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Abstract—In this paper, we explore the use of large-scale acoustic
unit discovery for language recognition. The deep neural network-
based approaches that have achieved recent success in this task
require transcribed speech and pronunciation dictionaries, which
may be limited in availability and expensive to obtain. We aim to
replace the need for such supervision via the unsupervised discov-
ery of acoustic units. In this work, we present a parallelized version
of a Bayesian nonparametric model from previous work and use it
to learn acoustic units from a few hundred hours of multilingual
data. These unit (or senone) sequences are then used as targets
to train a deep neural network-based i-vector language recogni-
tion system. We find that a score-level fusion of our unsupervised
system with an acoustic baseline can shrink the gap significantly
between the baseline and a supervised benchmark system built us-
ing transcribed English. Subsequent experiments also show that
an improved acoustic representation of the data can yield substan-
tial performance gains and that language specificity is important
for discovering meaningful acoustic units. We validate the gener-
alizability of our proposed approach by presenting state-of-the-art
results that exhibit similar trends on the NIST Language Recogni-
tion Evaluations from 2011 and 2015.

Index Terms—Acoustic unit discovery (AUD), bottleneck fea-
tures, deep neural networks (DNNs), i-vector, language recogni-
tion, senone posteriors.

I. INTRODUCTION

THE effectiveness of deep neural networks (DNNs) for au-
tomatic speech recognition (ASR) [1] has led to their use

in other speech-related classification tasks, including speaker
and language recognition [2]–[9]. One of the reasons for their
success can be attributed to the “phonetic awareness” of the
trained DNNs and their corresponding feature space [4]. The
training of such DNNs, however, relies on the presence of pro-
nunciation dictionaries and large amounts of transcribed speech,
which may only be available for a small subset of the languages
present in the evaluation task. For example, the work in [6], [7]
used only transcribed English from the Switchboard I corpus
[10] to build a system that could distinguish between 24 differ-
ent languages, while the use of transcribed data from additional
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Fig. 1. An overview of a BN i-vector system: stacked spectral features are
passed as input to a neural network, whose activations at a BN layer are used as
features for an i-vector classification system. The resulting i-vectors are a low-
dimensional summary of an utterance’s distribution of BN features. (Adapted
from Fig. 1 of [6].)

languages achieved even better results in [8]. On the other end
of the spectrum, this brings to bear the question of how well
we can do without any transcribed data. Following the premise
of [11], we aim to exploit the existing sound pattern structure
of speech without the need for transcription or a dictionary. In
this paper specifically, we investigate the effect of unsupervised
acoustic unit discovery (AUD) on language recognition.

To do so, we follow the framework proposed in [2], [5]–[7],
where a DNN is trained from spectral input features and ASR-
based output labels such that the activations at a so-called bot-
tleneck (BN) layer provide frame-level features of manageable
dimensionality. A BN feature of a given frame of audio can be
seen as a compression of the information about both the frame’s
phonetic class and context [5]. These features can then be treated
as acoustic features of their own, from which an i-vector system
can be built for language recognition [12]. Fig. 1 presents an
overview of this system.

In our experimental setup, we follow most closely the work
in [6], [7], which proposed a unified DNN framework for both
speaker and language recognition. While this work focuses on
language recognition, we adopt the same DNN architecture and
set of labeled data as [6], [7] for the sake of comparison and
consistency. The work in [5] proposes the use of stacked BN fea-
tures for language recognition where two DNNs are cascaded:
the input of the second DNN consists of stacked BN features
from the first DNN. And as an alternative to BN features, other
approaches involving DNNs and their output (i.e., senone) pos-
teriors have been explored for language recognition in [3], [9]
as well as for speaker recognition [4].

In this paper, unlike any recent work on language recognition
to the best of our knowledge, we replace the ASR-based output
labels from the original DNN-based setup with those learned
from a Bayesian nonparametric model that learns an appropri-
ate set of sub-word units automatically from speech data [13].
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The development of this model was motivated by the desire for
robust zero resource speech technologies that can operate with-
out the expert-provided linguistic knowledge that standard ASR
systems rely on [14]. Designed to uncover phone-like units from
a given language, the resulting AUD system simultaneously seg-
ments the speech, discovers a proper set of sub-word units, and
learns a Hidden Markov Model (HMM) for each [13]. Using nei-
ther transcribed data nor prior language-specific knowledge, this
system obtained results on TIMIT that demonstrate the ability to
discover sub-word units that are highly correlated with English
phones, produced a better segmentation than the state-of-the-art
unsupervised baseline, and performed well on a spoken term
detection task [13].

Despite the promise of this model and that of similar systems
[11], [15], [16], we are still unable to robustly and precisely un-
cover a particular language’s phonetic inventory. In this paper,
we chose to broaden our consideration of unsupervised unit dis-
covery from a monolingual setting to a multilingual one. Instead
of focusing on any single language in particular, we aim to learn
a set of acoustic units from many different languages at once.
To paraphrase the analogy to human infants, who must spe-
cialize their speech perception and production systems to their
native language (though perhaps with help from other sensory
modalities) [14], we see our human infant as developing in a
multilingual household. And more importantly, because we are
not bound by any limited quantity of transcribed corpora, our
models can instead be built on as much data as they can handle.
Indeed, unsupervised methods give us the flexibility to work
directly on data that matches the test domain,1 thus avoiding
issues of language or channel mismatch.

In addition to the work reviewed in [14], the notion of trans-
forming speech and audio data into a sequence of arbitrary sym-
bols has been well-explored [17]. The work in [11] details the
unsupervised training of an HMM-based self-organizing unit
recognizer, while the work in [18] learns a set of “acoustic unit
descriptors” to represent audio content for event classification
and detection. The work in [19]–[21] proposes the Automatic
Language Independent Speech Processing approach, which was
initially developed for low bit-rate speech coding before evolv-
ing into a generic method for audio indexing, retrieval, and
recognition, including initial attempts at speaker verification
and forgery, as well as language identification [20].

The unsupervised tokenization of speech for language iden-
tification is also a problem that has been explored in the past.
Whereas the previously mentioned approaches using i-vectors
constitute an acoustic approach to language identification, suc-
cess has also been achieved using phonotactic approaches [22],
which typically involve a high quality phoneme recognizer for
speech tokenization [23]. A full review of approaches in phono-
tactic language recognition is beyond the scope of this paper,
but the initial work in [24] developed a system using a Gaus-
sian Mixture Model (GMM) for per-frame tokenization that,

1To be sure, this does not mean that we are training our models on the test
data; rather, because we are not bound to the data for which we have transcription
labels, we can work more directly on the provided training data that pertains
more closely to the evaluation task at hand.

without requiring prior transcribed speech material, performed
competitively against state-of-the-art tokenizers at a lower com-
putational cost. Subsequently, the work in [25] introduced an
bootstapped learning procedure to learn a set of HMM-based
acoustic segment models (ASMs) from an initial multilingual
phone inventory and adopts a phonotactic approach to language
identification using a vector space model of acoustic unit co-
occurrence statistics. While these ASMs are analogous to the
acoustic units that we propose to discover in this work, our ap-
proach to language recognition further deviates from that of [25]
in the use of BN features for an acoustic i-vector system.

