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ABSTRACT
Recurrent neural networks (RNNs) are naturally suitable for
speech recognition because of their ability of utilizing dy-
namically changing temporal information. Deep RNNs have
been argued to be able to model temporal relationships at dif-
ferent time granularities, but suffer vanishing gradient prob-
lems. In this paper, we extend stacked long short-term mem-
ory (LSTM) RNNs by using grid LSTM blocks that formulate
computation along not only the temporal dimension, but also
the depth dimension, in order to alleviate this issue. More-
over, we prioritize the depth dimension over the temporal
one to provide the depth dimension more updated informa-
tion, since the output from it will be used for classification.
We call this model the prioritized Grid LSTM (pGLSTM).
Extensive experiments on four large datasets (AMI, HKUST,
GALE, and MGB) indicate that the pGLSTM outperforms al-
ternative deep LSTM models, beating stacked LSTMs with
4% to 7% relative improvement, and achieve new benchmarks
among uni-directional models on all datasets.

Index Terms— speech recognition, recurrent neural net-
work, grid long short-term memory

1. INTRODUCTION

Recently, neural network-based (NN) acoustic models have
greatly improved automatic speech recognition (ASR) per-
formance over traditional Gaussian mixture models (GMMs)
on a variety of tasks [1, 2, 3, 4]. Further improvement has
been observed by applying more advanced neural network ar-
chitectures, such as convolutional neural networks [5, 6] and
time delay neural networks [7]. Among this line of work, re-
current neural networks (RNNs), especially long short-term
memory (LSTM) RNNs, that are capable of utilizing dynami-
cally changing contextual windows over the sequence history,
have achieved state-of-the-art performance on numerous tasks
[8, 9, 10, 11, 12, 13, 14].

As observed in [15], the speech signal encodes acoustic-
phonetic information at different time scales. Deep RNNs
have been argued to be capable of modeling the temporal
relationships at different time granularities [16]. Therefore,
we would like to build deeper LSTM RNNs to achieve bet-
ter performance; however, such models can suffer from the
vanishing gradient problem. To alleviate this issue, several
architectures have been proposed [11, 17, 18]. One approach
named grid LSTM [18] provides a unified framework for both

deep and sequential computation by arranging LSTM blocks
into multidimensional grids such that each grid contains one
LSTM block for each dimension, and a per-dimension gated
linear dependence between adjacent cells is introduced.

In this paper, we adapt grid LSTM models for acous-
tic modeling, where each grid contains a time-LSTM and a
depth-LSTM for deep computation and temporal computa-
tion, respectively. Furthermore, we modify the grid such that
the depth dimension is prioritized over the temporal dimen-
sion, and call this model a prioritized grid LSTM. While the
concept of prioritization was described in [18], we believe this
paper is the first to apply the concept to speech recognition.

Extensive experiments are conducted on four highly di-
verse datasets, which range from 100 hours to 1200 hours,
include three languages, and cover multiple speech scenarios
as well as sampling rates. Initial experiments on two datasets
affirm the importance of prioritizing the depth dimension and
show that prioritized grid LSTMs outperform LSTMs, high-
way LSTMs, and residual LSTMs. Further experiments on all
datasets indicate that the prioritized grid LSTM consistently
outperforms all baseline approaches, and achieves the best
performance reported on those datasets among uni-directional
models. Lastly, we show that prioritized grid LSTMs can
largely benefit from sequence discriminative training.

The rest of paper is organized as follows, In Section 2, we
describe our models. In Section 3, we briefly discuss related
work. The experimental setup is summarized in Section 4,
followed the results and discussion in Section 5. Finally, we
conclude our work in Section 6.

2. METHOD

In this section, we first explain the working principles of
LSTM RNNs, which help us appreciate what problems tradi-
tional RNNs have can be alleviated through this design. Next,
the vanishing gradient problem encountered in deep neural
network structures is illustrated in the context of stacked
LSTM models. Subsequently, we introduce an alternative ar-
chitecture called grid LSTM, which provides a solution to the
gradient issue. Finally, we propose two models based on this
architecture, which we call prioritized and non-prioritized
grid LSTM RNNs, respectively, for acoustic modeling.



(a) RNN block

(b) LSTM block

Fig. 1. Comparison between RNN and LSTM blocks.

