experimental results and analyze the performance of different
architectures. Finally, we conclude the paper in Section 5.

2. MODEL DESCRIPTION

Before we describe the proposed method, we provide an
overview of the two related efforts that inspired our BN archi-
tecture: the low-rank matrix factorization for DNN weights,
and the SBN framework.

2.1. Low-rank matrix factorization

The left side of Figure 1 shows a typical ASR DNN architec-
ture. Following Sainath et al., [12] we investigate a low-rank
approximation to the weights of the softmax layer of the net-
work. By considering the weights of the softmax layer as a
matrix, we can factorize the weight matrix into two matrices
of lower rank. As illustrated by the right side of Figure 1,
this is done by replacing the usual softmax layer weights by
a linear layer with a small number of hidden units followed
by a softmax layer. More specifically, a new BN output layer
with r linear hidden units is inserted into the last weight ma-
trix with a hidden layer of size h, and a softmax layer with
s state posterior outputs. This changes the number of pa-
rameters from h x s to 7 x (h + s). Notice that there is no
non-linearity for this BN output layer. Instead of using this
structure for hybrid DNNs, we use it for extracting BN fea-
tures. There are two benefits of using this method. First, it
ensures the best achievable frame accuracy even with a rela-
tively small r. Second, the linearity of the output for the BN
layer prevents any loss of information when we treat the DNN
as a feature extractor.

2.2. Stacked bottleneck (SBN) features

The idea of using hierarchical processing of neural networks
(NNs) has been explored by several researchers. Valente et
al. uses a second NN to help correct the posterior outputs of
the first NN by feeding it a different set of features [13]. In
the context of the Babel project, SBN features have shown
promising results in [11]. One argument for the usage of
these cascading structures is that they enable more informa-
tion, such as additional context, to be utilized more effec-
tively [14].

2.3. Low-Rank Stacked Bottleneck (LrSBN)

Figure 2 gives an overview of our proposed low-rank SBN
feature extraction framework. The BN outputs from the first
DNN are concatenated with context expansion and fed to the
second DNN. This structure is similar to [11] except we al-
ways place the linear BN layer (for the low-rank factorization)
in the /ast hidden layer instead of a sigmoid BN layer in the
middle of the network. Experiments in [12] have shown that
the hidden layers do not have the same low-rank properties as
the weights in the softmax layer. We also use tied-states as
the output targets instead of CI targets.

186

00000000

Weights h*s

Softmax Layer

0OSBEE00

Fig. 1. Diagram of the low-rank factorized DNN.

3. SYSTEM DESCRIPTION

3.1. Data

In these experiments, we use data from the Babel project,
which consists of a growing collection of resources to fa-
cilitate ASR and keyword spotting research on low-resource
languages. Each language consists of two speaking styles:
scripted (prompted speech) and conversational (spontaneous
telephone conversations). There are also currently two stan-
dard training conditions: Full (~80 hours) and Limited (~10
hours). In our experiments, we only use the conversational
data for training. The standard 10-hour Dev sets containing
only the conversational data are used for testing. In this pa-
per, we report on the Turkish, Assamese, and Bengali lan-
guage packs from releases IARPA-babel105b-v0.4, IARPA-
babel102b-v0.4, and IARPA-babel103b-v0.3, respectively.

3.2. Baseline HMM systems

Our baseline HMM systems were trained using the Kaldi
ASR toolkit [15]. We used 13-dimensional PLP features
concatenated with FO estimates and the probability of voic-
ing [16]. Conversation-based mean and variance normal-
ization was applied in both training and testing stages. The
resulting 15-dimensional features were concatenated using
+4 frames before and after the middle frame resulting in
135-dimensional vectors. LDA and MLLT [17] were applied
to reduce the dimensionality and orthogonalize the features.
Finally, a global fMLLR [18] was applied to normalize inter-
speaker variability. For acoustic modeling, we used phonetic
decision-based tied-state triphone CD-HMMs with ~2500
states and 18 Gaussian components per state. Trigram lan-
guage models were created from training data transcripts.