Although more detailed explanations can be found throughout
the rest of this paper, let us first summarize the novel contribu-
tions and findings of our work below:

1) We show that a system built from learned acoustic units
can be used effectively for language recognition. In par-
ticular, we find in Section IV-F that a score-level fusion
with a baseline system built from acoustic features yields
substantial gains and significantly closes the gap between
the acoustic feature baseline and a benchmark system built
using transcribed English, suggesting that AUD provides
complementary information to that of a bag-of-features
baseline.

2) We then find in Section IV-G that using an improved repre-
sentation of speech (i.e., supervised BN features) as input
to our AUD system can yield acoustic units that similarly
improve performance on our language recognition task,
and additional score-level fusion provides even further
gains. This continues to motivate the need for a better
understanding of the speech signal.

3) We demonstrate the ability to learn acoustic units in an
unsupervised fashion on a dataset containing hundreds
of hours of speech. As described in Section II, this was
achieved by modifying a Bayesian nonparametric model
in a way that allows for effective parallelization. To the
best of our knowledge, this is also the first Kaldi-based
implementation of the AUD process [26].

4) We present our initial results on the Language Recogni-
tion Evaluation (LRE) from 2011 [27] presented by the
National Institute of Standards and Technology (NIST)
and subsequently validate the generalizability of our pro-
posed approach in Sections V-B and V-C on the NIST
2015 LRE, which features a modified evaluation protocol
involving specific language clusters.

The rest of this paper is organized as follows. Section II out-
lines our unit discovery process, and we reiterate the language
recognition system from [6] that serves as our experimental
framework in Section III. Section IV presents our initial results;
Section V discusses some of the design choices that both worked
and didn’t work, and validates our original results on another
dataset. Finally, we conclude in Section VI with a look ahead to
future work.

II. ACOUSTIC UNIT DISCOVERY

In this section, we outline the essentials of a previously-
proposed AUD process [13] and highlight the modifications we
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Fig. 2. An example of the observed data and hidden variables in the AUD
model, modified directly from Fig. 1 of [13].

make in its updated implementation to make inference more
computationally feasible on data involving hundreds of hours
of speech.

A. A Bayesian Nonparametric Model

Given a set of spoken utterances, the goal of AUD is to jointly
learn the following [28]:

1) segmentation—find the phonetic boundaries within each
utterance;

2) clustering—obtain an appropriate number of clusters
within which acoustically similar segments can be
grouped;

3) modeling—learn a HMM to model each sub-word acous-
tic unit.

In [13], all three sub-tasks were modeled using latent variables
in a single Bayesian nonparametric model. More specifically,
[13] formulates a Dirichlet process mixture model where each
mixture is a HMM used to model a sub-word unit and generate
observed segments of that unit. Via Gibbs sampling inference,
the model seeks to obtain the set of sub-word units, segmen-
tation, clustering, and HMMs that best represent the observed
data.

An explanation of the associated variables and the entire gen-
erative process, as well as a derivation of the conditional pos-
terior distributions for each hidden variable in the model is
provided in [13]. Fig. 2 directly replicates an example of the
observed data and hidden variables of the setup [13]; we outline
the essential ingredients below:

1) speech feature (xt)—13-dimensional MFCCs and their
first- and second-order derivatives extracted every 10 ms,
resulting in a 39-dimensional observed feature vector;

2) boundary (bt)—a binary variable indicating whether a
phone boundary exists (bt = 1) between xt and xt+1 or
not (bt = 0);

3) HMM (Θc )—each HMM has three emission states, corre-
sponding respectively to the beginning, middle, and end of
each sub-word unit. A traversal of each HMM must start

from the first (left-most) state, and transitions may only
occur from left to right. While skipping of the middle and
last states is allowed in [13], our implementation requires
that each segment be at least three frames in length. The
emission probability of each state is modeled by a GMM.

4) hidden state (st)—the hidden state index of the HMM
associated with each feature vector, xt .

5) mixture ID (mt)—the Gaussian mixture index associated
with each feature vector, xt .

If we assume, for the time being, that the values of the bound-
ary variables, bt , are given, then the generative process looks as
follows:

1) Given a segment, p = {xt |L < t ≤ R}, as determined by
two boundary variables (bL , bR = 1), choose a cluster la-
bel, c ∈ C, which can either be an existing label or a new
one. (The Dirichlet process allows for a potentially infi-
nite number of clusters.) This cluster label will determine
which HMM, Θc , is used to generate the segment.

2) Given the HMM corresponding to the cluster label, choose
a hidden state, st , for each feature vector in the segment.

3) Given the hidden state of each feature vector, choose a
mixture from the GMM of the chosen state, mt .

4) Given the mixture ID, generate the observed feature
vector, xt .

A full derivation of conditional posterior distributions for each
hidden variable in the model as needed by the Gibbs sampling
procedure is beyond the scope of this paper but is provided in
[13]. In practice, we reduce the inference load on the boundary
variables, bt , by exploiting acoustic cues in the feature space to
eliminate the need for sampling on frames that are unlikely to
be phonetic boundaries (i.e., P (bt = 0) = 1). This is done by
following the pre-segmentation method described in [29].

We should note that introducing boundary variables and al-
lowing them to be sampled on or off during inference places
this model in a unique space between more traditional HMM-
based modeling and that of segment-based speech recognition
[29]. While other methods use an initial segmentation to seed
its HMM clusters, those segmentations tend to be fixed and sub-
sequently discarded during later iterations of training in favor
of the more traditional Viterbi decoding step [11], [21]. The
model in [13] not only implements a form of duration modeling
by forcing the 3-state HMM to represent the entire segment be-
tween two boundary variables (bl , br = 1), it also allows for its
boundary variables to be sampled on and off (bt ∈ {0, 1}). This
allows the model to continuously refine both its segmentation
and clustering at a more localized level without having to rely
on HMMs to model the duration of an acoustic unit.

B. Parallelization

While Gibbs sampling is theoretically guaranteed to converge
to the true posterior distribution of the hidden variables in [13],
the process can be quite slow – the sampling of each variable
in turn requires updates to all its dependent variables at each
frame of audio. In an effort to scale from processing the rela-
tively small TIMIT corpus [30] containing less than ten hours of
speech to a corpus containing a few hundred hours of audio, we
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focused our efforts on parallelizing the sampling algorithm. The
drawback of such parallelization is that the resulting algorithm,
while computationally scalable, will only approximate Gibbs
sampling [31]. There have been attempts to better understand
these effects at a more theoretical level, but these initial studies
have been restricted to simpler models [32]; the impact of more
complex approaches has largely been observed empirically.