2.1. Long Short-Term Memory RNNs

Recurrent neural networks (RNNs) are variants of feed-
forward neural networks, which contain feedback loops that
feed activations not only to the next layer, but also as the input
to the current layer at the next time step. This design enables
the network to consider all contexts from the past in order to
make a decision about the current frame, which is a desirable
property since contextual information plays an important role
in acoustic modeling.

However, in practice RNNs cannot preserve information
over a long period. This is because commonly-used activation
functions, such as the sigmoid function and hyperbolic tan-
gent function, compress the input into a small dynamic range;
therefore, the activations of the same layer from n-steps be-
fore would have been compressed n times by the time it ar-
rives at the current time step, and thus has a minor influence.
While training with back-propagation through time (BPTT),
this problem is also known as the vanishing gradient problem
in the sense that error signals are not likely to back-propagate
along time dimension for many hops.

To address this issue, the LSTM block was proposed in
[19] to replace the traditional hidden unit. An LSTM block
is composed of an array of memory cells c as well as three
gates: i, f , and o, which are used to control information flow.

They are defined as follows:
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where clt, and hl
t are the cell state and cell output respectively

at time t and layer l; specifically, cell output at 0-th layer
h0t refers to the input feature at time t. W∗, U∗ and b∗ are
weight matrices and bias vectors connecting different gates.
� denotes an element-wise product. Note that U∗ are “peep-
hole connections” [20] that only exist within each block, and
since the number of cells in each LSTM block is set to one,
U∗ are diagonal matrices here. W′

proj is a projection matrix
as proposed in [9].

A graphical comparison between RNN blocks and LSTM
blocks is shown in Figure 1. Solid lines are used to denote
inputs that are shared among all LSTM blocks, while dashed
lines are used to denote inputs that are only passed to the cor-
responding LSTM blocks at the next time step. In addition,
we use dotted lines to denote peephole connections. The key
difference is the approach of storing and propagating mem-
ories. LSTM blocks store memories in the form of memory
cell states, as opposed to RNN memories which are in the
form of hidden state activations; more importantly, a gated
linear dependence is introduced between memory cell states
across two consecutive time steps, as indicated by the bold red
line in Figure 1(b), which allows memories to be preserved.

2.2. Vanishing Gradient Along Depth Dimension

As mentioned earlier, we would like the LSTM RNNs to
model temporal relationships in the speech signal at differ-
ent time granularities, since deep RNNs have been argued to
be able to learn them [16]. The most naı̈ve way to build a
deep LSTM RNN is by stacking multiple LSTM layers, as
illustrated in Figure 2.

We denote the input signal flow along the depth dimen-
sion with the bold blue line in Figure 2; the error signals on
the other hand flow in the opposite direction along depth di-
mension. As we increase the depth of the model, we can see
how deep LSTM RNN models can suffer from the vanishing
gradient problem, not along the time dimension, but along
the depth dimension. Empirically, it is also shown in [11] that
deep LSTM models deteriorate significantly when increasing
the depth from 3 layers to 8 layers.

2.3. Grid Long Short-Term Memory RNNs

The grid LSTM RNN was first introduced in [18]. Unlike tra-
ditional LSTM RNN models, which organize LSTM blocks
as a temporal chain, grid LSTM RNN models arrange LSTM



Fig. 2. Illustration of a simple stacked LSTM RNN model.

blocks into multidimensional grids such that each grid con-
tains one set of LSTM blocks for each dimension, includ-
ing the depth dimension. This architecture introduces per-
dimension gated linear dependencies between adjacent cell
states, which mitigates the vanishing gradient problem along
all dimensions.

Here we consider a two-dimensional grid LSTM model
for acoustic modeling, which are time and depth dimensions
respectively, as illustrated in Figure 3. The computations in
each grid are defined as follows:
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Note that we slightly change the notation here by using sub-
scripts to denote both time and depth, and using superscripts
to indicate a specific set of LSTM blocks. cit,l and hit,l are cell
state and cell output respectively at time t and layer l of i-
LSTM, while Θi denotes all the parameters of i-LSTM. The
cell output of DEPTH-LSTM at the last layer, hDt,L, is passed
to the softmax layer for classification.

One last thing that needs to be tackled is cDt,0, of which the
value is undetermined. The easiest solution would be setting
the value to zero, which gives a flat initialization of cell states
regardless of input value. Instead, we apply a linear transform
such that

cDt,0 = VhD
t,0 (11)

which achieves better performance empirically.