3.3. Baseline hybrid DNN systems

The hybrid DNN systems were also created using Kaldi [15].
The DNNs had 6 hidden layers. The output layer was a soft-
max layer with target outputs corresponding to CD-HMM
states. The network inputs were the speaker adapted features
from the CD-HMM baseline (both for training and test) and
concatenated using £5 frames (the total size is 40x11 = 440).

saanjeaz 3ndur

Low-rank matrix
factorization

We used 1024 hidden units for each hidden layer. The nonlin-
earities in the hidden layers were sigmoid functions, and the
objective function is the cross-entropy criterion. The align-
ment of CD states to frames was derived from the CD-HMM
baseline systems and remained fixed during training.

The DNN was pre-trained by restricted Boltzmann ma-
chines. The initialization of the network, the fine-tuning, and
the learning rate followed the setting in [19]. We also perform
sequence training [20].

3.4. Low-Rank stacked bottleneck (LrSBN) systems

The input features for the first DNN (Figure 2) follows the
method of [11]. 23 critical-band energies are obtained from a
Mel filter-bank, with conversation-side-based mean subtrac-
tion. These features are augmented with pitch and probability
of voicing. 11 consecutive frames are stacked together. Each
of the 23+2 dimensions is then multiplied by a Hamming win-
dow across time, and a DCT is applied for dimensionality re-
duction. The Oth to 5th coefficients are retained, resulting in
a feature of dimensionality (23 4 2) % 6 = 150.

The input features of the second DNN are the outputs of
the BN layer from the first DNN. Context expansion is done
by concatenating frames with time offsets —10, —5,0, 5, 10.
Thus, the overall time context seen by the second DNN is 31
frames. Both DNN5s use same setup of 5 hidden sigmoid lay-
ers and 1 linear BN layer, and both use tied-states as target
outputs. The targets are generated by forced alignment from
the HMM baseline. No pre-training is used. Finally, the raw
BN outputs from the second DNN are whitened using a global
PCA and used as features for a conventional CD-HMM sys-
tem.

187

Context +/- 15
down sampled by

LrSBN features

factor 5

Second stage network

Low-rank matrix

factorization

Fig. 2. Diagram of the stacked bottleneck neural network feature extraction framework.

4. ANALYSIS OF LRSBN FEATURES

4.1. Context-independent vs. context-dependent labels

In [11], a DNN was trained to classify CI states. However, we
have found, as have others [7], that using CD targets produces
better results. Table 1 compares word error rates (WERs) be-
tween BN systems trained from CI versus CD labels on the
Turkish limited condition task. The PLP-based baseline for
this task had a WER of 75.0%. The first column in the table
shows that if CD labels are used to train a single stage net-
work, a 1.2% WER gain is obtained over CI labels. A gain of
2.2% is obtained when CD labels are used to train the stacked
network. Therefore, in all subsequent experiments described
here, we use only CD labels for SBN training.

Table 1. Turkish BN WERs for CI vs CD label training.

Single DNN | Stacked DNN
CI targets 69.6% 68.8%
CD targets 68.4% 66.6%

4.2. The best layer for bottleneck placement

Past research [12] has shown that DNN hidden layers do not
all have the same low-rank properties. Following this obser-
vation, we compare the cross entropy per frame for different
DNN configurations. Table 2 shows the average cross en-
tropy (CE) per frame on the cross validation set for differ-
ent BN placements on the Bengali Limited condition task. In
all setups, the BN layers have 80 hidden units. As the table
shows, putting a low-rank linear layer in the middle performs
worse than a typical sigmoid BN layer. On the other hand,
the low-rank softmax layer also has the lowest cross entropy

per-frame. Thus, for all remaining experiments, we put the
BN layer as the last hidden layer.

Table 2. DNN Comparisons of average CE per frame. ‘Last’
refers to putting the BN layer right before the softmax layer.