A traditional, serial Gibbs sampler samples from one condi-
tional posterior distribution at a time and then updates its models
accordingly. Our implementation resembles that of a blocked
Gibbs sampler and conditions on all of the HMM and GMM
parameters to sample, in parallel, a new set of alignments (i.e.,
per-frame segmentation boundaries and cluster assignments)
for all utterances. Assuming our data is split into some arbitrary
number of partitions, P , this allows for parallelization that can
effectively decrease the required computation time by a factor of
1
P . Given an entirely new set of alignments, we then accumulate
statistics to update, in batch mode, our Dirichlet process counts,
HMM transition probabilities, and GMM emission probabilities
accordingly. Distributing the sampling process across a number
of parallel workers before accumulating statistics globally is
a technique that has been explored as a parallelized version
of Latent Dirichlet Allocation (LDA) known as Approximate
Distributed LDA (AD-LDA) [31]. Despite losing the traditional
Gibbs sampling guarantee of converging to the true posterior dis-
tribution of the hidden variables, our implementation achieves
performance on TIMIT that is comparable to that of [13] and
even stronger empirical performance when given the opportu-
nity to scale to large datasets.

C. Model Selection

Another difference between the model in [13] and our im-
plementation is in the Dirichlet process (DP) mixture model.
While the model allows for an infinite number of cluster labels
in theory; practical implementations tend to over-initialize the
number of possible mixtures and allow both the data and the
DP concentration parameter, γ, to influence how many of those
clusters actually retain probability mass. In our experiments,
however, we found that our model would end up using all of the
available mixtures, no matter how many we allowed for (up to
1000) or how small of a value we set for γ (as low as 0.001). This
may have been a collective outcome of all our modifications; it
may also indicate a lack of fit between our data and the model.
Nevertheless, we found that the number of allowed clusters had
a significant impact on both computational complexity and lan-
guage recognition results; as such, we decided to fix the number
of clusters at |C| = 100 << ∞ and γ = 1, which achieves a
balance between runtime and performance.

D. Other Modifications

We use the same pre-segmentation method used in [13] to
obtain a set of candidate boundaries; this method essentially hy-
pothesizes phonetic boundaries where the difference in spectral
energy is large in magnitude. Originally built for a segment-
based speech recognition system [29], [33], we further tuned
this procedure to propose more candidate boundaries than usual,

since the number of boundaries actually used (i.e., bt = 1) will
be a subset of those candidates. Lastly, while [13] imposed
an equal prior probability on these candidate boundaries (i.e.,
P (bt = 1) = P (bt = 0) = 0.5), we found success in biasing the
model towards keeping the boundary turned on with a prior of
P (bt = 1) = 0.8 and incorporating a localized post-processing
step that merges consecutive segments if their respectively sam-
pled cluster assignments are the same.

The model in [13] allows its HMMs to skip its middle and
last states for segments shorter than three frames; our imple-
mentation does not allow for state-skipping and thus requires
each acoustic unit to have a minimum duration of three frames.
Our implementation also updates the GMM parameters in max-
imum likelihood fashion and increases the number of Gaussian
mixtures it uses to model acoustic features at every pass through
the data2; the formulation in [13] samples the emission proba-
bilities of each HMM state using eight Gaussians with diagonal
covariance matrices.

E. Unit Recognizer Training

The unit discovery process essentially produces an acous-
tic model consisting of HMM parameters for each individual
acoustic unit (i.e., mono-unit), as well as a set of per-frame
alignments from the training data indicating the Gaussian mix-
ture, the HMM state, and the HMM cluster label that are as-
sociated with each acoustic feature vector. If we collapse these
per-frame alignments into unit sequences, they can be used as
transcripts to train a “unit recognizer” in the traditional way. This
releases the model from the segment-based rigidity of boundary
variables and lets boundaries be determined automatically via
a forced alignment of the data. Recognizer training also allows
for context-dependent modeling (i.e., “tri-units”)—something
our unit discovery method cannot do—which can ultimately
provide us with per-frame alignment sequences in the form of
senones [34].

In addition to showing the results of using per-frame unit se-
quences and per-frame HMM state sequences from our context-
independent AUD, we will also show the results obtained at the
speaker-independent (SI) and speaker-dependent (SD) stages of
context-dependent unit recognizer training. For the SI stage, we
build a context tree containing roughly 2500 senones, and for
the SD stage, we use roughly 4500 senones and incorporate
techniques for speaker adaptation such as MLLT (maximum
likelihood linear transform), fMLLR (feature space maximum
likelihood linear regression), and speaker adaptive training
[26].3 The exact number of senones obtained from the top-down,
greedy splitting of the context tree is a function of the data and
will differ between experiments; the resulting per-frame senone
sequences are used as targets for training the DNN BN features.

III. THE BN I-VECTOR SYSTEM

In this section, we summarize the essential pieces of our BN
i-vector language recognition system. To the extent possible,

2This is done according to the method used by default in Kaldi [26].
3These stages roughly follow the tri2 and tri4a steps, respectively, in the
s5b recipe of the Kaldi example for Switchboard I [26].
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Fig. 3. The configuration of our proposed DNN. Its input is 819-dimensional
vector of stacked PLP frames. The first five hidden layers contain 1024 nodes
featuring sigmoid activations. This is followed by a 64-node BN layer that uses
linear activations (from which we draw our BN features) and a final sigmoid
layer with 1024 nodes. The number of output targets for which we obtain
posteriors via a softmax depends on the result of the AUD step.

we followed the setup of the state-of-the-art LID system pre-
sented in [6]. As discussed in Section I, the overall process is
summarized in Fig. 1.

A. DNN BN Features

A DNN classifier is essentially a multi-layer perceptron with
more than two hidden layers that typically uses random ini-
tialization and stochastic gradient descent to initialize and op-
timize its weights [1]. To provide temporal context, the input
to the DNN is typically a stacked set of spectral features ex-
tracted from short (20 ms) segments (frames) of speech. In
our system, we compute 13 Gaussianized PLP coefficients as
well as their first and second derivatives and then stack ±10
frames of context around the current input frame to obtain a
(13 ∗ 3) ∗ (10 + 10 + 1) = 819 dimensional input feature vec-
tor to the DNN. The (softmax) output of the DNN is trained using
a cross-entropy cost function to predict the posterior probability
of the target class for the current input frame; our experiments in
Section IV will explore the use of unit cluster labels, ct , hidden
states, st , and senones as target classes.

