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ABSTRACT

We propose the prediction-adaptation-correction RNN (PAC-RNN),
in which a correction DNN estimates the state posterior probabil-
ity based on both the current frame and the prediction made on the
past frames by a prediction DNN. The result from the main DNN is
fed back to the prediction DNN to make better predictions for the
future frames. In the PAC-RNN, we can consider that, given the
new, current frame information, the main DNN makes a correction
on the prediction made by the prediction DNN. Alternatively, it can
be viewed as adapting the main DNN’s behavior based on the pre-
diction DNN’s prediction. Experiments on the TIMIT phone recog-
nition task indicate that the PAC-RNN outperforms DNN, RNN, and
LSTM with 2.4%, 2.1%, and 1.9% absolute phone accuracy im-
provement, respectively. We found that incorporating the predic-
tion objective and including the recurrent loop are both important to
boost the performance of the PAC-RNN.

Index Terms— Deep Neural Network, DNN, Recurrent neural
network, RNN, Prediction-Adaptation-Correction RNN, PAC-RNN

1. INTRODUCTION

The deep neural network (DNN)-based acoustic models (AMs) have
greatly improved automatic speech recognition (ASR) accuracy on
many tasks [1, 2, 3, 4]. Very recently, further improvements were re-
ported by using more advanced models such as convolutional neural
networks (CNNs) [5, 6, 7, 8] and long short-term memory (LSTM)
recurrent neural networks (RNNs) [9, 10, 11]. These advancements
have reduced the word error rate (WER) to below 10% in many real
world applications with close-talk microphones.

Despite the great progress, the ASR performance under noisy
reverberant conditions and on multi-talker speech are still far from
satisfactory [12, 13]. The effort to seek a more powerful AM contin-
ues. In this paper we propose the prediction-adaptation-correction
RNN (PAC-RNN), in which a main (or correction) DNN estimates
the state posterior probability based on both the current frame infor-
mation and the prediction made on the past frames by a prediction
DNN. The result from the main DNN is fed back to the prediction
DNN to make better predictions for the future frames. In this model,
we can consider that, given the new, current frame information, the
main DNN makes a correction on the prediction made by the predic-
tion DNN. Alternatively, it can be considered that the main DNN’s
behavior is adapted based on the prediction made by the prediction
DNN. Although the concept of prediction-adaptation-correction is
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not new and arises naturally from Kalman filters [14] for example,
our specific architecture and its application in ASR are novel.

The behavior of prediction, adaptation, and correction is widely
observed in human speech recognition. For example, listeners may
guess what you will say next and wait to confirm their guess. They
may adjust their listening effort by predicting the speaking rate and
noise condition based on the current information, or predict and ad-
just the mapping from letter to sound based on the speaker’s current
pronunciation. They may even predict what your next sound will be
and focus their attention to only the relevant part in the audio sig-
nal. Although the prediction and adaptation ability of the PAC-RNN
described in this paper is much more limited compared to that of hu-
mans, we believe it is a valuable first step toward the right direction.

We evaluated the PAC-RNN on the TIMIT phone recognition
task. Compared to the DNN, RNN, and LSTM, the PAC-RNN
achieved 2.4%, 2.1%, and 1.9% absolute phone accuracy improve-
ment, respectively. We investigated the effects of choosing different
prediction targets, using different contextual window, including and
removing the recurrent connection, and including and excluding the
prediction criterion in the training objective function in the PAC-
RNN. We found that to achieve the best result the PAC-RNN should
predict targets of a distant future, incorporate the prediction objec-
tive in the training criterion, and include the recurrent loop to exploit
long-range dependency.

The rest of the paper is organized as follows. We describe the
PAC-RNN in detail in Section 2 and evaluate its performance against
different configurations in Section 3. Related work is discussed in
Section 4. We conclude the paper in Section 5.

2. PREDICTION-ADAPTATION-CORRECTION
RECURRENT NEURAL NETWORKS

2.1. Model Structure

Figure 1 illustrates the structure of the PAC-RNN studied in this pa-
per. At the center of the model is a main (or correction) DNN and a
prediction DNN. The main DNN estimates the state posterior prob-
ability pcorr(st|ot,xt) given ot, the observation feature vector, and
xt, the information from the prediction DNN, at time t. The pre-
diction DNN predicts some target information in the future. In this
study, it predicts the posterior probability ppred(lt+n|ot,yt) given
ot and yt, the information from the correction DNN, where l can be
a state s or a phone θ, and n is the number of frames look ahead.
Note that since yt, the information from the correction DNN, de-
pends on xt, the information from the prediction DNN, and vice
versa, a recurrent loop is formed.

