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Abstract
The increasing popularity of Massive Open Online Courses
(MOOCs) has resulted in huge number of courses available over
the Internet. Typically, a learner can type a search query into
the look-up window of a MOOC platform and receive a set of
course suggestions. But it is difficult for the learner to select
lectures out of those suggested courses and learn the desired in-
formation efficiently. In this paper, we propose to structure the
lectures of the various suggested courses into a map (graph) for
each query entered by the learner, indicating the lectures with
very similar content and reasonable sequence order of learning.
In this way the learner can define his own learning path on the
map based on his interests and backgrounds, and learn the de-
sired information from lectures in different courses without too
much difficulties in minimum time. We propose a series of ap-
proaches for linking lectures of very similar content and predict-
ing the prerequisites for this purpose. Preliminary results show
that the proposed approaches have the potential to achieve the
above goal.

1. Introduction
The increasing popularity of Massive Open Online Courses
(MOOCs) [1] has resulted in huge number of courses available
over the Internet under various MOOCs platforms such as edX
and Coursera. When a learner wishes to learn a certain subject,
he can simply type a search query on the look-up window of
a MOOC platform and receive a series of course suggestions
for him to select. But a course may not cover all the topics
important for him. Even if he spends time to take one course,
he may still miss some information important for him taught in
other courses or lose the global picture for the whole subject
he wishes to learn. On the other hand, going through all re-
lated courses is impossible for a learner, and especially waste-
ful when the courses have a good portion of overlap. Also, very
often it will be easier to learn a lecture after some other lec-
tures because the content of the former is based on the concepts
mentioned in the latter.

With the thoughts mentioned above, it may be much more
efficient if the learner can choose from a whole set of lectures
collected from different courses, shown on a map (graph) for
the global picture of the subject indicating the lectures with
overlapped content and reasonable sequence order of learning.
Such a graph would pave the roads towards efficient person-
alized learning, because different learners may select different
learning paths over the same graph due to different interests
and backgrounds. There are two key technologies necessary
for constructing such a graph, i.e., linking lectures with over-
lapped or very similar content, and predicting prerequisites be-

tween lectures so as to give them a good sequence order. This
paper presents a series of approaches towards these directions
and some initial results obtained. A MOOC interface towards
the above goal is currently being developed. It is a prototype
system called Cangjie, which organizes the lectures from more
than 50 courses on edX and Coursera. The video demonstration
of the prototype system can be found at [2]. Although there are
already many approaches proposed for helping learners browse
on-line courses including retrieving relevant lectures [3–7], key
term extraction [5, 7], summarizing the audio/video record-
ings [7,8] and visualizing interaction history [9], they primarily
aimed at managing the information from a single course, instead
of considering the relationships among the content of lectures of
different courses as considered here. Moreover, some previous
works proposed for automatically linking objects to help people
navigate unfamiliar territory [10,11] and observing prerequisite
relations among courses to learn a directed universal concept
graph [12, 13]. However, constructing a map for the lectures to
enhance MOOC learning as in this paper has not been widely
studied yet.

2. Structuring Lectures with a Map
Fig. 1(a) is an example of the retrieval results after the

learner enters a query for the subject he wishes to learn, in-
cluding 3 courses X , Y and Z each with 5 lectures in sequence
order as {xi, i = 1, 2, ..., 5} and so on. Fig. 1(b) indicates that
the approaches proposed in this paper may find out that lecture
2 of X (x2) has content very similar to that of lecture 3 of Y
(y3), while z1 is the prerequisite of y2 and y4 is the prerequisite
of z5. This produces the map (or a graph) as shown in Fig. 1(b).
A learner may then choose the learning path as shown red in
Fig. 1(c), {z1 → y2 → (y3, x2) → x3 → y4 → z5}, so as to
learn the selected parts of three courses without too much diffi-
culties in minimum time. The approaches used to link lectures
in different courses but with very similar content is introduced
in Section 3. The approaches for predicting the prerequisite re-
lationships between lectures is introduced in Section 4. These
approaches make it possible to produce a lecture map for each
query entered by a learner, so the learner can easily design his
personalized learning path accordingly and learn efficiently.