2.4. Prioritized Grid Long Short-Term Memory RNNs

In Equation 10, we notice that the cell output from TIME-
LSTM is not being utilized for classification of the current

Fig. 3. GLSTM

Fig. 4. Prioritized GLSTM

time step. In other words, we would like the depth dimen-
sion to know the output from other dimensions at the current
grid such that it is implicitly deeper in terms of the number
of transformations before being used for classification. We
slightly modify the formulation from Section 2.3 as follows:
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where the input to DEPTH-LSTM is updated after TIME-
LSTM of the same grid is processed. We call this model pri-
oritized grid LSTM (pGLSTM), and illustrate it in Figure 4,
as opposed to non-prioritized grid LSTM (npGLSTM) in Fig-
ure 3.



3. RELATED WORK

Several alternative approaches have been proposed to address
the vanishing gradient problem, and enable training of deeper
neural networks. One model, named highway long short-term
memory (HLSTM), was proposed in [11], introduced direct
gated connections between cell states in adjacent layers, and
is controlled by a “depth-gate”. The depth gate function is
determined by the cell outputs from the previous layer, as well
as the cell states from the previous layer and previous time
step.

Another model, called a residual network, that was pro-
posed in [17], introduces “shortcut connections” that add up
the input to one layer and an output from some upper layer as
the new output of that upper layer, in the sense that the upper
layers are obliged to learn the residual function of the ideal
mapping. We therefore name the LSTM model with shortcut
connections the residual LSTM (RLSTM) model.

The most significant difference between GLSTM models
and these two alternative models is that a GLSTM model not
only goes deeper, but also elegantly utilizes vertical informa-
tion with an LSTM, providing all the functionality that an
LSTM possesses along the depth dimension.

4. EXPERIMENT SETUP

4.1. Dataset

Our experiments to study the behavior of grid LSTMs were
based on four different speech corpora. These corpora span
a wide variety of configurations, ranging from 100 hours to
1200 hours, include three languages, multiple accents, and
recording under different scenarios and sampling rates. We
describe these datasets in the following sections.

4.1.1. AMI

The AMI corpus comprises approximately 100 hours of meet-
ing recordings in instrumented meeting rooms [21]. Multi-
ple microphones were used, including individual headset mi-
crophones, lapel microphones, and one or more microphone
arrays. In this work, we use the single distant microphone
(SDM) condition for our experiments. Our systems follow
the split recommended in the corpus release: 80/9/9 hours for
train/dev/test respectively. For our training, we use all seg-
ments provided by the corpus, including those with overlap-
ping speech. Our models are evaluated on the test set only.
NIST’s asclite tool [22] is used for scoring.

4.1.2. HKUST

The HKUST Mandarin Telephone Speech (LDC2005S15)
dataset is a medium-sized corpus containing 150 hours of
conversational telephone speech from Mandarin speakers,
recorded at an 8k sampling rate. The two callers do not know
each other in advance, and similar topics to those in Fisher
English (LDC2004S13) were used to initiate a conversation.
The release is split into training and development sets with
873 calls and 24 calls respectively, of which we use the
development for evaluation.

4.1.3. GALE Mandarin

We merged GALE Phase 2 Chinese Broadcast Conversa-
tion Speech (LDC2013S04), GALE Phase 3 Chinese Broad-
cast Conversation Speech Part 1 (LDC2014S09) and Part 2
(LDC2015S06), and GALE Phase 2 Chinese Broadcast News
Speech (LDC2013S08), to create a large 500-hour Mandarin
corpus. All four corpora are recorded at a 16k sampling rate
from Chinese broadcast programs. We use the same 3-hour
evaluation set as in [12].

4.1.4. Arabic MGB

This dataset is provided by the 2016 Arabic MGB Challenge1,
containing about 1200 hours of Arabic broadcast programs
taken from Aljazeera TV over 10 years, recorded at a 16k
sampling rate. Ten hours of data are partitioned as the offi-
cial development set for the challenge, and will be used for
evaluation in this work.

