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Abstract
In this paper, we explore multilingual feature-level data sharing
via Deep Neural Network (DNN) stacked bottleneck features.
Given a set of available source languages, we apply language
identification to pick the language most similar to the target lan-
guage, for more efficient use of multilingual resources. Our ex-
periments with IARPA-Babel languages show that bottleneck
features trained on the most similar source language perform
better than those trained on all available source languages. Fur-
ther analysis suggests that only data similar to the target lan-
guage is useful for multilingual training.
Index Terms: Multilingual, Bottleneck features, DNN

1. Introduction
Developing an automatic speech recognition (ASR) capability
for a new language requires significant linguistic resources in
the form of annotated data for acoustic and language model-
ing, and pronunciation dictionaries. These resources can be
expensive and time-consuming to produce, and, as a result,
have greatly limited the number of languages that currently
have ASR capability. They are also a significant impediment
to the rapid development of ASR capability for a new lan-
guage. Moreover, given that ASRs perform best with substan-
tial amounts of data, a related challenge is to obtain good per-
formance when limited linguistic resources are available.

To mitigate the problem of limited data, researchers have
explored the use of bottleneck (BN) features derived from Deep
Neural Networks (DNNs). Recent progress on DNN-based
acoustic modeling has greatly improved ASR performance on
many tasks [1]. One way to apply DNNs in ASR is via BN
features in a tandem approach [2, 3, 4, 5]. In this approach, a
standard DNN with one smaller hidden layer, called the bottle-
neck layer, is trained. Then, the outputs of the bottleneck layer
are used in conjunction with other features to train a standard
GMM-HMM recognizer. Recent work (e.g., [6]) has shown that
BN features achieve competitive results on IARPA Babel tasks.

Researchers have also used BN features to leverage out-of-
domain resources, that are either multilingual [7, 8], or cross-
lingual [9]. With access to larger amounts of data, BN features
are able to better learn the structure of speech, and improve the
performance on a target task. In [10], the target language data
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is also used for adaptation of the multilingual DNN by doing
additional fine-tuning steps. These approaches not only allevi-
ate the lack of training data, they also save the amount of time
required to train DNNs for the target languages.

None of the work mentioned above addresses the issue of
what to do when there are multiple source BN systems to choose
from, i.e. having one BN system for each language. This is
not an unrealistic scenario, as researchers often have multiple
recognizers on hand. Furthermore, multilingual DNNs require
modifications of the existing training strategies, and take longer
to train. In this work, we propose a simple Language Identifi-
cation (LID) method to select possible candidate languages for
transfer learning. Experiments show that BN systems trained
on languages close to the target language can yield better per-
formance than BN systems trained in a multilingual fashion. We
also employ a two-stage training strategy where the selected
source language is used in conjunction with the multilingual
DNN to improve the performance even further.

The rest of the paper is organized as follows. In Section 2
we review the BN architecture used in our previous work. In
Section 3 we describe the Babel corpus and the goals of the Ba-
bel project. In Section 4, we demonstrate the potential of data
selection by LID. Then, we explore different possible training
strategies in Section 5. We also offer insight into why language
selection or data selection in general is important for cross do-
main adaptation. Finally, we conclude the paper in Section 6.

2. Stacked Bottleneck Architecture
The BN features used in this work follow our previous work
in [6]. As shown in Figure 1, our BN extraction is a concate-
nation of two DNNs. The outputs from the BN layer in the
first DNN are used as the input features for the second DNN,
whose outputs at the BN layer are then used as the final features
for standard GMM-HMM training. Unlike most research with
DNN-based BN features, our BN layer uses a linear activation
function to enforce a low-rank approximation of the softmax
layers.