3. Linking Lectures with Similar Content
3.1. Individual Pair Similarity

A simple approach is to compute the similarity S(xi, yj) be-
tween the lectures xi and yj for courses X and Y as in Fig. 1
based on their audio transcriptions or lecture titles, and then
choose the pairs with similarity exceeding a threshold.
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Figure 1: Structuring lectures in multiple courses with a map :
(a) retrieved lectures in coursesX , Y andZ , (b) linking lectures
with similar content and predicting the prerequisite relationship,
(c) personalized learning path chosen by a learner.

The similarity S(xi, yj) based on audio transcriptions can
be simply obtained by the feature vectors in the vector space
model with tf-idf weighting and the cosine similarity. This can
also be performed on all the key terms extracted [14] from the
course transcriptions, rather than on all words in the lexicon.
We can also perform latent topic analysis and obtain a topic dis-
tribution vector for a lecture x, {P (tk|x), k = 1, ..., T}, in
which P (tk|x) is the probability of observing topic tk from
x, and T is the number of latent topics. The topic simi-
larity between two lectures xi and yj is then, S(xi, yj) =∑T

k=1 P (tk|xi)P (tk|yj). Lecture titles usually carry key in-
formation so should also be carefully used. In addition to sim-
ilarly computing S(xi, yj) based on the titles just as based on
audio transcriptions mentioned above, we can also leverage the
grammatical information obtained from the syntactic parsing
tree of each title, representing each title by a feature vector of
grammatical rules used [15] (each dimension is a rule, and it is
1 if used and 0 otherwise), based on which cosine similarity can
be evaluated. If two titles have similar parsing trees and similar
words, the lectures usually have similar content.

Figure 2: (a) Reasonable links and (b) crossover links.

3.2. Global Lecture Structure Considerations

There always exists sequence orders for lectures in a course
because usually one concept follows another. As a result, when
lectures with similar content in different courses are linked,
these links should not cross over each other frequently because
they should follow a certain order in their own courses. In
Fig. 2, for (xi, yj) and (x

i
′ , y

j
′) are two pairs of linked lectures

in two courses X and Y and i > i′ and j > j′ as in Fig. 2(a).
These two links seem reasonable because xi follows x

i
′ in X

and yj follows y
j
′ in Y . On the other hand, if i > i′ but j < j′

as in Fig. 2(b), this is a crossover and less likely to be correct,
because if xi is similar to yj , x

i
′ before xi is less likely to be

similar to y
j
′ after yj . This leads to the consideration for global

lecture structures.
Let L represent a set of linked lecture pairs for X and

Y , L = {(xi1 , yj1), ..., (xik , yjk ), ..., (xi|L| , yj|L|)}, where

(xik , yjk ) represents the k-th pair of similar lectures with xik
in X and yjk in Y . We define an objective function F (L) to be
maximized,

F (L) =
∑

(xi,yj)∈L
S(xi, yj)− λ1C(L)− λ2|L|, (1)

C(L) =
∑

(xi,yj),(xi′ ,yj′ )∈L
c((xi, yj), (xi′ , yj′ )), (2)

c((xi, yj), (xi′ , yj′ )) =

{
|i− i′|+|j − j′|, crossover,
0, otherwise.

(3)

where λ1 and λ2 are parameters to be determined by a devel-
opment set. The first term on the right hand side of (1) is to
accumulate the similarity values obtained in Section 3.1 for all
linked pairs inL. From (2)(3), the second term on the right hand
side of (1) represents “accumulated degree of crossover” in the
set L because the larger the value of |i− i′|+|j − j′|, the more
serious the crossover for this pair of links, and these values are
accumulated in (2). The last term in (1),−λ2|L|, prevents from
including too many links, since any linked pair (xi, yj) may
contribute to the first term in (1) if S(xi, yj) is positive.

A greedy algorithm can be used to solve the problem of
maximizing (1). In each iteration, the system links the pair of
lectures that increases (1) the most. Although this algorithm can
only find an approximate solution, it works reasonably well in
our experiments.

4. Prerequisite Prediction
The goal here is to determine which of the two given lectures

in the same domain should be taken first.

4.1. Feature vector extraction

4.1.1. Framework based on Keywords

We select the top-n most frequently used words (with stop
words deleted first) as the keywords [14]. This gives a set of
n keywords for a course u, W = {w1, w2, ..., wn}, based on
which the feature vectors can be built.