BN Type Sigmoid layer | Low-rank linear layer
BN Location | Middle | Last | Middle Last
Avg. CE 0.253 | 0.250 | 0.257 0.245

4.3. Low-rank on the softmax layer

In order to determine whether the low-rank factorization on
the softmax layer is necessary, we also evaluated the fea-
tures generated by different activation functions on the Ben-
gali Limited condition. The PLP-based GMM-HMM baseline
for this task achieved 75.3% WER. In Table 3, we compare
the results we achieve with BN features using a standard sig-
moid on the softmax layer (SBN) with those obtained using
the low-rank formulation (LrSBN). We also consider two BN
derivations. In the first row of Table 3, we use the BN feature
directly without any post-processing. In the second row, we
apply PCA to raw BN features and reduce the dimensionality
from 80 to 30. We then add A and A% BN features to model
additional contextual information. It can be seen that for both
conditions, the LrSBN achieves better performance.

Table 3. Sigmoid vs. low-rank, and BN feature comparison.

SBN LrSBN
raw BN 70.8% | 69.2%
raw BN (PCA)+ A + A% | 68.1% | 67.2%

4.4. Results on larger tasks and different languages

Further evaluation of the proposed method was performed on
different languages with a speaker-adapted model. On this
task, we compared the baseline GMM-HMM system, the hy-
brid DNN-HMM system, and the LrSBN system. The top of
Table 4 shows that with standard ML training, an improve-
ment of over 10% relative could be achieved when using LrS-
BNs. This result is even better than a hybrid DNN system that
uses speaker-adapted input features. After speaker-adaptated
training (SAT) and minimum Bayes risk (MBR) discrimina-
tive training [21] on the LrSBN features, the performance of
the LrSBN system is similar to the hybrid DNN system with
sequence training (SQ) in Bengali, while performing 0.6%
better in the Assamese case.

In addition to examining the limited condition training
task, we also quantified the performance of the LrSBN fea-
tures on the Bengali Full condition task. The WER compar-
isons are shown in Table 5. It can be seen the gain compared

188

Table 4. Results on Bengali and Assamese Limited tasks.

] AM Training \ ML \ LDA+MLLT \ SAT+MBR \
Bengali Limited Condition
PLP+FO0 75.3% 74.4% 71.8%
DNN-HMM n/a n/a 68.0%
DNN-HMM+SQ n/a n/a 66.1%
LrSBN+A+A? 67.2% n/a 66.0%
Assamese Limited Condition
PLP+F0 74.6% 73.0% 70.5%
DNN-HMM n/a n/a 67.2%
DNN-HMM+SQ n/a n/a 65.7%
LrSBN+A+A? | 65.8% n/a 65.2%

to the PLP baseline is even larger than for the limited condi-
tion case, with a 12.6% relative gain. It is also better than
the Hybrid DNN system, improving the performance from
59.4% to 56.4%. Compared to the hybrid system with se-
quence training, the performance is still slightly better. Note
that using sequence training has its disadvantages in terms of
training time. For example, using a Tesla K20 GPU, an itera-
tion of sequence training took up to 6 hours compared to the
40 minutes for cross entropy training. This can be an impor-
tant constraint for the Babel project which emphasizes rapid
system deployment. Using BN features also better lends it-
self to further improvements using standard techniques. Such
improvements include better use of context information via
fMPE [22], and using speaker-adapted features as DNN in-
puts. We plan to explore these as future work.

Table 5. WER comparisons for the Full Bengali task.

AM Training \ ML LDA+MLLT | SAT+MBR
PLP+FO0 69.2% 68.4% 64.5%
DNN-HMM n/a n/a 59.4%
DNN-HMM+SQ n/a n/a 55.6%
LrSBN+A+A? 59.6% n/a 55.4%

5. SUMMARY AND FUTURE WORK

In this paper, we explored low-rank matrix factorization of
the final weight layer for extracting stacked bottleneck fea-
tures. The results on multiple languages and training con-
ditions demonstrated that the LrSBN features could achieve
WERSs similar to, or in some cases superior to, the perfor-
mance of state-of-the-art hybrid DNN systems while being
significantly faster to train. Our ongoing work include the in-
vestigation of unsupervised training in the proposed approach
and building multi-lingual system using the LrSBN features.