4.2. Model Setup

Here we consider three baseline recurrent neural network
models: (1) LSTM (2) HLSTM, and (3) RLSTM. For all
models, we carefully follow the configurations reported in
[11]. Each layer contains 1024 memory cells, and a 512-node
linear projection layer is added on top of each layer’s output.
Specifically, for RLSTM, we add shortcut connections from
each layer’s input to its output. The first two baseline models
will be used for all experiments, while the last one will only
be used when comparing deep LSTM variants.

For our non-prioritized and prioritized grid LSTM models
(npGLSTM/pGLSTM), we chose the same configuration for
both time-LSTM and depth-LSTM as for the aforementioned
baseline models.

4.3. Training

We use Kaldi [23] for feature extraction, decoding, and train-
ing of initial HMM-GMM models. Maximum likelihood-
criterion context-dependent speaker adapted acoustic models
with Mel-Frequency Cepstral Coefficient (MFCC) features
are trained with standard Kaldi recipes. Forced alignment
is performed to generate labels for neural network acoustic
model training. A feed-forward neural network model for
each dataset is then trained and used to re-generate forced
alignment, which is fixed for the rest of the experiments.

The Computational Network Toolkit (CNTK) [24] is used
for the rest of neural network training. As [10] suggests,
all weights are randomly initialized from the uniform dis-
tribution with range [−0.05, 0.05], and all biases are initial-
ized to 0 without generative or discriminative pretraining [1].
All neural network models, unless explicitly stated otherwise,
are trained with a cross-entropy (CE) criterion, using trun-
cated back-propagation-through-time (BPTT) [25] for opti-
mization, which unrolls 20 frames and parallelizes 40 utter-
ances in each mini-batch. No momentum is used for the first
epoch, and a momentum of 0.9 is used for subsequent epochs

1http://www.mgb-challenge.org/arabic.html



[26]. L2 constraint regularization [27] with weight 10−5 is
applied.

For AMI, HKUST and GALE Mandarin, ten percent of
the training data is held out as a validation set, which is
used to control the learning rate. When no gain is observed
after an epoch, the learning rate is halved, and the model
with the lowest validation loss is reloaded. For Arabic MGB,
all data is used for training, and the learning rate is halved
after each epoch; in addition, we use 4-GPU parallel train-
ing with model-averaging stochastic gradient descent (SGD)
method [28]. Specifically, as [29] suggests, we start a seed
model trained with standard SGD method for one epoch to
achieve better performance.

Sequence discriminative training of Grid LSTM models
using state-level minimum Bayes risk (sMBR) [30] criterion
is conducted on the largest Arabic MGB dataset in order to
examine the benefit of sequence discriminative training on our
proposed model.

The input features for all models are 80 dimensional log
Mel filterbank features computed every 10 ms, with an ad-
ditional 3 dimensional pitch features. The output targets are
context-dependent triphone states, of which the numbers are
determined by the last HMM-GMM training stage. Table 1
shows the number of output targets in each dataset.

AMI HKUST GALE MGB
#states 3943 2825 4198 3711

Table 1. Number of output targets in each dataset.

5. RESULTS

The performance of various models are reported in charac-
ter error rate (CER) for Chinese corpora and word error rate
(WER) for the rest.

5.1. Prioritized/Non-Prioritized Grid LSTM

We first compare the two grid LSTM models along with
baseline models on two medium-sized datasets: HKUST and
GALE Mandarin. The CER of the different models are shown
in Table 2. Both grid LSTM architectures outperform the
vanilla LSTM model, as well as the highway LSTM model.
Specifically, a 3% to 5% relative gain is achieved for the non-
prioritized grid LSTM compared to the vanilla LSTM. The
result suggests that grid LSTM models are empirically better
solutions for introducing gated linear dependencies across the
depth dimension.

Between the two grid architectures, the prioritized grid
LSTM model consistently shows better ASR performance,
providing an additional 1% relative gain compared to the non-
prioritized model. This result supports our hypothesis that the
LSTM whose output is fed into the final softmax layer should
be prioritized in order to obtain more recent information.

5.2. Comparisons with Alternative Deep LSTMs

We compared alternative deep LSTM architectures with the
prioritized Grid LSTM on the AMI corpus, when increasing

Model #layers HKUST GALE
LSTM 3 33.29 23.96
HLSTM 3 32.86 23.33
npGLSTM 3 32.32 22.80
pGLSTM 3 32.06 22.54

Table 2. Performance of Grid LSTMs and baseline models.

model depth. Table 3 shows the detailed results. When in-
creasing the number of layers from 3 to 8, the vanilla LSTM
deteriorates significantly; on the other hand, the performance
of the HLSTM only degrades slightly and levels off after 8
layers.

