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Abstract—The impressive gains in performance obtained using
deep neural networks (DNNs) for automatic speech recognition
(ASR) have motivated the application of DNNs to other speech
technologies such as speaker recognition (SR) and language recog-
nition (LR). Prior work has shown performance gains for separate
SR and LR tasks using DNNs for direct classification or for feature
extraction. In this work we present the application of single DNN
for both SR and LR using the 2013 Domain Adaptation Challenge
speaker recognition (DAC13) and the NIST 2011 language recogni-
tion evaluation (LRE11) benchmarks. Using a single DNN trained
for ASR on Switchboard data we demonstrate large gains on per-
formance in both benchmarks: a 55% reduction in EER for the
DAC13 out-of-domain condition and a 48% reduction in on
the LRE11 30 s test condition. It is also shown that further gains
are possible using score or feature fusion leading to the possibility
of a single i-vector extractor producing state-of-the-art SR and LR
performance
Index Terms—Bottleneck features, DNN, i-vector, language

recognition, senone posteriors, speaker recognition, tandem
features.

I. INTRODUCTION

T HE impressive gains in performance obtained using deep
neural networks (DNNs) for automatic speech recogni-

tion (ASR) [1] have motivated the application of DNNs to other
speech technologies such as speaker recognition (SR) and lan-
guage recognition (LR) [2]–[11]. Two general methods of ap-
plying DNN’s to the SR and LR tasks have been shown to be
effective. The first or “direct” method uses a DNN trained as a
classifier for the intended recognition task directly to discrimi-
nate between speakers for SR [5], [11] or languages for LR [4].
The second or “indirect” method uses a DNN possibly trained
for a different purpose to extract data that is then used to train
a secondary classifier for the intended recognition task. Ap-
plications of the indirect method have used a DNN to extract
frame-level features [2], [3], [12], accumulate a multinomial or
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Fig. 1. Example DNN architecture.

Gaussian vector [7], [11] or accumulate multi-modal statistics
[6], [8] that were then used to train an i-vector system [13], [14].
The primary contribution of this paper is examining the use

of a single DNN trained for ASR used for both SR and LR tasks.
Prior published work has examined the application of DNNs for
SR or LR with each method separately. In Section IV we de-
scribe initial LR experiments which motivate the focus on two
indirect methods. The first indirect method (bottleneck features
or BNFs) uses frame-level features extracted from a DNN with
a special bottleneck layer [15] and the second indirect method
(DNN posteriors) uses posteriors extracted from a DNN to ac-
cumulate multi-modal statistics [6]. The features and statistics
from these indirect methods are used to train i-vector classifiers
for each task and combinations of methods. Contrastive and fu-
sion experiments for well defined SR and LR benchmarks are
given in Section V.

II. DNN’S FOR SR AND LR
A DNN classifier is essentially a multi-layer perceptron with

more than two hidden layers that typically uses random initial-
ization and stochastic gradient descent to initialize and optimize
the weights [1], [16]. For speech applications, the input to a
DNN is a stacked set of spectral features (e.g., MFCCs, PLPs)
extracted from short (20 ms) segments (frames) of speech. Typ-
ically a context of to 10 frames around the current input
frame are used. The output of the DNN is a prediction of the
posterior probability of the target classes for the current input
frame (see Fig. 1).
In the direct method for LR and SR, a DNN is used to pre-

dict the language or speaker class for a given frame of speech.
Since the entire speech waveform is considered to belong to a
single class, the frame-level DNN posteriors must be combined
to make a single decision score. This can be accomplished ei-
ther by simply averaging the DNN predictions or by training a
secondary classifier, such as a multinomial, that uses statistics
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across the whole input derived from the DNN as a single feature
vector.
In contrast to the direct method, the indirect method uses a

DNN that was trained on a different data set and possibly for
a different purpose. In this work, we have used a DNN trained
for an ASR task for both LR and SR. The ASR DNN is trained
to predict sub-phonetic units or “senones” for each input frame
[1]. In the following two subsections we describe how we use
the ASR DNN output posteriors and BNFs in the context of an
i-vector classifier.