4.1.2. Semantic Weights for Keywords

We wish to develop some weights for the keywords,
{s(w1), s(w2), ..., s(wn)}, indicating their importance in se-
mantics, where s(wI) is the weight for wi.

• Semantic depth in WordNet: A “hypernym” is a word whose
semantic field includes another word. For every keyword wi

found above in W , we find it in the hypernymy tree from
WordNet and traverse back to the root [16–20]. Number of
steps needed to arrive at the root can be taken as s(wi) since
it represents the semantic depth of wi. Larger s(wi) implies
wi is more specific.

• Late occurrence ratio: For a course of m lectures, if a key-
word wi in W appears the first time in the l-th lecture, we
have s(wi) = l

m
, so s(wi) is between [0,1]. Larger values

of l
m

imply wi first appears later in the course, or it is more
specific in the respective domain.

4.1.3. Feature Vector Representation Schemes

Different schemes are proposed to construct the feature vectors
u for the lectures based on the keyword set W and the corre-
sponding semantic weights for keywords mentioned above.
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• Bag-of-word representation (BOW):

u = [tf(w1) tf(w2) ... tf(wn)], (4)

where u is the feature vector for the lecture, and tf(wi) is the
term-frequency of the keyword wi in the lecture.

• Weighted BOW: Each term-frequency tf(wi) in (4) is
weighted by s(wi) mentioned in Subsection 4.1.2,

u = [s(w1)tf(w1) s(w2)tf(w2) ... s(wn)tf(wn)], (5)

Since we propose two different weights s(wi) in Subsec-
tion 4.1.2, there are two different weighted BOW represen-
tation schemes here.

• Word embedding representation: We train the domain-
specific word embedding model [21–24] with corpora col-
lected from Wikipedia. We first extract key terms [14] from
the course transcriptions, and use the obtained key terms as
queries to retrieve all related articles in Wiki. All these arti-
cles including others linked to these articles in Wikipedia are
taken as the training corpora for training the word embedding
model for the course. With this model, we represent each key-
word wi as a word vector vi. The new keyword set is then,
V = {v1, v2, ..., vn}, where vi ∈ Rd, d is the dimension of
the word embedding model. Finally, we accumulate and av-
erage the word vectors for the keywords ever mentioned in
the given lecture to be taken as the feature vector,

u =
1

Nw

∑n

i=1
s(wi)tf(wi)vi, (6)

where Nw is the total count of all keywords in the set W
appearing in the given lecture. This feature vector u in (6)
is in fact very similar to the weighted BOW representation
mentioned above in (5), except for weighted BOW each di-
mension of u is for a keyword, while here each dimension of
u is a dimension for the word embedding model.

4.2. Support Vector Machine (SVM) Classification

Below ui and uj are the feature vectors of the lectures being
considered as mentioned above, âij is the corresponding pre-
requisite relationship, i.e., âij > 0 if ui is the prerequisite of
uj and âij < 0 otherwise. M is a weight matrix and also the
set of parameters to be learned. With M trained, we can then
predict the prerequisite relations between lectures i and j. Two
different weight schemes are considered:

Directional Matrix: M ∈ RD, âij =M · (ui − uj), (7)

Transformation Matrix: M ∈ RD×D, âij = uᵀiMuj , (8)

Equation (8) assigns a weight to each component of ui multi-
plied by each component of uj , and D is the dimensionality of
u, either n in (4)(5) or d in (6). The criterion for optimizing
matrix M is then defined as:

min
M

∑
i,j

[1− aij(âij + b)]+ + λ‖M‖2, (9)

where ‖·‖2 is the matrix Forbenius norm,(1 − v)+ =
max(0, 1 − v) denotes the hinge function, b is the bias, (9) is
actually the formula for SVM. Given a set of training lectures
and their labeled prerequisite relationships (aij = +1 or − 1),
(9) can be trained with SVM algorithms [25–27].

5. Experimental Results

5.1. Course Material Description

We chose to focus on the courses on two areas, Natural
Language Processing and General Chemistry, each with two
courses. The two NLP courses are offered by Stanford Univer-
sity [28] and Columbia University [29] lectures, having average
lengths of 465.8 and 243.2 seconds each respectively consisting
of 121 and 101 lectures, while the two Chemistry courses were
from University of Kentucky [30] and Rice University [31, 32]
respectively containing 132 and 72 lectures, having average
length of 463.9 and 877.8 seconds each. These courses are on
the Coursera platform. The transcriptions for the audio and the
title of each lecture were available and used in the experiments.