We use this DNN as a means of extracting features for use
by a secondary classifier (i.e., an i-vector system). This is ac-
complished by using the activation of one of the DNN’s hidden
layers as a feature vector. In particular, we optimize a dimension-
reducing linear transformation as part of the DNN training that
results in a special “bottleneck” layer with fewer nodes and,
thus, a manageable dimensionality. The BN layer uses a linear
activation and behaves very much like a LDA or PCA trans-
formation on the activation of the previous layer [35], [36]. In
addition to the previous work in [6], BN features also have been
shown to work well for language recognition in [2], [5], [8], [9].

As illustrated in Fig. 3, all of our experiments utilize a com-
mon DNN structure containing seven hidden layers of 1024
nodes each with the exception of a BN sixth layer, which has
64 nodes instead. All hidden layers use a sigmoid activation
function except for the fifth layer, which is linear [36]. As men-
tioned above, the input layer contains 819 input features cov-
ering 21 frames of context. In this setup, the only difference

between experiments is the number of target classes, which is
determined by the AUD system described in Section II.

B. i-Vector System and Scoring

While a detailed description of the i-vector system and theory
is beyond the scope of this paper (but can be found in [37]), we
provide a high-level overview of such a system built for language
recognition (Fig. 1) and note that our framework closely follows
that of [6], [12], [38]. In our experiments, the only difference
between the various systems will be in the original acoustic/BN
features used.

A test utterance whose language we hope to ascertain is first
passed through a GMM-based speech activity detector, after
which the detected speech is represented by a sequence of BN
feature vectors as obtained from a DNN classifier explained
above. From these features, we obtain the zeroth-order (counts)
and first-order (means) sufficient statistics of the utterance from
a Universal Background Model (UBM), which is a 2048-mixture
GMM characterizing a speaker- and language-independent fea-
ture distribution. These statistics are then transformed into a
raw i-vector of 600 dimensions using a total variability matrix,
T [37]. We transform this raw i-vector using linear discriminant
analysis (LDA) and within-class covariance normalization [12],
[39], both of which are estimated a priori from the training data
and their language labels, and finally length-normalize the result
to obtain a test i-vector. We use the dot product to compute the
similarity score between the test i-vector and each language-
representing model i-vector. These scores are calibrated using
a discriminative Gaussian backend described in [38], which is
trained from a set of development data using both scores and
utterance durations.

IV. EXPERIMENTS

In this section, we first provide an overview of the data used in
our experiments and present our initial results. Then we explore
the use of score-level fusion and the incorporation of transcribed
data on language recognition performance.

A. Corpora

Our experiments utilized three corpora in various ways. We
evaluate all of our language recognition systems on the 2011
NIST LRE11, which covers 24 languages4 coming from tele-
phone and broadcast audio and has test durations of 3, 10,
and 30 seconds [27]. The hyper-parameters for each of these
systems—i.e., the UBM, the i-vector extractor, and the discrim-
inative backend—are trained using the same training and devel-
opment data from [38],5 which we will refer to as LRE-train
and LRE-dev, respectively. For our AUD on multilingual data,
we used a subset of LRE-train consisting of 10 hours from each

4The LRE11 languages include Arabic-Iraqi, Arabic-Levantine, Arabic-
Maghrebi, Arabic-MSA, Bengali, Czech, Dari, English-American, English-
Indian, Farsi, Hindi, Lao, Mandarin, Pashto, Polish, Punjabi, Russian, Slovak,
Spanish, Tamil, Thai, Turkish, Ukrainian, and Urdu.

5Some of the corpora represented include CallFriend, CallHome, Mixer,
OHSU, and OGI-22, VOA, Radio Free Asia/Europe, GALE broadcasts, and
Arabic corporal from the LDC and Appen [38].
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of the 24 evaluation languages, yielding a 240-hour LRE-subset
dataset. For proper comparison with previous work in [6], we
also use a 100-hour subset of Switchboard I [10] as defined by
the example system distributed with Kaldi [26], which we will
abbreviate as SWB. Finally, while all of the experiments in this
section report results on LRE11, we demonstrate the general-
izability of our methods in Section V by applying them to the
2015 NIST LRE (LRE15) [40], [41], which features a modified
evaluation protocol involving explicit language clusters.

B. Evaluation Metric

While more details regarding the evaluation metric can be
found in [27], [38], we provide a brief overview in this section.
The evaluation metrics put forth by NIST treat the language
recognition problem as a series of verification tasks, in which
the fundamental question is, “does test utterance τ belong to
target language k?” In this way, we use false alarm rate, RFA,
and miss rate, RMiss, in a way similar to the evaluation of speaker
recognition. The only difference is that we express false alarm
rate in the form of a language pair, RFA(kT , kN ), which is
the rate at which some specified non-target language, kN , is
mistaken for the target language, kT . Under this paradigm, we
obtain an average cost, Cavg, as

Cavg =
1
K

(
CMissPtarget ·

∑
kT

RMiss(kT )

+
1

K − 1

⎛
⎝CFAPnon-target ·

∑
kT

∑
kN �=kT

RFA(kT , kN )

⎞
⎠

⎞
⎠ ,

where K is the number of target languages (i.e., K = 24 for
LRE11), and kT and kN denote target and non-target language,
respectively. In our evaluations, the application-dependent costs
for miss and false alarm errors, respectively, are set to be
CMiss = CFA = 1, and the probability of target and non-target
trials, respectively, are set at Ptarget = Pnon-target = 0.5 [27], [40].
To make things easier to read, we will show our results as
Cavg × 100.

C. Spectral Feature Baseline

Following previous work, our baseline results come from an
i-vector system built using MFCC-based spectral features. The
baseline in [6], as well as in other work [12], [38], [42], [43], used
Shifted Delta Cepstral (SDC) features in the conventional 7-1-3-
7 scheme. The seven static cepstra are appended to the 49 SDC
features to produce a 56-dimensional acoustic feature vector.
A more detailed explanation on how the SDC are obtained can
be found in [42]. Whereas the work in [38] included vocal
tract length normalization and feature-domain nuisance attribute
projection, these techniques are neither used in our work nor that
of [6].

D. Transcribed SWB Benchmark

We use the results obtained in [6] as our supervised bench-
mark system. This system trains a DNN from 4,199 senone

TABLE I
INITIAL LANGUAGE RECOGNITION RESULTS ON 30 SECOND TEST SEGMENTS

OF LRE11; THE NUMBERS SHOWN ARE THE AVERAGE

DETECTION COSTS CAVG × 100

100 units 300 states SI SD

SWB (100 hrs) 9.10 7.36 6.29 5.89

LRE-subset (240 hrs) 9.02 6.67 5.65 5.24

Spectral Feature Baseline (Section IV-C) 5.29

Transcribed SWB Benchmark (Section IV-D) 2.60

The SWB row shows the results of a system built from acoustic units discovered on a
100-hour subset of Switchboard I (English), while the LRE-subset row corresponds to
that of a system build from units discovered on 240 hours of multilingual data. The
various columns show the results at different stages of unit discovery (unit cluster labels
versus HMM hidden state labels) and unit recognizer training (speaker-independent and
speaker-dependent). The bottom two rows show our baseline and benchmark results,
respectively.

target labels generated at the tri4a step from the s5b recipe
of the Kaldi example for Switchboard I [26], which we also
adopted in Section II-E.