A. DNN Posteriors
A typical i-vector system uses zeroth, first and second order

statistics generated using a Gaussian mixture model (GMM)
[13] which is commonly referred to as the universal background
model (UBM). Statistics are accumulated by first estimating
the posterior of each GMM component density for a frame and
using these posteriors as weights for accumulating the statistics
for each component of themixture distribution. The zeroth order
statistics are the total occupancies across an utterance for each
GMM component and the first order statistics are the occupancy
weighted accumulations of feature vectors for each component.
The i-vector is then computed using a dimension reducing trans-
formation applied to the stacked first order statistics.
An alternate approach to extracting statistics has been pro-

posed in [6]. Statistics are accumulated in the same way as for
the GMM but class posteriors from the DNN are used in place
of GMM component posteriors. Once the statistics have been
accumulated, the i-vector extraction is performed in the same
way as it is from the GMM based posteriors. This approach has
been shown to give significant gains for both SR and LR [6],
[7], [17].

B. DNN Bottleneck Features
A DNN can also be used as a means of extracting features for

use by a secondary classifier - including another DNN [18]. This
is accomplished by using the activation of one of the DNN’s
hidden layers as a feature vector. For some classifiers the dimen-
sionality of the hidden layer is too high and some sort of feature
reduction is necessary like LDA or PCA. In [15], a dimension
reducing linear transformation is optimized as part of the DNN
training by using a special bottleneck hidden layer that has fewer
nodes (see Fig. 1). The bottleneck layer uses a linear activation
and behaves very much like a LDA or PCA transformation on
the activation of the previous layer [15], [19]. Matrix factoriza-
tion was originally proposed in [19] to reduce the number of
parameters of the output layer of the DNN, but in our work we
have chosen to use the second to last layer with the hope that the
output posterior prediction would not be too adversely affected
by the loss of information at the bottleneck layer. BNFs have
been shown to work well for both LR [2], [3] and SR [10], [12].
The experiments described in Section V focus on using a single
DNN trained for ASR to extract bottleneck features and estimate
posteriors. While it may appear that BNFs derived from an ASR
trained DNN should have little speaker information, the results
below and also reported in [12] indicate that these features still
contain speaker-dependent phoneticaly discriminative informa-
tion that is beneficial for the SR task.

III. I-VECTOR SYSTEM
In the experiments, an i-vector classifier, configured as de-

scribed below, was used for baseline and integrated DNN sys-
tems. Speech activity segmentation generated using a GMM
based speech activity detector was used for all systems. The
front-end feature extraction for the baseline LR system uses 7
static cepstra appended to 49 shifted delta cepstra (SDC) for a
total of 56 features. The front-end for the baseline SR system
uses 20 MFCCs including C0 and their first derivatives for a
total of 40 features. Features extracted directly from the DNN
bottle neck layer are used for BNF experiments.
All GMM i-vector systems use a 2048 component GMM. For

the DNN posterior experiments, the DNN output posteriors are
used instead of those from the GMM. In both cases, 600 dimen-
sional i-vectors are extracted from stacked mean vectors which
are standardized to using diagonal Gaussian parameters

and . After extraction, i-vectors are length normal-
ized [20]. For both LR and SR, the mean of the enrollment files
for each language or speaker are used as the target models. For
both tasks, within and across class i-vector covariances (
and ) are estimated and used for PLDA scoring. For SR, the
i-vectors are whitened using parameters and prior to
length normalization.
Hyperparameters for SR and LR tasks (which include ,

, , , , and ) were trained using their
respective training data with the above i-vector configuration.
All LR systems are calibrated using the discriminative Gaussian
backend described in [21] which uses both scores and durations
for calibration.

IV. INITIAL LR EXPERIMENTS

Our initial DNN experiments focused on the LR task where
in contrast to the SR task there are a small number of well de-
fined language classes with a significant amount of data for each
one. For these experiments we use a six language sub-set of the
NIST 2009 Language Recognition Evaluation (LRE09) corpora
that includes Farsi, Hindi, Korean, Mandarin, Russian and Viet-
namese [22], [23]. The training partition consists of 20 hours
of data per language (10 hours each of VoA and CTS data) for
a total of 120 hours of speech. The test data is the subset of
the LRE09 evaluation that matches the same six languages. The
corpus design was motivated by results reported in Fig. 3 of
[4] for roughly the same amount of data per a language. In all
the development experiments we calibrate the scores using a
cheating backend on the test data and report the at 30, 10
and 3 seconds.
We first focused on the direct approach discussed in Sec-

tion II. The DNN used here was trained using the training par-
tition of the data set and consisted of 819 input nodes (stack of
21 frames of 13 Gaussianized [24] PLP coefficient and their first
and second order derivatives), 2 hidden layers with 2560 nodes
per layer, and 6 output nodes. All hidden layers used a sigmoid
activation. The DNN training is preformed on an nVidia Tesla
K40 GPU using custom software developed at MIT/CSAIL.
Scores for each language were generated by averaging the 6
DNN frame-level output log posteriors for each test file.
Results using the direct approach along with the baseline

i-vector system are given in Table I. The learning rate for the
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TABLE I
INITIAL LR DIRECT DNN PERFORMANCE ( )