6. REFERENCES

[1] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem
connectionist feature extraction for conventional HMM
systems,” in Proc. ICASSP, 2000, pp. 1635-1639.

F. Grézl, M. Karafiat, S. Kontar, and J. Cemocky, “Prob-
abilistic and bottle-neck features for LVCSR of meet-
ings,” in Proc. ICASSP, 2007, vol. 4, pp. 757-761.

(2]

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” in IEEE Trans. on Au-
dio, Speech, and Language Processing, 2012, vol. 20,

pp- 30-42.

[4] F. Seide, G. Li, and D. Yu, “Conversational speech
transcription using context-dependent deep neural net-

works,” in Proc. InterSpeech, 2011, pp. 437-440.

[5] B. Kingsbury, T. N. Sainath, and H. Soltau, ‘“Scalable
minimum bayes risk training of deep neural network
acoustic models using distributed hessian-free optimiza-

tion,” in Proc. InterSpeech, 2012.

[6] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Ap-
plication of pretrained deep neural networks to large
vocabulary speech recognition,” in Proc. InterSpeech,

2012.

[71 D. Yu and M. L. Seltzer, “Improved bottleneck features
using pretrained deep neural networks,” in Proc. Inter-

Speech, 2011, pp. 273-240.

[8] T. N. Sainath, B. Kingsbury, and B. Ramabhadran,
“Auto-encoder bottleneck features using deep belief net-

works,” in Proc. ICASSP, 2012, pp. 4153-4156.

[9] Z. J. Yan, Q. Huo, and J. Xu, “A scalable approach
to using DNN-derived features in GMM-HMM based
acoustic modeling for LVCSR,” in Proc. InterSpeech,

2013.

[10] K. Vesely, M. Karafiat, and F. Grézl, “Convolutive bot-
tleneck network features for LVCSR,” in Proc. ASRU,

2011, pp. 42-47.

[11] M. Karafiat, F. Grézl, M. Hannemann, K Vesely, and
J. H. Cernocky, “BUT babel system for spontaneous

cantonese,’ in Proc. InterSpeech, 2013.

[12] T. N.Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran, “Low-rank matrix factorization
for deep neural network training with high-dimensional

output targets,” in Proc. ICASSP, 2013.

[13] F. Valente, J. Vepa, C.Plahl, et al., “Hierarchical neu-
ral networks feature extraction for LVCSR system,” in

Proc. InterSpeech, 2007.

189

[14] M. Karafiat and F. Grézl, “Hierarchical neural net archi-
tectures for feature extraction in ASR,” in Proc. Inter-
Speech, 2010.

[15] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. MotlicCek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely, “The Kaldi speech recognition toolkit,” in
Proc. ASRU, 2011.

[16] D. Talkin, A Robust Algorithm for Pitch Tracking, chap-
ter 4, Speech Coding and Synthesis, 2013.

[17] M.]. F. Gales, “Semi-tied covariance matrices for hid-
den markov models,” in IEEE Trans. on Audio, Speech,
and Language Processing, 1999.

[18] M. J. F. Gales, “Maximum likelihood linear trans-
formation for HMM-based speech recognition,” in

Comp.Speech & Language, 1998.

[19] S. P. Rath, D. Povey, K. Vesely, and J. H. Cernocky,
“Improved feature processing for deep neural net-

works,” in Proc. InterSpeech, 2013.

[20] K. Vesely, A. Ghoshal, and D. Povey, ‘“Sequence-
discriminative training of deep neural networks,” in

Proc. InterSpeech, 2013.

[21] M. Gibson and T. Hain, “Hypothesis spaces for min-
imum bayes risk training in large vocabulary speech
recognition,” in Proc. InterSpeech, 2006, pp. 2406—

2409.

[22] D. Povey, B. Kingsbury, L. Mangu, et al., “fMPE: Dis-
criminatively trained features for speech recognition,” in

Proc. ICASSP, 2005.