Here the information from the prediction and correction DNNs
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Fig. 1. The Structure of the PAC-RNN

can be drawn from either the softmax layer or a hidden layer. In
large vocabulary speech recognition (LVSR) tasks there are often
over 5000 states. In these cases, drawing information from the soft-
max layer can significantly increase the model size. For this reason,
we obtained information from a (bottleneck) hidden layer whose size
can be set independent of the state size so that the same architecture
can be applied to the LVSR tasks directly.

In a very basic setup, xt, the information from the prediction
DNN, is simply the bottleneck hidden layer output value hpred

t−1 . To
exploit additional predictions made in the past, however, we can
stack multiple hidden layer values as

xt = [hpred
t−Tcorr , ..., h

pred
t−1 ]T , (1)

where T corr is the contextual window size used by the correction
DNN and is set to 10 in our study. Similarly, we can stack multiple
frames to form yt, the information from the correction DNN, as

yt = [hcorr
t−Tpred−1, ..., h

corr
t ]T , (2)

where T pred is the contextual window size used by the prediction
DNN and is set to 1 in our study. In addition, in the specific example
shown in Figure 1, the hidden layer output hcorr

t is projected to a
lower dimension before it is fed into the prediction DNN.

2.2. Training and Decoding

To train the PAC-RNN, we need to provide supervision information
to both the prediction and correction DNNs. As we have mentioned,
the correction DNN estimates the state posterior probability, and
thus the state label and the frame cross-entropy (CE) criterion can
be used. For the prediction DNN, however, we have freedom to
choose either the state or the phoneme label. We will compare the
performance difference between these two choices in Section 3.

The PAC-RNN training problem is a multi-task learning prob-
lem. The two training objectives can be combined into a single one
as

J =

T∑
t=1

(α∗ ln pcorr(st|ot,xt)+ (1−α)∗ ln ppred(lt+n|ot,yt)),

(3)

where α is the interpolation weight and is set to 0.8 in our study
unless otherwise stated, and T is the total number of frames in the
training utterance.

During the decoding stage, the state posteriors (or the scaled
likelihood scores converted from them) from the correction DNN
are treated as the emission probability similar to that in a typical
DNN/RNN-HMM hybrid system [3, 15].

2.3. Implementation

We implemented the PAC-RNN using the computational network
toolkit (CNTK) [16]. CNTK can train RNNs with arbitrary recurrent
connections. We only need to prepare the training data and a text
description of the model. CNTK uses a delay operation to retrieve
values in the past. Thus, hidden layer values such as hpred

t−k can be
easily described as delaying the value hpred

t for k frames.
In this study, the truncated back-propagation-through-time

(BPTT) [17] is used to update the model parameters and each
utterance is truncated into multiple segments. At the beginning of
each utterance a default value is assigned to the input of the delay
node. The delay node in the later segments can retrieve values from
previous segments. In other words, the forward computation is
carried out across segments. To speed up the training, we process
multiple utterances simultaneously as a batch. We have found that
this not only reduces training time but also improves the quality
of the final model. In this study each BPTT segment contains 20
frames and we process 5 utterances simultaneously.

3. EXPERIMENTS

In this section, we evaluate PAC-RNN on the TIMIT phone recogni-
tion task. In our experiments the training labels are obtained through
forced alignment using our GMM-HMM system trained with the
maximum-likelihood criterion 1. The standard 462-speaker training
set is used, and all SA sentences are removed in order to conform
to the standard setup as in [18]. A separate development set of 50
speakers is used for tuning all hyper parameters. Results are reported

1In [18], the expertly-annotated phone boundaries were used to generate
the training labels, which outperform the HMM generated labels. We use the
HMM generated labels since this is the only label available in other datasets.
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on the 24-speaker core test set, which has no overlap with the devel-
opment set.

3.1. Results Summary

Table 1 summarizes the phone accuracy achieved with different hy-
brid models evaluated in this study. All the DNN/RNN models use a
123 dimensional acoustic feature vector, consisted of 40 dimensional
mel-frequency log-filterbank features, an energy measure, and their
first and second temporal derivatives. In our experiments, 183 target
class labels, corresponding to three states for each of 61 phones, are
used. A bi-gram phone language model estimated from the training
set is used in decoding. The language model weight is tuned on the
development set.