E. Initial Results

In our initial experiment, we fix the number of acoustic units
at 100 and run AUD on SWB and LRE-subset. This results in
per-frame unit sequences for the 100 units and corresponding
300 states (for each 3-state HMM), both of which can be used
as targets for DNN training. As described in Section II-E, we
also treat the resulting unit sequences as transcriptions and train
an acoustic unit recognizer. We present our results obtained at
two different stages of recognizer training: speaker-independent
triphones (SI) and speaker-dependent (SD) modeling, which
includes MLLT, fMLLR, and speaker adaptive training.

Table I presents our initial results, where for simplicity, we
only show the detection cost on 30 second test segments of
LRE11. In comparing between rows, we can see that running
AUD on the multilingual LRE-subset is consistently better than
running the unit discovery on the English-only SWB. This can be
explained as either a result of domain adaptation to the multiple
LRE11 languages or the effect of having 240 hours in the LRE-
subset data versus 100 hours in SWB, or some combination
of both. That said, the virtue of unsupervised methods is that
they can be applied to the untranscribed multilingual data that
matches the test domain; as such, subsequent results will be
limited to units discovered on the LRE-subset.

Examining the columns from left to right, we can also see
that each additional step of model refinement corresponds
to additional improvements. Going from per-frame unit se-
quences (100) to context-independent HMM state sequences
(300) yielded the most substantial gain; we note once again
that both sets of sequences are solely the result of the AUD
inference process (involving segment boundaries) and not a re-
sult of the unit recognizer training discussed in Section II-E.6

During unit recognizer training, the SI step builds a phonetic

6Recall from Section II-E that the subsequent unit recognizer training ignores
the original segment boundaries, bt , from the AUD process and defines its own
via the standard HMM training algorithms (forward-backward and Viterbi).
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TABLE II
SCORE-LEVEL FUSION RESULTS ON LRE11 FOR VARIOUS TEST SEGMENT

LENGTHS (30, 10, AND 3 SECONDS); THE NUMBERS SHOWN ARE THE

AVERAGE DETECTION COSTS CAVG × 100

30 sec 10 sec 3 sec

* Spectral Feature Baseline 5.29 10.4 21.4
* AUD(LRE-subset), SD 5.24 10.1 20.1

Fusion of [*] above 3.80 7.17 17.2
Transcribed SWB Benchmark 2.60 6.25 16.5

We fuse the Spectral Feature Baseline (Section IV-C) with the best-performing system
from Table I, which was built on the LRE-subset data using AUD and speaker-dependent
unit recognizer training (Section II-E). The Transcribed SWB Benchmark is discussed
in Section IV-D.

decision tree in a data-driven, top-down, greedy fashion that
yields ∼2500 senones, while the SD step yields ∼4500 senones
and incorporates speaker adaptive training [26]. Potentially as
a result of such increased temporal resolution, we are able to
obtain results comparable to the acoustic baseline using SDC
features (Section IV-C). However, such performance is still sig-
nificantly worse than that of the transcribed SWB benchmark
(Section IV-D).

F. Incorporating Fusion

Given the similar performance of both the unit discovery-
based system and the spectral feature baseline, we present the
result of a score-level system fusion (via multi-class logistic
regression [38]) between the baseline and the best-performing
system from Table I, which was built on the LRE-subset data
using AUD and speaker-dependent recognizer training. The re-
sults inTable II suggest that the unit discovery-based system
captures language-related information complementary to that
of the spectral feature baseline. Fusing these two systems to-
gether yields a 27, 29, and 14% relative gain on 30-, 10-, and
3-second test segments, respectively, and significantly reduces
the gap between the baseline and the transcribed SWB bench-
mark without using any transcribed data.

G. Incorporating Transcribed Data

The work presented thus far has focused on a fully unsu-
pervised scenario that involves no transcribed data. Fusing an
AUD-based system with a spectral feature baseline reduces the
performance gap between the baseline and supervised system
based on transcribed English. In practical scenarios, however,
we will seldom be limited to situations in which we have abso-
lutely no access to transcribed data or pronunciation dictionaries
for any language. Instead, we are more likely to find ourselves in
a situation where the linguistic knowledge we have at hand (e.g.,
American English) does not necessarily match the data we need
to work with (e.g., the 23 other languages of LRE11). This situa-
tion was thoroughly explored in [6], [7] and is directly reflected
in our transcribed SWB benchmark system (Section IV-D).
In this section, we further investigate the effect of utilizing
existing transcriptions, but strictly in the context of improving
AUD for subsequent language recognition. We would like to
see whether an improved representation of speech might result

TABLE III
SCORE-LEVEL FUSION RESULTS ON LRE11 FOR VARIOUS TEST SEGMENT

LENGTHS (30, 10, AND 3 SECONDS); THE NUMBERS SHOWN ARE THE

AVERAGE DETECTION COSTS CAVG × 100

30 sec 10 sec 3 sec

AUD(LRE-subset, MFCC), SD 5.24 10.1 20.1
** AUD(LRE-subset, SWB-BN), SI 2.87 7.27 18.1
** Transcribed SWB Benchmark 2.60 6.25 16.5

Fusion of [**] above 2.10 5.21 15.0

The first row, AUD(LRE-subset, MFCC), SD, is the same result reported in Table II.
As discussed in Section IV-G, the results in the second row, AUD(LRE-subset, SWB-
BN), SI, incorporate transcribed SWB data into the AUD process in the form of BN
features. Our best results are obtained by fusing this semi-supervised system with the
Transcribed SWB Benchmark (Section IV-D).

in the discovery of more salient acoustic units and thus improve
language recognition performance.

To do so, we use the BN features obtained from the transcribed
SWB benchmark system described in Section IV-D as the feature
representation for AUD. That is, instead of using 39-dimensional
MFCC features, we run the entire unit discovery and recognizer
training process described in Section II using the 64-dimensional
BN features extracted from the transcribed SWB DNN
(Section IV-D). The resulting per-frame senone labels are then
used as output targets to train (from scratch) a brand new DNN
whose input layer is, as before, the original 819-dimensional
stacked PLP features. In this way, the transcribed SWB BN fea-
tures (SWB-BN) are used only as a pre-processing step for the
unit discovery; thus, their impact manifests solely in the quality
of the resulting per-frame senone labels.