TABLE II
INITIAL LR INDIRECT DNN PERFORMANCE ( )

DNN was 0.2 and the frame error rate on a held-out valida-
tion set was 56.3% after 10 epochs of training. While there is
a substantial degradation in performance relative to the base-
line system at the 30 s and 10 s durations using this technique,
there is a slight gain at the short 3 s duration for the 2 layer DNN
which is consistent with results reported in [4].
We next examined the DNN BNF and the DNN posterior

technique discussed in Section II. The DNN for these experi-
ments was trained on 100 hours of Switchboard 1 data [25] using
4,199 state cluster (senone) target labels generated using the
Kaldi Switchboard-1 tri4a example system [26]. The same 819
input features were used as the above direct approach DNN. The
DNN has 7 hidden layers of 1024 nodes each with the excep-
tion of the 6th bottleneck layer which has 64 nodes. All hidden
layers use a sigmoid activation function with the exception of
6th layer which is linear [15]. The learning rate for the DNN
was 0.2 and the DNN frame error rate on a held-out validation
set was 54.1% after 19 epochs of training. This DNN is used for
all the experiments reported in Section V.
The results in Table II show that the BNFs together with

GMM posteriors give the best performance and that in general
all systems using the DNN significantly out perform the base-
line system. Based on these results we focused next on applying
this ASR DNN to more challenging LR and SR tasks.
During the course of this investigation several other in-

teresting observations were made. Increasing the amount
of training data and the number of parameters in the DNN
both by up to a factor of three did not significantly improve
performance. The inclusion of the bottle neck layer did not
adversely affect the DNN posterior based results. Appending
delta features to the PLP features gave a small but significant
performance gain. Most interestingly, without Gaussianization
on the input PLP features LR performance degraded by well
over a factor of two (the DNN frame error rate without Gaus-
sianization is 68.9%).

V. LR AND SR BENCHMARK EXPERIMENTS

In this section we present experiments with the indirect DNN
approaches on some well defined LR and SR benchmarks. The
LR systems were evaluated on the NIST 2011 Language Recog-
nition Evaluation (LRE11) data [27] which covers 24 languages
coming from telephone and broadcast audio and has test dura-
tions of 3, 10, and 30 seconds. Details on the LR training and

TABLE III
IN-DOMAIN DAC13 RESULTS

TABLE IV
OUT-OF-DOMAIN DAC13 RESULTS

TABLE V
LRE11 RESULTS

development data can be found in [21]. The SR systems were
trained and evaluated using the 2013 Domain Adaptation Chal-
lenge (DAC13) [28]. The DAC13 is a specified set of hyper-pa-
rameter, enroll, and test lists developed to exhibit a data domain
shift for a SR task and has been reported on in several publica-
tions [17], [29], [30]. The same Switchboard trained bottleneck
DNN described at the end of Section IV was used in all SR and
LR experiments and all senones including those corresponding
to non-speech were used.

A. Language Recognition Experiments
The experiments run on the LRE11 task are summarized in

Table V with the first row corresponding to the baseline system
and the last row corresponding to a fusion of 5 “post-evaluation”
systems (see [21] for details). BNFs with GMM posteriors out
perform the other systems configurations including the 5 system
fusion.

B. Speaker Recognition Experiments
Two sets of experiments were run on the DAC13 corpora:

“in-domain” and “out-of-domain”. For both sets of experiments,
the UBM and hyper-parameters are trained on Switchboard
(SWB) data. The other hyper-parameters (whitening, within,
and across covariances) are trained on 2004-2008 speaker
recognition evaluation (SRE) data for the in-domain experi-
ments and SWB data for the out-of-domain experiments (see
[28] for more details). Tables IIIand IV summarize the results
for the in-domain and out-of-domain experiments with the first
row of each table corresponding to the baseline system. While
the DNN-posterior technique with MFCCs gives a significant
gain over the baseline system for both sets of experiments, as
also reported in [6] and [17], an even greater gain is realized
using BNF with a GMM. However, using both BNFs and
DNN-posteriors degrades performance.
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TABLE VI
FUSION OF ALL SYSTEM AND THE TOP 2 SYSTEM ON DAC13.