We consider three baseline hybrid systems: a DNN with two
2048-unit hidden layers, a simple RNN with two 2048-unit hidden
layers in which the final hidden layer is a recurrent layer, and an
LSTM with 1024 memory cells. We don’t see further performance
improvement by increasing the model sizes of these baseline sys-
tems.

In the PAC-RNN (S) model, the prediction DNN has a 1024-unit
hidden layer and a 80-unit bottleneck layer. The correction DNN has
two 1024-unit hidden layers. The projection layer from the correc-
tion DNN’s hidden layer contains 500 neurons. In the PAC-RNN
(L) model, all 1024-unit hidden layers are replaced with 2048-unit
hidden layers.

For the DNN, simple RNN, and PAC-RNN models, the input
contains a 7-1-7-frame contextual window which translates to a total
size of 123 ∗ 15 = 1845. No context expansion is used for the
LSTM model since the best performance is obtained without any
context expansion.

All models are randomly initialized without either generative or
discriminative pretraining [19]. No momentum is used for the first
epoch and a momentum of 0.9 is used for all the subsequent epochs.
We have found that turning off the momentum for the first epoch
helps to improve the performance of the final model although the
model after the first epoch seems to be worse. We believe this is
because the randomly initialized model is highly non-optimized and
so noisier gradient helps to move the model to a better starting point.
To train the DNN, a learning rate of 0.1 per minibatch is used for the
first epoch. The learning rate is increased to 1.0 at the second epoch,
after which it is kept the same until the development set training
criterion no longer improves, under which condition the learning rate
is halved. A similar schedule is used to train the RNNs except that
all the learning rates are reduced to 1/10 of that used in the DNN
training. Following [18], the state posteriors are directly used as
the emission probability in the HMM without first being converted
to the scaled likelihood, although converting to scaled likelihood is
preferred for LVSR tasks.

The simple RNN only slightly outperforms the DNN which is
consistent with other reported results [15]. The LSTM further im-
proves upon the simple RNN. The PAC-RNN (L) outperforms DNN,
RNN and LSTM with 2.4%, 2.1%, and 1.9% absolute phone accu-
racy improvement, respectively, on the core test set.

3.2. Effect of Expanding Prediction Information

As described in Section 2, the prediction information fed into the
correction DNN can include multiple past predictions. Table 2 com-
pares the phone recognition accuracy with and without prediction
information expansion. From the table, we can observe that if the
prediction DNN only predicts the state of the next frame, no gain

Model Dev Test # of Parameters
DNN 79.6% 77.8% 8.4M

Simple RNN 79.5% 78.1% 12.5M
LSTM 79.9% 78.3% 5.90M

PAC-RNN (S) 81.1% 80.0% 6.9M
PAC-RNN (L) 81.6% 80.2% 15.1M

Table 1. TIMIT Phone Accuracy Achieved with Different Hybrid
Models

over the baseline DNN is observed. This is because most frames
have the same label as the next frame and so the prediction DNN
does not provide much information to the correction DNN. If the
prediction DNN predicts the state of the t + 10-th frame, however,
we can observe a 1.0% phone accuracy improvement over the DNN
baseline. An additional improvement of 0.7% is obtained if 10 past
predictions are used by the correction DNN. This indicates that the
contextual expansion of the prediction information can be very help-
ful.

Model Target Context Expansion Dev Test
DNN - - 79.6% 77.8%

PAC-RNN (S) st+1 no 79.7% 77.7%
PAC-RNN (S) st+10 no 80.3% 78.8%
PAC-RNN (S) st+10 yes 80.8% 79.5%

Table 2. Effect of Prediction Information Expansion

3.3. Effect of Different Prediction Targets

In order to determine the best prediction target we compared the
PAC-RNN with different prediction targets, all with 10-frame con-
textual expansion, in Table 3. From the table we can see that pre-
dicting a longer future (e.g., next phone) is better than predicting a
shorter future (e.g., next state), and predicting a more meaningful
unit (e.g., using the next phone as the target) is better than predicting
the states over a fixed window size (e.g., the state of the t + 10-th
frame). The best result is obtained by predicting the next phone. The
PAC-RNN (S) outperforms the DNN with 2.2% accuracy improve-
ment while PAC-RNN (L) introduces an additional 0.2% improve-
ment on the core test set.