Table III summarizes these results. The first row repeats the
results from Tables I and II that ran AUD using MFCC features,
while the second row displays the results of running AUD using
SWB-BN features as described above. We can see the immediate
impact of the improved feature representation and note that,
unlike in the case of using MFCC features for AUD, SD training
did not provide any improvement over SI modeling – this makes
sense, since the SWB-BN features are trained using the speech
of many speakers for the explicit purpose of discriminating
between phonetic variabilities7—so we only show our SI results.
But what is most important to realize is that these SWB-BN
features are seen only by the unit discovery process to obtain
the resulting per-frame senone sequences that we use as targets
for subsequent DNN training. Everything else in our BN i-
vector system, from stacked PLP coefficients as DNN inputs to
i-vector extraction, remains exactly as described in Section III.
Aside from the supervision involved in obtaining the SWB-
BN features, the rest of the unit discovery system is still fully
unsupervised. This clear difference in performance between the
first and second rows of Table III demonstrates yet again the
limitations of MFCC’s as acoustic features.

Because we are now using transcribed SWB data to ob-
tain our BN features, it is only fair to compare our results
against those of the transcribed SWB benchmark. While this

7The work in [6] notes, however, that these same SWB-BN features can be
effective for speaker recognition when used in tandem with spectral features.
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TABLE IV
INDIVIDUAL AND SCORE-LEVEL FUSION RESULTS ON LRE11 FOR VARIOUS

TEST SEGMENT LENGTHS (30, 10, AND 3 SECONDS); THE NUMBERS SHOWN

ARE THE AVERAGE DETECTION COSTS CAVG × 100

30 sec 10 sec 3 sec

1 AUD(LRE-subset, SWB-BN), SI 2.87 7.27 18.1
2 SWB-ASR, Decode LRE-subset 2.96 7.25 17.2
3 SWB-BN DNN, Classify LRE-subset 2.69 6.72 16.8
4 Transcribed SWB Benchmark 2.60 6.25 16.5

Fusion: 1 + 4 2.10 5.21 15.0
Fusion: 2 + 4 2.12 5.07 14.2
Fusion: 3 + 4 2.16 5.11 14.9

All of the systems shown here use transcribed SWB in some way, and all but the
benchmark system (Row 4) incorporate the use of LRE-subset data. AUD (Row 1) is
the same result from Table III for a system that uses transcribed SWB data to obtain BN
features for AUD on LRE-subset data. SWB-ASR (Row 2) uses a recognizer built from
SWB to decode the LRE-subset data. SWB-BN DNN (Row 3) classifies each frame
of the LRE-subset data using a DNN built from transcribed SWB data. Finally, our
transcribed SWB benchmark result is shown again in Row 4.

benchmark is still the best individual system, its fusion with our
(now semi-supervised) unit discovery-based system (using su-
pervised SWB-BN features) yields relative gains of 19%, 16%,
and 9% on 30-, 10-, and 3-second test segments, respectively.
These results suggest that the information each of these two
systems focuses on to make its classification decisions may be
complementary.

We realize that there are a variety of other ways in which the
transcribed SWB data can be utilized alongside the LRE-subset
data in the form of unsupervised domain adaptation. For the sake
of comparison, we explore a few of these methods but note that
a thorough treatment of this problem is not the intended focus of
this paper; our work simply aims to address the use of large-scale
AUD as a tool to obtain features for language recognition. As a
first experiment, we built and tuned an English recognizer from
the transcribed SWB data (SWB-ASR), used the recognizer
to decode the LRE-subset data, and built a new DNN from
the corresponding per-frame senone sequences. For the next
experiment, instead of a recognizer, we simply used the original
SWB-BN DNN to classify each frame of the LRE-subset data.
Those classification results were then used as (potentially noisy)
targets to train a brand new DNN from scratch.8 InTable IV, we
can see that both experiments yielded individual and score-level
fusion results that were similar to those obtained via our AUD
BN i-vector system.

While the results shown in Table III demonstrate that even
a little linguistic knowledge from just a single language (i.e.,
English) can have a huge impact in a multilingual setting (i.e.,
LRE11 performance), the results from Table IV further suggest
that such supervision can be utilized in a variety of ways and still
yield good results. We can also see that the original benchmark
system (Row 4 of Table IV), which simply uses the original
SWB-BN features for language recognition, continues to be the
single best-performing system. This may imply that BN features
are the most robust when trained using only labels obtained in a
fully supervised fashion. We defer a more in-depth exploration
of this phenomenon to future work.

8Training a new DNN from scratch yielded better results than simply fine-
tuning the original SWB-BN DNN.

V. DISCUSSION

So far, we have seen that a large-scale AUD system can yield a
segmentation and clustering of untranscribed data that is useful
for language recognition. And while our focus continues to be
on a fully unsupervised approach, we have also seen that even
a little bit of supervision can go a long way to improve results.
In this section, we discuss some of the other approaches we
tried that did not work as well as planned and then demonstrate
the generalizability of our approach to the previously unseen
LRE15 data.

A. Negative Results

In the development of our proposed system, we explored the
use of various levels of supervision in initializing the AUD
process. In one experiment, we initialized our HMMs with
a set of transcription-derived alignments (i.e., SWB). In an-
other, we initialized our HMMs at random, but at every itera-
tion, we updated our models using statistics accumulated from
both the newly-sampled alignments (on LRE-subset) and the
transcription-derived alignments (from SWB). We also tried
scaling the statistics from these respective alignments in var-
ious ways to adjust the amount our updated model relied on
each one. Our hypothesis was that maintaining some level of
supervision might help anchor an otherwise unsupervised pro-
cess; however, this set of experiments yielded results that were
no different from simply initializing the HMMs at random and
accumulating statistics from just the newly-sampled alignments.

We also considered different ways to obtain our set of poten-
tial phonetic boundaries (i.e., {bt} from Section II). In addition
to using the acoustic cues-based method from [29] with various
parameter settings, we also experimented with the phone bound-
aries obtained from decoding the data using a speech recognizer
trained on SWB. We found, however, that language recogni-
tion performance overall remained fairly stable across differ-
ent segmentation methods, so long as the determined bound-
aries occurred at a reasonable frequency and, as discussed in
Section II-D, the prior on the boundary variables is biased
towards being turned on (i.e., P (bt = 1) = 0.8). Because the
unit recognizer training step subsequently redefines these initial
boundaries, the quality of the discovered units seems to be most
dependent on how well we can cluster the data given the feature
representation (i.e., MFCC or SWB-BN).

B. The 2015 NIST Language Recognition Evaluation

Despite the amount of system development involved in ob-
taining the results described in Section IV, we demonstrate here
that our proposed methods can generalize from LRE11 to a
previously-unseen LRE. The 2015 NIST LRE encompasses 20
languages that can be grouped into six clusters9 and, just like
the LRE11, contains test durations of 3, 10, and 30 seconds
[40]. Unlike previous evaluations, LRE15 focused on classify-
ing target languages within the six language clusters. As such,

9Arabic – Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard; Chinese
– Cantonese, Mandarin, Min, Wu; English – British, General American, In-
dian; French – West African, Haitian Creole; Iberian – Caribbean Spanish,
European Spanish, Latin American Spanish, Brazilian Portuguese; Slavic –
Polish, Russian.