The inputs of the first layer consist of 23 critical-band en-
ergies obtained from a Mel filter-bank. Each of the 23 dimen-
sions are augmented with pitch and probability of voicing [11]
and multiplied across time by a Hamming window of length 11
frames. A DCT is then applied for dimensionality reduction.
The 0th to 5th coefficients are retained, resulting in a feature
of dimensionality (23 + 2) ∗ 6 = 150. The input features of
the second DNN are the outputs of the BN layer from the first
DNN. Context expansion is done by concatenating frames with
time offsets −10,−5, 0, 5, 10. Thus, the overall time context
seen by the second DNN is 31 frames. Both DNNs use same
setup of 5 hidden sigmoid layers (1024 hidden units) and 1 lin-
ear BN layer (80 hidden units). Both of them use tied context-
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Figure 1: Diagram of the stacked bottleneck neural network feature extraction framework.

dependent (CD) states as target outputs, which are generated by
forced alignment from a GMM-HMM baseline. No pre-training
is used. A final PCA is applied on the second set of BN outputs
to reduce the dimension to 30. Lastly, delta and delta-delta fea-
tures are concatenated resulting in a final dimensionality of 90.

3. Babel corpus
The IARPA Babel program focuses on ASR and spoken term
detection on low-resource languages [12]. The goal of the pro-
gram is to reduce the amount of time needed to develop an ASR
and spoken term detection capability in a new language. The
rapid development aspect puts constraints on both the amount
of in-domain language resources collected, such as transcribed
speech from the language, and the training time (decreasing
from one month to one week over the course of the program).
Every year the program intends to release 5-6 new low-resource
languages, meaning that by the end of the program there will be
more than 20 languages available. With each passing year we
will have access to more recognizers that are already trained
for the languages from the previous years, so methods that can
make use of previous systems are desirable. In this work, we
put emphasis on the training and deployment conditions that
would make sense under the Babel program. However, we be-
lieve that many of these constraints make sense for other sce-
narios as well.

The data from the Babel project consists of collections of
speech, both transcribed and un-transcribed, from a growing
list of languages. Currently the project is on its second year.
The languages from the first year include Cantonese, Turkish,
Pashto, Tagalog and Vietnamese. The second year languages
are Bengali, Assamese, Zulu, Lao, and Haitian Creole. Each
language consists of two speaking styles: scripted (prompted
speech) and conversational (spontaneous telephone conversa-
tions). There are also currently two standard training condi-
tions: Full (∼80 hours of transcribed speech) and Limited (10
hours of transcribed speech). Most data are recorded via land-
line or cell-phone, while Lao, Haitian, and Zulu also include a
small amount of wideband data recorded by microphones. For
this work, we downsample the wideband data to 8kHz, and pro-
cess all data equivalently. We focus on the Limited condition
for target languages, while the source languages have access to

the Full condition. In our experiments, we only use the conver-
sational data for training. The standard 10-hour dev sets con-
taining only conversational data are used for testing.

4. Language pair transfer learning
In this section, we motivate the potential benefits of language
pair transfer learning, and whether these systems, especially the
trained DNNs, can be used to facilitate the training of new target
languages.

4.1. A case study on Assamese and Bengali

We start by looking at the best case scenario possible, namely
the language pair of Assamese and Bengali. Assamese and Ben-
gali are spoken in adjacent regions in India. They are known to
be linguistically close, with overlapping phoneme inventories
and vocabulary. We used Limited Bengali (IARPA-babel102b-
v0.4) and Full Assamese (IARPA-babel103b-v0.3) as the tar-
get and source languages, respectively. The transfer learning
is done by using the BN features trained on Full Assamese to
extract BN features for Limited Bengali. Tied-state triphone
CD-HMMs, with 2500 states, and 18 Gaussian components per
state, were used for acoustic modeling. Discriminative training
was done using the Minimum Bayes risk (MBR) criterion [13].
For language modeling, a trigram LM is learned from training
data transcripts. We use the same recognizer setup for the rest
of the paper.