5.2. Linking Lectures with Very Similar Content

Three experts with NLP background were recruited to label
whether two lectures (each in one of the two NLP courses) have
very similar content. The average kappa values among the three
experts were 82%. The ground truth was obtained by expert vot-
ing. Precision, recall and F1-measure were used as the evalua-
tion measures. Precision is the percentage of lecture pairs linked
by the computer to have similar content which were consistent
with the ground truth, while recall is the percentage of lecture
pairs considered to have very similar content in the ground truth
which were similarly identified by the system. Two-fold cross
validation were performed in the tests. The results are reported
in Table 1. The upper part of Table 1 (labeled “Individual”)
reports the results of using the individual pair similarity. The
rows (a) to (e) are the results of the different similarity mea-
sures mentioned in Section 3.1, with rows (a) to (c) based on
the manual transcripts of the audio in the lectures, while (d)(e)
on the titles. The key terms in (b) were extracted by the key term
extraction toolkit, topia.termextract [33]. LDA in (c) was im-
plemented with MALLET [34] with 128 topics. We see the key
terms yielded better results than considering all words (rows (b)
vs (a)). Also, the latent topic based similarity yielded the best
results among all the similarity measures based on the audio
transcripts (rows (c) vs (a), (b)), obviously because the latent
topics can handle the synonym problems to some extent.

The results for the lexical similarity and syntactic parsing
tree [35] similarity of the titles are respectively shown in rows
(d) and (e). It is clear that syntactic parsing tree similarity out-
performed the lexical similarity (rows (e) vs (d)). The titles were
usually brief without redundant words, as lectures having sim-
ilar titles usually have very similar content. This is why the
results based on the titles had higher precision than those based
on the audio transcriptions (rows (d), (e) vs (a), (b), (c) for “Pre-
cision”). On the other hand, because the titles may be too brief
to cover all concepts mentioned in the lectures, sometimes lec-
tures with very similar content were considered different if their
common concepts were not implied by the titles, which led to
lower recall (rows (d), (e) vs (a), (b), (c) for “Recall”). Row (f)
are the results using the average of the five similarity measures
in rows (a) to (e), giving a precision not as high as the best ones
(rows (f) vs (c)(d)(e) for “Precision”), but the highest recall and
F1-measure among all (rows (f) vs (a) to (e)).

The last row (g) of Table 1 (labeled “Global”) is for the
approach considering global structure as in Section 3.2. The
similarity measure S(xi, yj) in (1) is the average of the five
measures used in row (f). Compared to row (f) with the same
S(xi, yj), considering the global structure in addition was sig-
nificantly better in both precision and recall (rows (g) vs (f)).
Clearly, the global structure is very helpful.

1365



Table 1: The results of linking lectures with similar content.
The upper part (rows (a) to (f) in “Individual”) are those us-
ing different individual pair similarity measures in Section 3.1,
while the lower part (row (g) in “Global”) is the results consid-
ering global structure in Section 3.2.

Precision Recall F1
(%) (%) (%)

In
di

vi
du

al

Audio (a) all terms 13.8 24.6 17.3
Transcripts (b) key terms 33.8 26.5 28.8

(c) topics 48.9 30.2 37.2
Title (d) all terms 52.7 20.7 29.7

(e) syntax 56.5 18.9 27.9
(f): (a)+(b)+(c)+(d)+(e) 42.9 52.7 47.2

Global (g) 53.6 54.6 54.1

5.3. Prerequisite prediction

The two sets of parallel courses in NLP and Chemistry were
both used. We simply assume that for two lectures in the same
chapter of the same course, the one given earlier is the prerequi-
site of the other one given later. So for the two courses in each
field, we took the lecture sequence order for one course as train-
ing data to learn the model to predict the prerequisite relation-
ships of the lectures in the other course in the same field, while
the sequence order for the latter was taken as the ground truth
in testing. Although here we only used the model to predict
the prerequisite relationships for lectures in courses in the same
field, it it believed that the model learned should be equally ap-
plied on lectures in courses in other fields as well.