SHUM et al.: ON THE USE OF ACOUSTIC UNIT DISCOVERY FOR LANGUAGE RECOGNITION 1673

TABLE V
RESULTS ON LRE15 BROKEN DOWN BY LANGUAGE CLUSTER—ARABIC,

CHINESE, ENGLISH, IBERIAN, AND SLAVIC—THE NUMBERS SHOWN

ARE THE AVERAGE DETECTION COSTS CAVG × 100

Ar Ch En Ib Sl Avg

* Spectral Baseline 26.6 23.4 16.9 23.4 11.4 20.3
* AUD(MFCC), SD 24.6 18.4 18.3 21.9 7.27 18.1
[*] above fused 24.1 18.1 14.7 20.9 6.32 16.8
** AUD(SWB-BN), SI 19.6 13.3 12.7 18.5 3.89 13.6
** SWB-BN Benchmark 19.6 13.1 11.2 18.4 3.27 13.1
[**] above fused 18.6 11.8 10.3 17.1 2.89 12.1

we present our results on each language cluster, with the excep-
tion of French, as well as an average over all clusters. It was
determined during the post-evaluation workshop that the French
language cluster data featured a systematic channel mismatch
between the train and test segments that led to near-random
classification performance for most submitted systems. Further-
more, it was noted that Haitian Creole has a range of spoken
forms, with the more formal variety being more French-like and
the informal variety much less so [41]. Addressing this issue is
beyond the scope of this paper, so we omit these results; but for
future work, it would be interesting to investigate more channel-
robust (and speaker-independent) methods for unit discovery.

We used the development data provided by NIST: 141 hours
of Arabic, 52 hours of Chinese, 65 hours of English, 4 hours
of French, 23 hours of Iberian, and 30 hours of Slavic. This
reflects the amount of speech in the data after speech activity
detection. A more complete breakdown of the amount of speech
provided for the languages within each cluster can be found in
[41]. Despite the uneven distribution of these data across the
various language clusters, we decided against selecting a more
balanced subset and ran our initial experiments using all of it,
including French.

The top three rows of Table V are analogous to the results
shown in Table II, which respectively include baseline results
using just spectral features, results from units discovered on
MFCC features, and results from a fusion of the two. The lower
three rows present results analogous to those shown in Table III,
which include results from units discovered on SWB-BN fea-
tures, benchmark results using just SWB-BN features, and re-
sults from a fusion of the two, respectively.

We can see in Table V that the same trends from our LRE11
results persist in LRE15, thus demonstrating the applicability of
our approach to different languages. In fact, AUD using MFCC
features does substantially better than the spectral feature base-
line on all language clusters except for English. Furthermore,
the performance of our AUD-based system using SWB-BN
features is just about the same as that of the SWB-BN Bench-
mark, again with the exception of English.10

10We should also note that in our actual submission to the LRE15, the two best
performing individual systems were the SWB-BN Benchmark with a slightly
different DNN configuration (i.e., 80 nodes at the BN layer) and our AUD-based
system as described here [41].

TABLE VI
RESULTS ON LRE15 BROKEN DOWN BY LANGUAGE CLUSTER—ARABIC,

CHINESE, ENGLISH, IBERIAN, AND SLAVIC—THE NUMBERS SHOWN

ARE THE AVERAGE DETECTION COSTS CAVG × 100

# hrs Ar Ch En Ib Sl Avg

Ar 141 25.1 20.3 18.8 22.0 8.21 18.9
Ch 52 25.6 19.8 17.8 22.9 9.14 19.0
En 65 25.8 19.8 15.9 23.0 8.20 18.5
Ib 23 27.3 21.5 19.8 22.5 9.71 20.2
Sl 30 26.5 20.5 19.6 22.7 7.63 19.4
Fused (311) 24.5 17.6 14.8 20.6 6.11 16.7
All Data 315 24.6 18.4 18.3 21.9 7.27 18.1

For each of these systems, we run AUD using only the data from the language cluster
specified and build a language recognition system to classify languages from all five
language clusters. The Fused system is a score-level fusion of the five language cluster-
specific systems shown; the results of a system obtained using All Data (including
French) to discover acoustic units is the same as the second row in Table V.

C. Exploring Language Specificity

Because the LRE15 explicitly focuses on distinct language
clusters, we also explore the impact of language-specific per-
spectives in our unit discovery. Each row ofTable VI shows the
result of building a language recognition system via unit discov-
ery (on MFCC features) on just the specified language cluster.11

In each column, we highlight the best result obtained on the cor-
responding language cluster. This yields a fairly strong diagonal,
where the only off-diagonal element is likely due to the lack of
Iberian data relative to the amount of Arabic data. Otherwise, our
results seem to confirm the notion that learning units on a partic-
ular family of related languages does indeed improve recogni-
tion performance for that specific language cluster, which may
not be terribly profound but serves as further evidence that our
AUD process captures language-specific information. Finally,
fusing together the five language cluster-specific systems also
yields a stronger result on each language cluster than simply dis-
covering acoustic units from all languages (including French)
pooled together.

A natural extension of these results would be a set of ex-
periments that separate the impact of data amount from that of
language-specificity. In particular,Table VII shows the results of
running unit discovery on the same amount of data from each
language cluster and building respective language recognition
systems for each one. Iberian is our most data-limited language
cluster, so we used all of its data and randomly selected a 23
hour subset of data from every other language cluster for AUD.
Upon highlighting the corresponding row that obtains the best
result for each column, we see a diagonal that is not confounded
by an imbalance of training data between language clusters.
Compared to the results shown in Table VI, we can see that the
decrease in data for AUD on each language cluster seems to
decrease language recognition performance on average, but not
all language clusters are affected in the same way. In particular,
all of the results on the English language cluster actually im-
prove with the decrease in the amount of provided data. Table V

11For reasons described in the previous section, we do not build a language
cluster-specific system using the French data.
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TABLE VII
RESULTS ON LRE15 BROKEN DOWN BY LANGUAGE CLUSTER—ARABIC,

CHINESE, ENGLISH, IBERIAN, AND SLAVIC—THE NUMBERS SHOWN

ARE THE AVERAGE DETECTION COSTS CAVG × 100

# hrs Ar Ch En Ib Sl Avg

Ar 23 25.8 21.4 18.6 22.9 8.84 19.5
Ch 23 26.7 21.0 17.5 22.9 10.2 19.7
En 23 26.5 21.8 15.7 23.0 9.37 19.3
Ib 23 27.3 21.5 19.8 22.5 9.71 20.2
Sl 23 26.1 21.2 19.1 22.5 8.69 19.5
Fused (115) 24.9 18.4 14.2 20.7 7.00 17.0
All 5 Subsets 115 25.3 18.2 16.4 22.0 7.89 18.0

For each of these systems, we run AUD using only a 23 hour subset of the
data from the language cluster specified and build a language recognition
system to classify languages from all five language clusters. The Fused
system is a score-level fusion of the five language cluster-specific systems
shown, and the results of a system obtained using All 5 Subsets (excluding
French) to discover one set of acoustic units are shown in the last row.

also reflects this anomaly: the spectral baseline significantly out-
performs the unit discovery method (16.9 versus 18.3) on the
English language cluster. Our future investigations will explore
the causes of such systematic discrepancies in our results on the
English language cluster.