As shown in Table 1, using the Assamese BN features im-
proved the WER by 1.4% absolute over the Limited Bengali
BN baseline system. We can also perform additional adapta-
tion on the DNNs from Assamese. This is done by replacing
the original softmax layer with a randomly initialized Bengali
softmax layer, and performing additional fine-tuning iterations.
Replacing the softmax layer completely eliminates the need to
do phoneme mapping between languages. This adaptation pro-
cess is equivalent to using the Assamese data to “pre-train” the
Bengali network, which helps initialize the DNNs into a better
starting point. With the better initialization the network typi-
cally converges in 5 iterations instead of the 10 iterations needed
for a randomly initialized network. The adaptation is done on
both DNNs, which reduces the WER even further to 63.7%. As
an Oracle baseline, we also use a BN system trained on Full
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System WER (%)
Limited PLP 71.8
Full PLP 64.5
Limited BN 66.0
Full BN 55.4
Limited + Full Assamese BN 64.6
Limited + Adapted Full Assamese BN 63.7
Limited + Full Bengali BN 61.6

Table 1: WER on Bengali with different data usage scenarios.

Target (Limited) Source BN (Full)
Bengali Assamese Lao Turkish

Bengali (66.0) 63.7 65.1 64.2
Assamese (65.2) 61.2 62.9 62.1
Lao (62.3) 59.8 60.1 60.0
Turkish (63.9) 61.8 63.1 63.3

Table 2: WER using between different language pairs. Num-
bers in parenthesis are Limited Monolingual BN baseline.

Bengali to extract features for the Limited Bengali system. The
WER of this setup is 61.6%. Thus, the adapted Assamese BN
system is able to capture 52% of the gain that would be achieved
by using more supervised data on Bengali to train the DNNs.

4.2. Other language pairs

To look at the possibility of transfer learning in a broader sce-
nario, where the languages are less similar, we expand our ex-
periments to include two more languages, namely Lao (IARPA-
babel203b-v2.1a) and Turkish (IARPA-babel105b-v0.4). Table
2 summarizes the BN feature transfer learning WERs with tar-
get language adaptation on the four languages. As expected, the
closest language pair of Assamese and Bengali seems to mutu-
ally benefit the most. Bengali also seems to be a good language
in general for the other three languages.

4.3. Language ID for source language selection

Although the experiments in Section 4.2 are promising, in
most cases language similarities are far from obvious, and the
prospect of trying out all possible source languages might not be
time efficient. We propose to use Language Identification (LID)
as a way to determine which language to use as the source lan-
guage. We start by training a DNN with 2 hidden layers and
512 hidden units per layer for LID on the four languages. We
randomly selected 90% of the Limited training sets for train-
ing the network. Unlike the DNN-based LID work in [14], we
use the same input features as the ones described in Section 2.
This is to make the LID DNN decide which languages are simi-
lar based on what the BN DNN would observe. We then use the
DNN to classify the remaining 10% of the (held out) data. Table
3 summarizes the posteriors of each language, averaged across
all frames. The closeness between Assamese and Bengali are
again confirmed by the LID results, with average posteriors of
0.21. Turkish is also closest to Bengali, which is consistent with
our previous experiment. Less similar pairs seem to also corre-
spond to worse WERs in the previous experiment. The only
language that does not follow the predicted trend seems to be
Lao. However, the WER difference between using the closest
language (in the LID sense) and the best possible outcome is
only 0.3%. Thus, we believe that LID is a reasonable method to
select a source language for transfer learning.

Input frames Predicted posteriors (Averaged)
Bengali Assamese Lao Turkish

Bengali 0.57 0.21 0.09 0.13
Assamese 0.21 0.57 0.11 0.11
Lao 0.08 0.11 0.71 0.10
Turkish 0.13 0.12 0.10 0.65

Table 3: Average posteriors for the initial LID experiment.