THE SYSTEM NOTATION USED IS [FEATURE]/[POSTERIOR]

Fig. 2. DAC13 out-of-domain DET plot.

C. Score and Feature Fusion

Scores from the four speaker recognition systems in
Tables III and IV were fused by combining them with uni-
form weights. Out of all possible pair-wise combinations,
the systems yielded the best
performance. The results are summarized in Table VI. For
the out-of-domain case the 4 system fusion is actually
worse than fusing just the
systems perhaps due to the poorer performance of the
MFCC/GMM system in this condition. For the in-domain
case the system fusion comes
very close to fusing all four systems. While it is possible
that better performance could be attained by estimating the
optimal weights for combining scores on held-out data or via
cross-validation, we believe that the naive fusion using uniform
weights is a good indication of how well fusion works between
these different systems. The best in-domain score fusion gives
a performance gain of almost 20% relative to the BNF/GMM
system alone while the best out-of-domain score fusion gives a
relative gain of only about 9%.
Also included in Table VI is the result of stacking 20 MFCC

features with the 64 BNFs and retraining the GMM I-vector
system with the resulting 84 tandem features [31]. The perfor-
mance for the tandem feature system is slightly better than score
fusion for the DAC13 task. The DAC13 out-of-domain DET
plots are shown in Fig. 2.
Score fusion experiments using the four language recognition

systems in Table V were carried out by training a discriminative
backend on the development data over all two system combina-
tions and comparing the top performing pair to the fusion of all
four systems. The results are summarized in Table VII. As in
the DAC13 fusion experiments, the
gave the best performance of all two system combinations.

TABLE VII
LRE11 FUSION

While the fusion gains are relatively modest (roughly a 10%
relative improvement across the durations), the fusion of just
the is only slightly worse than the
fusion of all four systems.
The tandem system performs worse than score fusion on the

LRE11 task but is on par with the BNF/GMM system. This
may be because the features used for score fusion and for the
tandem features are not the same. The MFCC features used in
the tandem system perform well on the SR task but are not as
suited to the LR task as the SDC features used in the SDC/DNN
system. However, the tandem/GMM system’s result suggests
that one could use the same tandem feature representation for
both LR and SR and still realize a gain on the SR task. This may
be of interest in situations where i-vectors are extracted with
one set of hyper parameters and then used for both the LR and
SR tasks. Estimating , and parameters that yield
good performance on both tasks is an area for future research.

VI. CONCLUSIONS
This paper has described the development of a DNN BNF

i-vector system and demonstrated substantial performance gains
when applying the system to both the DAC13 SR and LRE11 LR
benchmarks. For the DAC13 task the BNF/GMM system was
shown to reduce the error rates of the baseline MFCC/GMM
system by 26% for EER and 33% for DCF for the in-domain
task and 55% for EER and 47% for DCF for the out-of-domain
task. On LRE11, the same BNFs decreased at 30 s, 10 s,
and 3 s durations by 48%, 39%, and 24%, respectively, and even
out performed a 5 system fusion of acoustic and phonetic based
recognizers [21].
Further reductions in error were demonstrated on the DAC13

SR task using score fusion or tandem features. Fusing the
BNF/GMM and MFCC/DNN system scores reduces the error
rates relative to the BNF/GMM system by 18% for EER and
12% for DCF for the in-domain task and by 9% for EER and
5% for DCF for the out-of-domain task. Using tandem features
lead to a larger reduction in error rate of 23% for EER and
15% for DCF for the in-domain task and 13% for EER and 6%
for DCF by for the out-of-domain task. Score fusion on the
LRE11 task lead to 16%, 13% and 8% reduction in on
the 30 s, 10 s and 3 s durations conditions. While the tandem
features did not lead to significant changes in performance on
the LRE11 task, their good performance on DAC13 suggests
the possibility of a single tandem front-end and a single I-vector
extractor for both LR and SR applications.
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