As expected, score-level fusion of the five separate language
cluster-specific systems provides the best result on each individ-
ual language cluster and overall. The fused system (Fused, 115
hours) also achieves better performance on average and on each
individual language cluster except Chinese when compared to
the experiment shown in the last row of Table VII in which
we pool the 23 hour subsets together and discover a single set
of units on all of the languages combined (All 5 Subsets, 115
hours). Lastly, comparing the (Fused, 115) and (All 5 Subsets,
115) results in Table VII with the (Fused, 311) and (All Data,
315) results in Table VI, we can see that the results are actually
quite similar despite a three-fold difference in the amount of
data used to for AUD. This seems to suggest that the amount
of data may not be the primary factor inhibiting performance.
We should also note, however, that a three-fold increase in the
amount of data does not necessarily imply a three-fold increase
in computation time. In the “embarrassingly parallel” paradigm
outlined in Section II-B, an increase in data can be remedied
with a sub-linear increase in computational complexity by sim-
ply splitting the data into additional partitions.

All of the results from Tables VI and VII are obtained via AUD
on MFCC features and, despite significantly improving upon
the spectral feature baseline result in Table V, are still far from
the respective performances of the SWB-BN benchmark and
AUD-based system that uses SWB-BN features. Our original
intention was to ascertain the true effect of language specificity
at the spectral feature level; as such, we chose not to use these
English-inspired features in our initial investigation. But for
completeness, Table VIII presents the result of using SWB-BN
features for AUD on a per-language cluster basis, and we can
see the corresponding performance improvements. In addition
to being better than systems in which all languages are pooled
together for AUD, our fusion of language-specific systems does
even a bit better than the SWB-BN Benchmark on average.

TABLE VIII
RESULTS ON LRE15 BROKEN DOWN BY LANGUAGE CLUSTER—ARABIC,

CHINESE, ENGLISH, IBERIAN, AND SLAVIC—THE NUMBERS SHOWN

ARE THE AVERAGE DETECTION COSTS CAVG × 100

# hrs Ar Ch En Ib Sl Avg

Ar 23 20.9 16.0 15.2 20.3 6.39 15.8
Ch 23 22.1 16.1 15.2 20.3 5.72 15.9
En 23 21.6 15.4 12.8 19.2 5.84 15.0
Ib 23 21.4 15.3 15.5 19.1 5.40 15.3
Sl 23 21.3 16.0 15.6 20.8 4.66 15.7
Fused (115) 19.5 12.9 11.2 17.6 3.53 12.9
All 5 Subsets 115 20.2 14.3 13.1 18.3 3.94 14.0
All Data 315 19.6 13.3 12.7 18.5 3.89 13.6
SWB-BN Benchmark 19.6 13.1 11.2 18.4 3.27 13.1

For each of these systems, we represent the audio using SWB-BN features and run
AUD using a 23 hour subset of the data from the language cluster specified. Using
these discovered acoustic units, we build a language recognition system to classify
languages from all five language clusters.

Nevertheless, our experiment results continue to motivate the
need for an improved feature representation for all languages.
Our results in Table VIII were obtained using transcribed En-
glish and did fairly well, but there is a lot of room for further im-
provement. For instance, appropriate features for English may
be insufficient for other language clusters. The tonal nature
of Chinese, in particular, is completely ignored in the stan-
dard MFCC-based representation used for English. As we look
ahead to future work, one experiment that would help ascertain
the generalizability of our methods is to use a more appropriate
feature representation for Chinese, learn acoustic units on those,
and evaluate the new system.

VI. CONCLUSION

In this paper, we explored the application of large-scale AUD
as a tool to obtain features for language recognition. To do so,
we implemented a parallelized version of a Bayesian nonpara-
metric model from previous work and used it to learn acoustic
units from hundreds of hours of multilingual data. We use these
per-frame sequences of units (or states or senones) as targets to
train a DNN that, given stacked spectral features as input, pro-
vides a BN feature representation that can be used for i-vector
language recognition. We found that a score-level fusion with a
baseline system built from acoustic features yields substantial
gains and significantly closes the gap between the baseline and
a benchmark system built using transcribed English, suggesting
that discovered acoustic units may be complementary to spectral
features. Subsequently, we also found that an improved repre-
sentation of speech (i.e., supervised BN features) as input to our
AUD system can yield substantial performance gains, thus mo-
tivating the need for a better understanding of the speech signal.
We validated the generalizability of our proposed approach by
presenting results that exhibit similar trends on the LRE’s from
both 2011 and 2015. Finally, we demonstrated on LRE15 the
continued importance of language specificity for unit discovery.

As we have commented throughout this paper, there exist
many avenues for future work. Apart from a cursory visual
inspection, we have not done much to measure, using existing
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metrics [44], the quality of the discovered acoustic units using
such a large set of multilingual data. We can also update our
DNN architecture to account for language specificity at the
output layer; for example, each target class could be a language-
specific senone where, during training, we compute our softmax
only for the senones pertinent to the current language [45],
[46]. Continuing to explore language specificity is certainly
ripe with possibilities, especially in the context of LRE15 and
our observations with the English and French language clusters.
Furthermore, another easy extension mentioned in the previous
section would be to consider the use of different acoustic features
for different languages—running unit discovery using MFCCs
is far less meaningful on tonal languages such as Chinese.

The notion of language-specific perspectives can be seen as a
form of weak supervision, and we have also seen that a little su-
pervision of any form and from any language can be extremely
useful. To this end, there are many ways to incorporate this that
can still be explored, including pairwise constraints on acoustic
sequences (e.g., examples of the same word) [47]–[49]. And
lastly, unsupervised AUD can also be seen as a tool to ascertain
the phonotactics of a language; it would be interesting to extend
our work to more recent phonotactic approaches to language
recognition using our discovered units [50]–[52]. For example,
we can use our language-specific acoustic unit models to tok-
enize the multilingual data and build a system analogous to the
approach known as parallel phoneme recognition followed by
language modeling (PPR-LM) [22]–[25]. Some of our initial
work on this front can be found in Section 5.6 of [53].
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