5. Multilingual Experiments
In this section, we compare different multilingual strategies and
their training time trade-off. For a stronger baseline, we mod-
ified the BN features described in Section 2 as follows. The
filterbank inputs were processed with VTLN warping factors
[15]. Kaldi’s pitch extractor [16] and Fundamental Frequency
Variation (FFV) features [17] are used instead of Subband Au-
tocorrelation Classification pitch tracker (SAcC) [11]. Speaker
adaptation is also applied to the outputs of the first BN DNN be-
fore feeding it to the second BN DNN [15]. Only year one lan-
guages, namely Cantonese (IARPA-babel101-v0.4c), Turkish
(IARPA-babel105b-v0.4), Pashto (IARPA-babel104b-v0.4aY),
Tagalog (IARPA-babel106-v0.2g) and Vietnamese (IARPA-
babel107b-v0.7), are considered as source languages.

A multilingual stacked bottleneck DNN is trained on the
Full condition of all year one languages which consists of ∼300
hours. The DNN training follows [18] where all the DNN tar-
gets from each language are pooled together. This has an effect
of doing discrimination against all targets of the other language
as well1. Language-specific speaker adaptation then is applied
on the outputs of the first DNN. Similarly, the monolingual ver-
sions of all the year one languages are trained using this proce-
dure.

5.1. Adaptation strategies

Since there are two DNNs in the stacked BN architecture, sev-
eral adaptation strategies are available. In [10], they observed
that it is beneficial to adapt the first DNN. However, the second
DNN should be either adapted, or trained from scratch using
the target data only, depending on the target language. Thus,
for our experiments, we always adapt the first DNN from ei-
ther the multilingual DNN or the monolingual DNNs from year
one. For the second DNN, the following approaches were con-
sidered:

1. Training from scratch using only the target language data
(target only).

2. Adapting from the multilingual DNN (multi).

3. Adapting from a monolingual DNN from year one
(mono).

4. Re-train the monolingual DNN using the features from
the first multilingual DNN which is already adapted to
the target language. Then, use the target language data
to do adaptation (mono re-train).

5. Re-train the multilingual DNN using the features from
the first multilingual DNN which is already adapted to
the target language. Then, use the target language data
to do adaptation (multi re-train).

1From the work in [10], there was a small difference in WER be-
tween this approach and the one where the targets of each language are
discriminated only amongst themselves. We chose the current approach
due to ease of implementation.
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Input frames Predicted posteriors (Averaged)
T P U C V

Lao 0.25 0.08 0.14 0.16 0.37
Assamese 0.31 0.18 0.19 0.06 0.26

Table 4: LID posteriors of the year one languages; Tagalog (T),
Pashto (P), Turkish (U), Cantonese (C), and Vietnamese (V).

DNN for adaptation WER (%)
1st stage 2nd stage Lao Assamese

a target only target only 61.5 63.3
b multi target only 59.0 61.2
c multi multi 57.5 59.4
d multi mono 58.0 (P) 60.1 (P)
e multi LID 57.5 (V) 59.4 (T)
f LID LID 56.8 (V) 59.3 (T)
g LID LID re-train 56.5 (V) 59.0 (T)
h multi LID re-train 56.0 (V) 58.5 (T)
i multi mono re-train 56.7 (P) 58.8 (P)

Table 5: WER on Limited Lao and Limited Assamese using
different adaptation strategies. Letters in parentheses denote the
source language used for the monolingual DNNs.

While the original multilingual DNN can be trained in ad-
vance, we do not consider method 5 since re-training the mul-
tilingual DNN would take longer than one week. Re-training
a Full condition’s worth of data (method 4) would take around
13 hours. The adaptation of the DNNs with 10 hours of target
language data (all methods) can be done in less than one hour.

5.2. Results

For our multilingual experiments we chose Limited Lao and
Limited Assamese as our target languages. A DNN for LID was
trained for the five year one languages as described in Section
4.3. The average predicted posteriors from the Limited condi-
tion of the two target languages are summarized in Table 4. Lao
is closest to Vietnamese, while Assamese is closest to Tagalog.
Note that Pashto and Assamese fall under the same language
family of Indo-Iranian, but Pashto is placed fourth in terms of
LID similarity to Assamese.