In contrast, both the RLSTM and pGLSTM benefit from
increasing the depth. The pGLSTM consistently performs
better than all the other models, and it is worth noting that
the 3-layer pGLSTM model achieves roughly the same ac-
curacy as the 16-layer RLSTM model, while the latter takes
much longer to train and much more space. We argue that
utilizing the vertical (depth) information with an LSTM is es-
sential for achieving good performance. We were not able
to train a pGLSTM model with 16 layers. Careful parameter
initialization may be required.

Model #layers #params with overlap no overlap
LSTM 3 12M 50.7 41.7
LSTM 8 36M 52.6 43.8
HLSTM 3 14M 50.4 41.2
HLSTM 8 40M 50.7 41.3
HLSTM 16 82M 50.7 41.2
RLSTM 3 12M 51.3 42.0
RLSTM 8 36M 50.5 40.8
RLSTM 16 74M 49.9 40.4
pGLSTM 3 25M 49.8 40.5
pGLSTM 8 72M 49.0 39.6

Table 3. Performance of different deep LSTM models.

5.3. Deeper Prioritized Grid LSTM

We conducted extensive experimentation to verify the effec-
tiveness of the prioritized Grid LSTM on all four datasets. Ta-
ble 4 summarizes the results of the baseline models as well as
the proposed models, and includes references to other models
tested on the same dataset that are reported in the literature.

The performance of the pGLSTM models are consistently
superior to the baseline models, with gains being observed
when increasing the number of layers from 3 to 5 on all
datasets, even on the smallest AMI corpus. In addition, the
5 layer pGLSTM models set new benchmark results on the
HKUST and GALE datasets. As for AMI, the best result
is the state-of-the-art uni-directional recurrent model. As
[11] shows that the bi-directional version gives about 2%
absolute error reduction, we would hope that modifying the
proposed pGLSTM model to be a bi-directional one would
lead to better performance than BHLSTMP. This remains to
be demonstrated in future work.



Model #layers #params AMI HKUST GALE MGB
BHLSTMP [11] 3 11M 48.3 - - -
Stacked maxout LSTMPs [31] 3 - - 33.89 - -
Highway CLDNN [12] 11 44M - - 22.41 -
LSTM 3 12M 50.7 33.29 23.96 23.56
HLSTM 3 14M 50.4 32.86 23.33 23.32
HLSTM 5 24M 50.7 32.40 22.63 23.12
pGLSTM 3 25M 49.8 32.06 22.54 22.36
pGLSTM 5 44M 48.6 31.36 22.33 22.18

Table 4. Model comparison on all four datasets.

5.4. Prioritized Grid LSTM with Sequence Training

Finally, we perform sequence training for the prioritized Grid
LSTM on the 1200 hour Arabic MGB dataset. Detailed re-
sults are shown in Table 5. The results suggest that the pri-
oritized Grid LSTM model can largely benefit from sequence
training. Here an 8.8% relative improvement in WER is ob-
served for sequence training of the 3-layer model, while a
slightly larger 9.3% relative improvement is observed on a 5-
layer model.

Model #layers MGB
pGLSTM 3 22.36
pGLSTM 5 22.18
pGLSTM (sMBR) 3 20.40
pGLSTM (sMBR) 5 20.11

Table 5. Performance of sequence training on pGLSTM

6. CONCLUSION

In this paper, we present two grid LSTM models for speech
recognition, which utilize information along the depth dimen-
sion as an LSTM and simultaneously alleviate the vanishing
gradient problem. Extensive experiments are conducted on
four highly diverse datasets. Results suggest that (1) prioritiz-
ing the depth dimension is essential for achieving better per-
formance, (2) our prioritized grid LSTM model outperforms
two alternative designs for deep LSTM models, (3) sets new
benchmarks for uni-directional models on all four datasets,
and (4) greatly benefits from sequence discriminative train-
ing.

For future work, we plan to extend the prioritized grid
LSTM model by combining it with complimentary neural net-
work layers, such as convolutional layers and feed-forward
layers. We also would like to investigate three dimensional
grid LSTM models, which are time, frequency, and depth di-
mension respectively.
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