Model Target Dev Test
DNN 79.6% 77.8%

PAC-RNN (S) Next state symbol 80.2% 78.6%
PAC-RNN (S) State of the t+ 10-th frame 80.8% 79.5%
PAC-RNN (S) Next phoneme symbol 81.1% 80.0%
PAC-RNN (L) Next phoneme symbol 81.6% 80.2%

Table 3. Effect of Different Prediction Targets. All with 10 Frames
of Expansion.

3.4. Effect of the Recurrent Loop

In this subsection we investigate the effect of the recurrent loop in
the PAC-RNN. In Table 4, the setup with the recurrent loop is the
PAC-RNN we have described in Section 2. In the setup with no
recurrent loop, the connection from the correction DNN back to the
prediction DNN is removed while the prediction DNN is still used

5006



to provide prediction information to the correction DNN. From the
table, we can observe that including the recurrent loop is critical and
can achieve 1.8% accuracy improvement over the system with no
recurrent loop, which is only 0.4% better than DNN. We believe this
is because long-range information can be exploited more effectively
with recurrent connections.

Model With Recurrent Loop Dev Test
DNN 79.6% 77.8%

PAC-DNN (S) No 80.0% 78.2%
PAC-RNN (S) Yes 81.1% 80.0%

Table 4. Effect of the Recurrent Loop

3.5. Effect of Optimizing the Prediction Criterion

To train the PAC-RNN we optimize a combined objective function
that is an interpolation of the correction and prediction criteria as
shown in Eq. 3. By adjusting the interpolation weight α we can
change the relative importance of each criterion. Table 5 summa-
rizes the phone recognition accuracy achieved when the PAC-RNN
is trained with different interpolation weights. As expected, if we
set α to 1.0 to remove the prediction criterion from the training ob-
jective function, the PAC-RNN performs almost as well as to the
simple RNN and LSTM. If α is set to a small value (e.g., 0.6 in the
table) such that the main criterion is not sufficiently emphasized, the
performance also degrades but can still be better than the PAC-RNN
trained without the prediction criterion.

Model Interpolation Weight Dev Test
DNN 79.6% 77.8%

LSTM 79.9% 78.3%
PAC-RNN (S) 1.0 (no prediction) 80.1% 78.4%
PAC-RNN (S) 0.8 81.1% 80.0%
PAC-RNN (S) 0.6 80.3% 79.0%

Table 5. Phone Recognition Accuracy Achieved with Different In-
terpolation Weights

4. RELATED WORK

The core concept of prediction, adaptation, and correction has been
widely used in models such as Kalman filter [14]. Through multi-
pass decoding traditional ASR systems also implicitly exploit the
prediction information.

The work that is most similar to ours is that presented in [20].
Their model explicitly predicts multi-frame state labels which are
exploited during the decoding time through autoregressive product.
Their work, however, does not involve recurrent feedbacks and thus
cannot effectively exploit long-range dependencies in the signal.
More importantly, their model is very different from ours in spirit
and was proposed from a completely different angle.

RNNs can be naturally used to do prediction. However, both the
simple RNN [15, 21] and the LSTM [11, 9] RNN that have been
successfully applied to AMs do not explicitly make future predic-
tions. In this study, we have included results from using the simple
RNN and the LSTM and showed that the PAC-RNN can do better by
modeling prediction information more explicitly.

5. CONCLUSION

We perceive that the next-generation ASR systems can be solely de-
scribed as a dynamic system that involves many connected compo-
nents and recurrent feedbacks and constantly makes predictions, cor-
rections, and adaptations. For example, the system should be able to
automatically identify multiple talkers in the mixed speech and then
focus on a specific speaker by ignoring other speakers and noises.

The PAC-RNN we proposed in this paper is a first step towards
this direction. It has some of the properties we described above. Al-
though it only makes simple predictions and corrections, it already
shows promising potential as indicated by 2.4%, 2.1%, and 1.9% ac-
curacy improvement over the DNN, RNN, and LSTM, respectvely,
on the TIMIT phone recognition task. Our future work includes ap-
plying the PAC-RNN to tasks on which the conventional models do
not work well and extending it by predicting additional information
such as the speech signal, speaker, speaking rate, and noise.
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