Table 5 shows the results of the different adaptation strate-
gies where LID denotes using the monolingual DNN from the
closest year one language. For comparison, we also use Pastho
as another possible source language. The baseline BN systems
using only the target language data have a WER of 61.5% and
63.3% for Lao and Assamese, respectively. All the multilingual
systems perform better than the baseline, showing the benefits
of using additional resources to facilitate low-resource ASR.
Adapting both DNNs improves the WER in all cases. As ex-
pected, using the closest language DNN performs better than
Pashto (d vs. e). More importantly, using the monolingual DNN
from the closest languages for the first and second DNNs works
slightly better than the multilingual counterparts (f vs. c). The
multilingual DNN seems to help when coupled with re-training
of the second DNN using the closest language (h), improving
the WER by another 0.8% for both Lao and Assamese. This,
however, comes with a slightly longer training time.

5.3. No data like similar data

The experiments in the previous section show that the language
identified as the closest identified language alone can achieve

Amount Lao data usage WER (%)
0 None (Turkish only) 63.9

10hrs Limited condition data 64.4
10hrs Furthest utterances 66.5
10hrs Closest utterances 63.8
10hrs Closest frames 63.1
65 hrs Full condition data 63.3

32.5 hrs Random utterances 64.0
32.5 hrs Closest utterances 62.8
32.5 hrs Closest frames 62.4

Table 6: Effect of source data selection on Limited Turkish.

comparable performance to the combined multilingual training.
Yet, the data used in the monolingual systems are strictly sub-
sets of the multilingual data. This seems to imply that includ-
ing other languages which are “further away” can hurt perfor-
mance. To this end, we re-visit the Lao-Turkish (source-target)
language pair, which provided the least performance gain in
Section 4.2.

In the same way that LID can identify which language is
closest to the target data, LID can also be used as a selection
tool to determine which portion of the data is most useful for
the target language. Suppose we train a LID DNN using all
the data from the Limited condition of Lao and Turkish. Then,
for BN DNN training, we select Lao data at either the frame
or utterance level. At the utterance level, the frame posteriors
are averaged across each utterance. The frames/utterances with
highest posteriors are then used to train the source BN DNN for
further adaptation.

Table 6 summarizes the different data selection strategies.
Using the provided Limited Lao subset, the performance is even
worse than the baseline with no Lao data at all. Unsurprisingly,
the performance degrades even further if 10 hours of the furthest
utterances from Full Lao are used. Using 10 hours of the closest
utterances, however, can achieve a WER of 63.8%, slightly bet-
ter than the Limited Turkish baseline. Selecting based on frames
gives a slightly better WER than utterance-based selection. The
best performing system based on 10 hours of Lao data selects
only the closest frames and attains an WER of 63.1%. With
only one-sixth of the data, we do as well as if we had used the
Full Lao. Selecting the closest half of the frames yields a WER
of 62.4%, a 0.9% absolute improvement.

From the results, having data that is similar to the target data
seems to be more important than having more source data. This
anecdotal observation seems to suggest that adequately robust
BN features can be trained without much data, especially when
the resulting DNNs are used as a starting point for adaptation.
As less similar data would put the DNNs into worse initializa-
tions, perhaps we should exercise more care in selecting data
for multilingual adaptation.

6. Conclusion
We investigated the use of LID for language selection to facili-
tate multilingual training in a framework for extracting stacked
BN features. Experiments showed that monolingual DNNs
from “close” languages could outperform a full multilingual
training, with the combination of the two yielding the best re-
sults. For future work, we plan to explore data selection to select
frames across multiple languages and doing speaker adaptation
via i-vectors instead of explicit feature transforms [19, 20].
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