Table 2: The performance of predicting prerequisite relation-
ships. The upper part (Direct) is for the Directional matrix in
(7), with rows (a) to (e) for different feature vector representa-
tions and weights. The lower part (Transf) is for the Transfor-
mation matrix in (8) instead.

Accuracy (%) NLP Chemistry

Direct

(a) Bag-of-word (BOW) 68.1 61.4
Weighted (b) Late-occur 65.5 62.8

BOW (c) WordNet 70.0 63.3
Word (d) Late-occur 69.5 64.8

Embedding (e) WordNet 73.3 65.2

Transf Word (f) Late-occur 69.4 66.6
Embedding (g) WordNet 76.1 67.0

The accuracy of the prerequisite prediction was used as the
measurement. The results are in Table 2. The two columns la-
beled with NLP and Chemistry in Table 2 are respectively for
the results on the NLP and Chemistry courses. The upper part
of Table 2 (labeled as “Directional”) is for the Directional Ma-
trix in (7), with rows (a) to (e) for different feature vector rep-
resentation schemes (Section 4.1.3) and two semantic weights
(Section 4.1.2). Row (a) is for Bag-of-word vector in (4), and
rows (b) and (c) for weighted BOW in (5) using late occurrence
ratio (row (b)) and WordNet (row (c)) respectively. We noted
that the late occurrence ratio was not helpful for NLP courses
(rows (b) vs (a) for NLP), probably because different lectur-
ers have different habits in using words, so the late occurrence
ratios doesn’t necessarily carry prerequisite relation informa-
tion across courses. On the other hand, semantic depth from

WordNet improved the performance on both NLP and Chem-
istry (rows (c) vs (a)(b)), or the hypernym tree structure is help-
ful in predicting the prerequisite relationships.

The results of semantic weighs for distributed word embed-
ding representations are in rows (d) and (e). We found that
word-embedding representation outperformed weighted BOW
in all cases (rows (d)(e) vs (b)(c)). Although late occurrence ra-
tio messed up the results while using weighted BOW schemes,
it actually performed better with word embedding representa-
tion (rows (d) vs (a)). Moreover, semantic depth from WordNet
with word embedding representations outperformed all the pre-
vious methods (rows (e) vs (a)(b)(c)(d)), probably because with
using word embedding representations, lectures using very dif-
ferent words to describe very similar concepts can be properly
represented in the continuous space.

We then used the Transformation matrix in (8) with the
top-2 results obtained above (word embedding with weights
in rows (d) and (e)). The results are in the lower part of Ta-
ble 2 (rows (f)(g) under). We see more parameters learned with
(8) yielded better results with the same features (rows (f)(g) vs
(d)(e)), or considering the interaction between different feature
dimensions is helpful.

5.4. User study

We conducted user study to compare the MOOCs user inter-
face as proposed in Fig. 1(c) (Proposed) with two baselines.
The first baseline displayed the originally retrieved lectures in
sequences as in Fig. 1(a) (Original), while the second one first
linked the lectures with similar content using the proposed ap-
proach and then ordered them randomly (Half Random). We
entered three queries in NLP domain and showed the three cor-
responding interfaces mentioned above to 13 users, all having
NLP background, and asked if they agreed that these interfaces
helped in learning. There are 5 selections for them to choose,
from “strongly disagree”(1 point) to “strongly agree”(5 points).
The results are in Fig. 3. The average points for Original, Half
Random, and Proposed are respectively 3.31, 1.56, and 4.52.
Moreover, around 53.8% of the users strongly agreed that the
proposed approaches help in learning, while much less did so
for the original interface (Fig. 3(c) vs (a)). The much worse sit-
uation in Fig. 3(b) implies the importance of lecture sequence
order even given similar lectures linked.

Figure 3: Users were asked if they agreed the interfaces help in
learning, (a) Original, (b) Half Random, (c) Proposed.

6. Conclusions
We propose to structure related lectures in different courses

retrieved from a query into a learning map by linking lectures of
very similar content and predicting the prerequisites. Learners
can then define their personalized learning path on the map and
learn the desired information efficiently. In addition to objective
evaluations, the user study show that 97.4% of users agree that
such a map is helpful in learning.
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